
A Method to Assess Randomness of Functional Connectivity 
Matrices

Victor M. Vergara, PhD1, Qingbao Yu, PhD1, and Vince D Calhoun, PhD1,2

1The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 
1101 Yale Blvd. NE, Albuquerque, NM 87106

2Department of Electrical and Computer Engineering, MSC01 1100, 1 University of New Mexico 
Albuquerque, NM 87131

Abstract

Background—Functional magnetic resonance imaging (fMRI) allows for the measurement of 

functional connectivity of the brain. In this context, graph theory has revealed distinctive non-

random connectivity patterns. However, the application of graph theory to fMRI often utilizes non-

linear transformations (absolute value) to extract edge representations.

New method—In contrast, this work proposes a mathematical framework for the analysis of 

randomness directly from functional connectivity assessments. The framework applies random 

matrix theory to the analysis of functional connectivity matrices (FCMs). The developed 

randomness measure includes its probability density function and statistical testing method.

Results—The utilized data comes from a previous study including 603 healthy individuals. 

Results demonstrate the application of the proposed method, confirming that whole brain FCMs 

are not random matrices. On the other hand, several FCM submatrices did not significantly test out 

of randomness.
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Comparison with existing methods—The proposed method does not replace graph theory 

measures; instead, it assesses a different aspect of functional connectivity. Features not included in 

graph theory are small numbers of nodes, testing submatrices of an FCM and handling negative as 

well as positive edge values.

Conclusion—The random test not only determines randomness, but also serves as an indicator 

of smaller non-random patterns within a non-random FCM. Outcomes suggest that a lower order 

model may be sufficient as a broad description of the data, but it also indicates a loss of 

information. The developed randomness measure assesses a different aspect of randomness from 

that of graph theory.
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Introduction

Brain functional connectivity is an important emerging topic due to its potential for use in a 

clinical setting (Castellanos et al., 2013; Matthews and Hampshire, 2016). Deviations from 

normal connectivity patterns are investigated as possible biomarkers in several diseases 

including schizophrenia (Damaraju et al., 2014), traumatic brain injury (Vergara et al., 

2017b), attention deficit disorder (Cao et al., 2009), and bipolar and major depressive 

disorders (He et al., 2016). Brain signals are initially collected using diverse techniques such 

as magneto-encephalography (MEG), functional magnetic resonance imaging (fMRI) or 

electro-encephalography (EEG) (Brookes et al., 2011; Srinivasan et al., 2007). After 

appropriate signal preprocessing, functional connectivity is then assessed through 

correlation, coherence, or measure of causality (Sporns, 2011). At this stage, one 

straightforward option is to analyze the connectivity between pairs of interesting brain areas 

or alternatively consider a network-based approach to extract global measures of 

connectivity (Kim et al., 2014). In this networking approach, functional connectivity can be 

seen as a collection of spatially distributed brain nodes linked through temporal dependency 

of neuronal activations (van den Heuvel and Hulshoff Pol, 2010). A long and current line of 

research has found non-random patterns in brain connectivity along with evidence linking 

deviations from this structure to known neuropathologies (Buckner et al., 2008; Nelson et 

al., 2017; van den Heuvel et al., 2016). Consequently, a complete characterization of non-

random patterns in brain connectivity has become an important topic for the understanding 

of dysfunctions in pathological brains.

Because of its simplicity, one of the types of connectivity that is also widely used is 

temporal correlation, where time-courses measured from a specific part of the brain are 

correlated with time-courses of a different brain area. When more than two brain areas are 

involved in the analysis, a set of correlations can be expressed as a correlation matrix. Since 

this matrix is the expression of identified connectivities, we renamed this matrix the 

functional connectivity matrix (FCM). FCMs are used for the analysis of many types of data, 

including positron emission tomography (Friston et al., 1993) and magneto-encephalography 

(Stam, 2004); among other definitions, they are also known as functional connectivity or 

functional network connectivity (Allen et al., 2011) matrices in fMRI data. At first, an FCM 
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may not appear to follow a specific pattern or structure if its elements are not appropriately 

organized. However, patterns within FCMs become evident after reordering brain areas in 

anatomical and functional groups. One of the most studied patterns in FCMs involves a set 

of areas that reduce their activity during attention demanding tasks. This set of brain areas is 

known as the default mode network (DMN) and includes the ventromedial prefrontal cortex, 

posterior cingulate cortex. and angular gyrus (Buckner et al., 2008; Greicius et al., 2009). A 

pattern formed due to the existence of a DMN is easy to recognize in appropriately ordered 

resting state FCMs. Other networks have been discovered to be part of the resting state 

layout, which includes sensorimotor, visual, attention, executive control and salience 

networks (Ptak, 2012; Smith et al., 2009; Sutherland et al., 2012).

Connectivity patterns in FCMs have also been extensively studied using the mathematical 

graph theory framework, revealing important characteristics of brain networks. One 

important conclusion is that the brain has evolved into a connected network consisting of 

sparse local clusters with few long-range connections among clusters, which is an 

organization known as “small-world” (Bassett and Bullmore, 2006). This type of 

organization allows for an optimal trade-off between complexity and wiring cost, thus 

achieving an economic flow of information through the brain. One of the first accounts for 

small-world organization using fMRI data that was reported (Salvador et al., 2005) 

demonstrated the existence of local connectivity clusters. Later studies provided evidence for 

the existence of modular and community like structure. Modularity measures are important 

because modular systems show small-world properties, but not all small-world systems 

exhibit modularity (Meunier et al., 2010). The modular structure of the brain has been 

established after analyzing the structural MRI data identifying six brain modules (auditory/

language, executive, sensorimotor, visual and mnemonic) of strong overlap with known 

functional domains (Chen et al., 2008). Another important property of the brain is the 

existence of “rich-nodes”, which have a large number of connections that also tend to form 

interconnected subgraphs (Colizza et al., 2006). A “rich-club” of highly interconnected 

nodes have been identified in the human brain localized in key hub regions that includes 

precuneus, superior frontal, superior parietal, hippocampus, putamen and thalamus (van den 

Heuvel and Sporns, 2011). Overall, this wiring of the human brain has evolved to exhibit a 

non-random pattern of connected nodes for an optimal flow of information.

The advances obtained from graph theory are not free of pitfalls in analysis that need to be 

considered when interpreting results (Fornito et al., 2013). In the context of fMRI data, the 

definition of nodes remains a problem with only an approximated solution. The issue is to 

find an optimal parcellation of the brain into functional areas, each of which represents a 

node. We can solve this problem using the data driven technique known as group 

independent component analysis (gICA), which uses the concept of maximally independent 

nodes to achieve brain parcellation (Calhoun and Adali, 2012b). Another challenge is the 

definition of edges. The type of connectivity obtained after using gICA to analyze fMRI is 

based on the synchronic behavior between nodes primarily measured through correlation. 

Several concerns arise when translating correlation into edge information that can be either 

weighted or binary connectivity (connection vs. no-connection). In practice, the main 

concerns for FCMs has to do with handling the sign (positive vs. negative) of correlation 
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measures and the binarization (if required) of edge weights through thresholding (Fornito et 

al., 2013).

This work assesses and characterizes randomness in FCMs. The main concept is to measure 

how close an FCM is to a random matrix whose elements are random and follows a normal 

distribution. Different from common approaches of edge weight estimation, our approach 

considers Fisher's Z–transformation (Fisher, 1915) when applied to correlation values in the 

FCM. Fisher's Z–transformation helps stabilize the variance of the correlation coefficient 

and produces approximately normal distributed values that span the range of the real 

numbers. These characteristics facilitate the application of several statistical methods to 

analyze the significance of correlation values. In the same line of thought, we can consider 

the transformed correlation as a normally distributed value that characterizes the edge 

connectivity strength between two brain nodes. The ensemble of transformed correlation 

connections results in the natural concept of a matrix possibly constituted by random values. 

In contrast, known methods of graph theory first apply a threshold to decide the existence or 

lack of edges in the case of binarization, or it can otherwise apply a non-linear (absolute 

value) transform to deal with negative correlation values and produce weights. The resulting 

graph is compared against a randomly connected graph defined in the space of binary or 

weight values for each edge (Rubinov and Sporns, 2010; Watts and Strogatz, 1998). In our 

case, the random value associated to each edge is neither a weight nor a binary value, but is 

assumed to follow a Gaussian distribution that has similar properties to the Fisher 

transformed correlation. The proposed randomness test utilizes the characteristics of the 

whole matrix ensemble as determined by matrix eigen-spectrums. Our hypothesis is that 

random matrices exhibit a specific eigen-spectrum that is distinct from the eigen-spectrum of 

a non-random FCM. The focus of our analysis is the temporal coherence of brain activity 

among areas of the brain and whether the coherence structure expressed through FCM 

eigen-spectrum is similar to that obtained by chance or exhibits a more deterministic nature. 

The current work utilizes resting state data from a former study to exemplify the applications 

of the randomness test developed.

Theoretical Development

The objective of our work is the development of a formal framework to distinguish random 

from non-random connectivity matrices, but also use raw assessments of connectivity and 

avoid connectivity to edge transformations. The proposed technique compares singular 

values (SVs) from a connectivity matrix that might be composed of non-random values 

against SVs from matrices composed of random elements. The development of this 

technique makes strong use of random matrix theory, which will be explained in the 

following sections.

Random Matrices

We define a random matrix as a matrix composed of independent identically distributed 

(i.i.d.) random elements following a Gaussian distribution with a specific mean and variance. 

These kind of random matrices have well defined eigen-value characteristics. An eigen-

value λ for a given matrix X is a scalar that fulfills the equation Xν = Xν for a specific 
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vector known as the eigen-vector ν. The eigen-decomposition X = V∧V−1 consists of all 

eigen-values in the diagonal matrix ∧ and all the eigen-vectors contained in matrix V 
(Meyer, 2000). The pioneering work of Girko (Girko, 1985) demonstrated that the eigen-

value distribution of a square random matrix tends to fill a disk in the complex plane as 

shown in Figure 1(a and c). This fact established an important starting point in 

distinguishing random and non-random matrices rooted in the concept that matrices with an 

eigen-spectrum deviating from the disk shape are not composed by random i.i.d. Gaussian 

components. Although important, Girko's original result has limitations and caveats among 

which the most important are an eigen-spectrum composed of complex numbers and a 

restriction of square matrices. Important work by Wigner (Trotter, 1984), Marčhenko and 

Pastur (Marchenko and Pastur, 1967) has expanded our understanding to include the 

behavior for singular values and rectangular random matrices.

We will focus our attention on Wishart-Laguerre ensembles that can be obtained as follows: 

given a random matrix X, where X have i.i.d. Gaussian elements, the Wishart-Laguerre 

ensemble is the matrix X*X, where * may denote the real or complex transpose operation 

(Katzav and Castillo, 2010). Without lack of generality and for simplicity, we assume that a 

transpose operation may be necessary to let X*X be a full rank matrix. This applies to 

rectangular matrices XM×N where X is of size M × N with N < M and the assumed 

multiplication is XM × N
∗ XM × N. Under these conditions, the resulting matrix X*X is full 

rank, square and its eigen-values are real, thus simplifying any further theoretical 

development. An important characteristic of the matrix X*X is the relationship of its eigen-

values with the singular values of the matrix X. Considering the singular value 

decomposition (SVD) X = U∧V* where ∧ is a diagonal matrix containing the SVs of X, the 

matrix X*X can be decomposed as X*X = V∧2V* (notice that V−1 = V*) indicating that the 

eigen-values of X*X are equal to the squared SVs of X. From this point we move our 

attention to the SVs rather than the eigen-values of X, leaving behind complex numbers and 

issues with matrix size.

The eigen-values of X*X are known to follow the joint Wishart distribution (Wishart, 1928), 

which does not describe the distribution of any particular eigen-value but rather their 

multivariate behavior. Given their relationship to a matrix condition number, efforts have 

been made to describe the distribution of the largest and minimum eigen-values (Edelman 

and Rao, 2005), but we lack a closed form probability distribution formula for all the eigen-

values of X*X. The bulk behavior of SVs has been characterized thanks to the work of 

Marčenko and Pastur (Marchenko and Pastur, 1967) and some efforts have been made to 

estimate the expected SV magnitudes based on these results (Dette and Imhof, 2007; Vergara 

et al., 2008). However, individual SV variances have not been obtained from SV bulk 

behavior and there is no theoretical development, to the best knowledge of the authors, 

providing a closed form formula for the full set of individual SV variances and other central 

moments. Although a closed-form formula for the probability distribution of individuals SVs 

is yet unknown, required parameters can be estimated using Monte Carlo methods. In the 

present context, the necessary parameters are means and variances for each of the SVs of X.
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Functional Connectivity Matrices

For the purpose of theoretical development, we will assume that all elements in a random 

matrix follow a Gaussian distribution. In the context of this work, the random elements will 

eventually represent random correlations. Through Fisher's Z–transformation (Fisher, 1915) 

the variance of random correlations is normalized such that transformed correlations can be 

modeled as Gaussian random variables. It is common practice to organize the set of 

connectivity values in matrix form (an FCM) grouping strongly connected elements 

together. Figure 1(d) displays a typical ordered whole brain FCM where, as customary, the 

Z–transformation has been applied to all correlations.

In general, an FCM can appear to be a random set of numbers. It is only after appropriate 

permutations that a visual pattern can be identified, which is unlikely to happen by chance. 

Figure 1(d) exemplifies this last statement using fMRI data. The pattern we see in the FCM 

at the top of Figure 1(d) show how fMRI data is expected to display after the rows and 

columns have been properly permuted. In the case of fMRI connectivity, these permutations 

are anchored on a corpus of knowledge that has been acquired through many years of 

extensive research and development (Allen et al., 2011; Buckner et al., 2008; Fox et al., 

2005; van den Heuvel et al., 2016). This work proposes a formal technique to test whether 

observed patterns in an FCM are random or not.

Random Functional Connectivity Matrices

Most of the studies in random matrices assume i.i.d. Gaussian elements with zero mean 

(m=0) and unitary variance (s2=1). As illustrated in Figure 2(a), the eigen-values in this 

instance tend to fill a circle in the complex plane following the Circular Law (Girko, 1985). 

This case is good for theoretical development, but it is rarely found in practice. For example, 

the connectivity among brain areas belonging to the DMN (PCC, precuneus, AG, etc.) is 

different from zero during resting state (Buckner et al., 2008), indicating a strong 

synchronicity and coherent temporal activation. A removal of the mean value could be 

applied to compare a connectivity matrix with theoretical zero-mean random matrices. 

However, this procedure will change the characteristics of the original SV spectrum. Figure 

2(b) illustrates the existence of an eigenvalue related to the non-zero mean value (|m|>0) of 

matrix elements. Removing the mean will leave that eigenvalue unrepresented, thus 

changing the original matrix spectrum. A different approach is to consider the SV spectrum 

of a random matrix as composed of two parts, one following a zero-mean random matrix 

spectrum and the other part being determined strongly by the mean. As exemplified in 

Figure 2, random matrices composed of elements with a nonzero mean have one singular 

value that is distinct from the rest. The mathematical background for the previous assertion 

can be found in the work of Silverstein (Silverstein, 1994), who proved the existence of the 

largest eigenvalue as real and positive after perturbing the zero mean random matrix with a 

nonzero rank one matrix. Further analysis of this theory, including conditions to assume a 

clear differentiation of the largest singular value, has since been presented (Vergara and 

Barbin, 2010). The bulk of eigen-values different from the largest one tend to fill a disk in 

the complex plane, just as in zero-mean random matrices. Arguably, the strong eigen-value 

represents the signal within the matrix and the rest represents random deviations from the 

main signal (Vergara and Barbin, 2010).
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Based on the presented analysis, the reasonable assumption illustrated in Figure 2 is that a 

random matrix can be summarized by the mean value of its elements and deviations from the 

mean are due to random changes. This idea is especially useful in analyzing and interpreting 

connectivity submatrices, where groups of brain regions may exhibit a highly coherent 

activation but small deviations from the mean coherence can be attributed to chance.

Distance from a Random Matrix

We propose an assessment of randomness by comparing the similarity between SV 

spectrums of an FCM of interest against that of homologous random matrices. Following the 

discussion of the last section, we propose to look at the difference (λi – μi) between the SVs 

(λi, i = {1 …N}) of the FCM of interest and corresponding mean SVs (μi, i = {1 …N}) 

obtained from random matrices. Both sets of values λi and μi are assumed to be sorted in 

descending order. The difference identifies a measure of farness from randomness. One 

important characteristic is that the eigenvalue spectrum of the wishart-laguerre ensemble 

used in this work asymptotically follows multivariate Gaussian distributions. This 

asymptotic behavior was mathematically proven by Dumitriu and Edelman (Dumitriu and 

Edelman, 2005). For a given ith SV, mean μi and variance σi
2 parameterize the corresponding 

probability distribution. Figure 3 illustrates this result for Wishart-Laguerre ensembles 

where the composite distribution of SVs follows closely the composite distribution obtained 

from Gaussian distributions.

At this point it makes sense to use a chi-square distribution from squared Z-scores 

∑(λi − μi)
2/σi

2, where σi
2 is the variance associated to the mean SVs μi. One interpretation of 

this procedure is to determine a chi-square type “goodness of fit” (Lancaster and Seneta, 

2005) between FCMs and random matrices. One problem with this initial approach is that 

SVs are not uncorrelated with each other and the simple sum of squares will not work. 

Instead, the matrix of covariance must be applied to correct for the correlation among SVs. 

For this purpose, we employ the Mahalanobis distance since it is known to correct for 

correlation within the data (De Maesschalck et al., 2000). Using matrix notation, the 

normalization can be included in the metric as (λ − μ)Σ−1(λ − μ)* where Σ is the covariance 

matrix of the SVs. Assuming that all matrices considered are full rank N, we can normalize 

and define the metric

L = 1
N (λ − μ)∑−1(λ − μ)∗ .

After considering the covariance matrix Σ, the metric L follows a chi-square distribution 

corrected by N. The probability density function (pdf) of L can be obtained from the chi-

square distribution (Mulholland and Jones, 1968), namely fx,N, with N degrees of freedom 

by substituting x = NL to find the closed form as
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f L, N =
N
2

N /2

Γ(N /2) L

N
2 − 1

e−NL/2 .

The proposed procedure requires estimating the N SVs of a given connectivity matrix to test 

against the SV spectrum of random matrices of rank N with random elements exhibiting 

sample mean m and standard deviation s. The first step is to determine the number of SVs N, 

m and s for the FCM of interest. The second step is to estimate the mean values μi for each 

of the N SVs from random matrices and the covariance matrix Σ. This step can be achieved 

by using Monte Carlo methods. Figure 3 shows pdfs of L for a few matrix sizes where 

means and covariance matrix were obtained algorithmically. Statistical testing for L can be 

accomplished by using the chi-square without normalizing by N or simply using the pdf of 

L. In any case, the pdf of L depends on N and significance thresholds may change for 

different values of N.

Randomness Examples

In this section, we present a set of matrix examples to understand the sensibility of the 

presented random matrix measure. Three set of binary matrices (containing only 0 or 1 on 

each entry) were selected with a size of 100 × 100 and displaying different connectivity 

patterns. The outcomes are displayed in Figure 4. The first set of matrices was designed to 

follow chessboard patterns of different sizes with the same modularity, randomness, sample 

mean (m = 0.5) and standard deviation (s = 0.25). The second set shows adjacency matrices 

with disconnected communities and the third set shows connected communities. The 

modularity (denoted as q) of adjacency matrices were calculated using the Newman's 

method (Newman, 2006) included in the Brain Connectivity Toolbox (https://

sites.google.com/site/bctnet/Home) (Rubinov and Sporns, 2010).

In Figure 4(a), random Gaussian noise was added to the four noiseless adjacency matrices; 

then randomness value L was estimated for different leves of signal-to-noise ratios. The 

adjacency matrices had a value of L = 470. Signal variance was estimated from the noiseless 

matrices having all the same value (s2 = 0.5). The power of Gaussian noise decreases the 

value of L indicating the presence of randomness. Note that all noiseless matrices in these 

examples were rank deficient (rank<=10) with more than 90 zero value SVs. However, 

matrices contaminated by noise were all full rank (rank=100). The normalization value N 
was set equal to the total number of SVs (N =100) in each case even if some SVs were zero. 

L values for noisy matrices approaches their noiseless version as the SNR increases thanks 

to this normalization. Figure 4(b) and Figure 4(c) illustrate randomness variations with 

different levels of modularity. In the case of unconnected communities of different sizes, 

randomness and modularity seems to follow a trend of decreasing L as modularity increases. 

As noise corrupts the ideal matrices, the trend starts vanishing. At -10dB, the noise has 

practically obscured the relationship between L and modularity. Although informational, 

unconnected communities are simple uninteresting patterns. Figure 4(c) displays a more 

practical case where communities are connected using two different patterns, but with 

different community sizes. The monotonic relationship observed in Figure 4(b) seems to 

break in Figure 4(c) because the connectivity patterns are different, despite being generated 
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with the same in-house algorithm. However, the effect of adding noise is the same as before 

since noise grows stronger and the ability to discern a pattern between L and q decreases. 

Overall, Figure 4 shows that a monotonic relationship between L and q is not likely to be 

observed if the connectivity pattern changes from one observation to the other. In practical 

terms, if noiseless adjacency matrices could be determined from different brains, the 

exhibited patterns would need to be “the same” in the sense of the characteristics of Figure 4 

(varying only in their size and number of communities). Even small dissimilarities, likely to 

occur when comparing the brains of different subjects, can break the relationship between L 
and q.

Randomness Assessment in Vectors

The overall theoretical development presented here focuses on matrices (i.e. arrays with a 

minimum of two SVs). For matrices larger than 2 × 2, the shape of a matrix SV spectrum 

can be characterized and compared to the SV spectrum of random matrices. However, there 

will be situations where the assessed array is a vector and the proposed method fails to be 

adequate. This situation occurs in practice when the connectivity is estimated between a 

region of interest and multiple other regions. The matrix in Figure 5 provides some examples 

of functional connectivity vectors. There is only one row and one column representing the 

basal ganglia (BAG) thus forming column and row vectors. In contrast, the DMN is 

represented by more than one row and one column forming a submatrix when the DMN 

connectivity is assessed against itself.

The SV spectrum of a vector has always the same shape because is composed of only one 

singular value that is a function of the second moment (m2 + s2). In other words, all random 

vectors with the same mean and variance have the same SV (i.e. not quite the random SVs 

found in the random matrix theory). The method proposed for random matrices requires the 

estimation of m2 and s2, thus losing the degrees of freedom necessary to test for the single 

SV of a vector. For these reasons, the randomness test described in previous subsections 

applies only to matrices and is not suitable for vectors.

In fact, there are efficient random tests developed for vectors (Cammarota, 2011; Wald and 

Wolfowitz, 1940). One of the most widely used tests for vector randomness is the runs test 

(Bradley, 1960; Wald and Wolfowitz, 1940) which checks randomness for data sequences 

[x1 x2 x3 …]. Just as random matrix theory fails when dealing with vectors because of the 

low dimensionality, so too will the runs test fail to be adequate if the vector dimensionality 

falls below two. This happens because a single scalar [x1] does not characterize a sequence. 

When needed, vector randomness will be assessed utilizing the Matlab implementation of 

the runs test (the runs test() command) given that random matrix theory does not apply.

Materials and Methods

Subjects

The study data comes from 603 subjects, 305 of which were females. The age of participants 

ranged from 12 to 71 years with mean and standard deviations of 23.4 ± 9.2. Participants 

were not taking psychoactive medications, did not have a history of neurological or 
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psychiatric disorders, and did not report high levels of substance use (smoking an average of 

less than 11 cigarettes per day; drinking less than 2.5 more drinks per day). This data was 

used in a previous publication where it was carefully curated to minimize motion effects 

(Allen et al., 2011) and utilized to describe a baseline for the multivariate analysis of fMRI 

data; more information regarding this population can be found there. The variables of 

interest for our work here are age and gender, which are well represented in this dataset.

Imaging and Preprocessing

All images were collected on a 3-Tesla Siemens Trio scanner with a 12-channel radio 

frequency coil. High resolution T1-weighted structural images were acquired with a five-

echo MPRAGE sequence with TE = 1.64, 3.5, 5.36, 7.22, 9.08 ms, TR = 2.53 s, TI = 1.2 s, 

flip angle = 7°, number of excitations = 1, slice thickness = 1 mm, field of view = 256 mm, 

and resolution = 256 × 256. T2*-weighted functional images were acquired using a gradient-

echo EPI sequence with TE = 29 ms, TR = 2 s, flip angle = 75°, slice thickness = 3.5 mm, 

slice gap = 1.05 mm, field of view 240 mm, matrix size = 64 × 64, voxel size = 3.75 mm × 

3.75 mm × 4.55 mm. Resting-state scans were a minimum of 5 min, 4 s in duration (152 

volumes). Any additional volumes were discarded to match data quantity across participants. 

Subjects were instructed to keep their eyes open during the scan and stare passively at a 

foveally presented fixation cross.

Data were pre-processed using statistical parametric mapping (http://www.fil.ion.ucl.ac.uk/

spm) (Friston, 2003). The preprocessing steps included slice-timing correction (resliced to 3 

mm × 3 mm × 3 mm voxels) realignment, co-registration, spatial normalization and 

transformation to the Montreal Neurological Institute (MNI) standard space. We followed 

recent recommendations (Vergara et al., 2017a) for pipeline preprocessing. Time courses 

were orthogonalized with respect to i) linear, quadratic and cubic trends; ii) the six 

realignment parameters; iii) realignment parameters derivatives; and iv) spike regressors. 

The DVARS method (Power et al., 2012) was used to find spike regressors where the RMS 

exceeded 3 standard deviations. The fMRI data were smoothed using a full-width-half-

maximum Gaussian kernel size of 6 mm.

As previously described (Allen et al., 2011), data were analyzed with Infomax based gICA 

(Calhoun and Adali, 2012a) resulting in 75 gICA components. Time courses were then 

filtered using a band-pass filter from 0.01 to 0.15 Hz. The 28 RSNs described (Allen et al., 

2011) were identified in the current analysis and clustered in the same seven domains: BAG 

(basal ganglia), AUD (auditory), SEN (sensorimotor), VIS (visual), DMN (default mode), 

ATT (attentional) and FRT (frontal). The correlation matrix of the 28 RSNs, grouped 

according to the seven defined domains, constitute the FCM utilized in this study.

Randomness Test of the FCM

For all of the following calculations, we utilized 100,000 realizations of the Wishart-

Laguerre ensemble to estimate the mean values and the covariance matrix of the SVs. The 

number 100,000 was selected to ensure an accurate estimation. The mean m and standard 

deviation s of matrix elements were matched to the sample mean and sample standard 

deviation of the FCM of interest. The first test seeks to identify the level of randomness of 
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the mean FCM averaged over all subjects. The p-value of L was measured to determine 

statistical significance. The second test seeks to find any relationship between randomness 

and subjects' age and sex. One FCM was calculated for each subject, each resulting in a 

corresponding L value. The 603 L values were used as dependent variables for a regression 

model with age and sex as independent variables. Finally, the correlation between 

modularity q, as defined in (Newman, 2006), and L was performed to assess the relationship 

between these two measures.

Based on the seven RSN groups previously defined, it is possible to subdivide the FCM into 

28 submatrices. Randomness was tested on each of the 28 submatrices along with similar 

age and sex regression models to the one performed for the whole FCM. Those submatrices 

with significant L value (i.e. significantly not random) were partitioned in even smaller 

submatrices. The secondary submatrices were also tested. The partitioning stopped when 

either all submatrices were random or it was not possible to find another partition to make 

them random. This algorithm was applied manually to find patterns in the matrix based on 

their randomness.

Results

Figure 5 shows the result for the mean FCM. The value of L is very large and equal to 8.24 

with a p-value of 6.67×10−6, confirming the non-random pattern visually observed for this 

matrix. We applied two regression models differing on the inclusion or exclusion of a 

quadratic term for age. The first regression test for L applied to the whole matrix shows no 

significant effects with sex (β =-0.224, p-value=0.20, var. explained = 0.3 %) or age (β = 

-0.004, p-value = 0.64, var. explained = 0.04 %). The second regression included a quadratic 

term with no significant effect for sex (βsex = -0.202, p-value = 0.26, var. explained = 

0.2 %), but a significant age effect with linear (βage = 0.102, p-value = 0.020, var. explained 

= 18.6 %) and quadratic (βage
2 = -0.002, p-value = 0.01, var. explained = 21.3 %) terms. 

Supplementary Figure 1 displays the scatter plot of L versus age.

Before measuring the correlation between L and q, the FCM of each of the 603 subjects 

were binarized by applying an absolute value function and thresholding with a value 

between 0.001 and 0.999. A first attempt was made by keeping the same threshold for all 

subjects, but no significance was observed. Instead, the threshold chosen was different for 

each FCM to keep the same number of nonzero edges on the FCM of each subject. Figure 

6(a) displays the relationship between the correlation L vs. q and the number of non-zero 

edges. For the current data, L and q has a maximum correlation of 0.536 when the number of 

non-zero edges is 220. Figure 6(b) shows a scatter plot for the maximum correlation.

The test for submatrices reveals a high incidence of randomness. Out of the 24 possible 

submatrices, excluding scalar (1×1) arrays, only four were significantly non-random (p-

values < 0.05) after false discovery rate (FDR) correction (see Table I). Notice that 

submatrices corresponding to pairs BAG-BAG, BAG-AUD, AUD-AUD and AUD-BAG 

were scalar and randomness could not be tested. Following the concept displayed in 

Supplementary, we used mean values to represent the connectivity within those submatrices 

with L values that did not achieve significance. Figure 7 shows this mean value 
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representation, but leaves unchanged submatrices with significant non-randomness. This 

representation displays the general pattern expected for the whole FCM without noisy 

random variations. Only one significant age result survived FDR correction (p<0.05) on the 

ATT-ATT submatrix (βage
2 = 0.0005, p-value=0.00714, var. explained = 24.8 %). 

Supplementary Figure 2 provides the scatter plot for the L value of the ATT-ATT submatrix.

Because there are still some submatrices with significant non-randomness in Figure 7, we 

proceeded to analyze a bit further the content of the FCM. We specifically looked for 

permutations and partitions that allowed for all submatrices to be considered as random. The 

non-random matrices in Figure 7 may still contain patterns that could be separated. After 

manually looking for smaller submatrices, the two domains SEN and ATT were broken into 

smaller subdomains SEN1-SEN2 and ATT1-ATT2 correspondingly. With this 

rearrangement, almost all submatrices were considered random except for ATT2-ATT2. 

Figure 8 displays the new matrix partition. It was not possible to find a partition and 

permutation for ATT2-ATT2 that rendered all matrices random. However, the increment of 

random submatrices revealed a finer structure in the FCM than the original set of domains 

selected.

The collapsing of almost all submatrices into their mean values, based on their randomness 

level L, suggests that a lower order gICA (less number of components) may be sufficient to 

describe the data. A final analysis using just 15 gICA components was performed for 

comparison. Figure 9 displays these results. Basal ganglia RSNs were discarded because of 

CSF noise contamination. The spatial content of the components were matched as closely as 

possible to the domains originally selected for this dataset (Allen et al., 2011). The low order 

gICA exhibit a similar parietal region in the DMN to that catalogued as ATT1 in the high 

order model, thus providing data-driven evidence that left and right angular giri do not 

belong to the ATT group. As in the high order case, the low order matrix tested significant 

for non-randomness with L=3.10 and a p-value of 2.0×10-3. The low order regression did not 

show significant results for age or sex in any linear or quadratic relationship.

Discussion

The proposed randomness test serves to determine how far from random chance a given 

FCM is and provides evidence for the existence of non-random patterns that are difficult to 

see with the naked eye. The FCM pattern in this manuscript has been previously presented 

(Allen et al., 2011) and is the typical pattern found in resting state fMRI data. Evidence from 

functional (Greicius et al., 2003; van den Heuvel et al., 2016) and structural (Greicius et al., 

2009; Honey et al., 2009) studies provide evidence that observed functional connectivity is 

not a random observation. Based on this evidence, it was determined that the test outcome 

result was positive for non-randomness. This result verifies that the proposed method does 

provide a measure of non-randomness that can also measure farness from chance.

There are some key points with respect to the definition of connectivity utilized in our 

method. The considered functional connectivity has been extensively used for statistical 

testing of functional abnormalities related to several neuropathologies. Fisher transformed 

correlations were used to classify subjects into schizophrenia and healthy controls 
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(Arbabshirani et al., 2013), detect differences between bipolar and depression disorder 

patients (He et al., 2016) and to differentiate mild traumatic brain injury patients from 

controls (Vergara et al., 2017b) to mention a few applications. The definition and usage of 

connectivity used to develop the proposed random matrix test is the same as in the studies 

mentioned, but is different from those used in graph analysis of brain networks (Fornito et 

al., 2013; Rubinov and Sporns, 2010). Our results found a moderate relationship between the 

randomness measure defined here and modularity. This relationship depends on the 

conversion applied from raw data (correlations in the FCM example) to node-edge 

representation. We argue that our randomness metric is a more direct measure that avoids the 

transformations to node-edge representation, but addresses different aspects of the data when 

compared to modularity. The argument does not demerit graph analysis; it only states the 

existence of differences despite existing similarities that can be concluded from the resulting 

moderate correlation. In the same line, the eigen-spectrum method used here resembles the 

application of the Laplacian matrix in the context of graph measures (Banerjee and Jost, 

2008; Jalan and Bandyopadhyay, 2008). However, these two theories are designed for 

different aspects of connectivity. Specifically, the Laplacian approach allows for the 

comparison of graph structures, even if the graphs are of different sizes (Banerjee, 2012). On 

the other hand, our metric seeks to detect randomness in a different sense where, if the test is 

not significant, then all elements in the matrix might be realizations of the same normal 

distribution. The only structure in this case is that all values in the matrix probably have the 

same mean value corrupted by random noise. Significance in our test indicates the existence 

of a different structure than equal mean among matrix elements, but it does not specify the 

structure. Another characteristic of the randomness metric defined here is the ability of 

testing off-diagonal submatrices, a feature not contemplated in graph theory. Attempting to 

analyze off-diagonal submatrices will leave out necessary information about the graph 

structure, but this is not the case for the proposed randomness test since the existing 

structure is not confined to that of a graph. To this ability of handling off-diagonal 

submatrices we can add a lesser restriction with size allowing randomness testing if more 

than one edge is included. The presented randomness metric can detect randomness of 

matrix sizes as low as 2 × 2 in the case of off-diagonal submatrices and 3×3 in the case of 

those in the diagonal. The problem with 2 × 2 connectivity matrices (also 2 × 2 in-diagonal 

submatrices) is that only one edge is represented. On the other hand, the case of 2 × 2 off-

diagonal submatrices include information for four edges. However, the lesser restrictiveness 

with size does come with the characteristic sensitivity of the chi-square to degrees of 

freedom that in our case are directly represented by the FCM size.

Submatrix randomness tests provide evidence to suggest that connectivity within and 

between resting state domains can be summarized by a single value as conceptually 

illustrated in Figure 2 and empirically demonstrated in Figure 7. This mean value 

representation can be interpreted as all brain areas of certain domain A exhibit the same 

connectivity level with all brain areas of another domain B plus some random variations of 

lesser magnitude and smaller power as compared to their mean value. This last statement 

assumes a domain connectivity matrix that, except for the mean value of its matrix elements, 

could not be ruled occurring out of chance. This interpretation leads to the conclusion that 
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the matrix mean is the solely embedded pattern within the matrix and suggests that if all 

submatrices in an FCM are random then the RSN grouping form very cohesive domains.

The distance from chance presented in this work provides a new dimension of functional 

connectivity to be tested against covariates of interest. The findings in the current data 

showed no sex or age effects in the FCM for the regression model with no quadratic terms. 

The absence of ageing effects seem to coincide with the lack of brain modularity difference 

between young and old populations previously observed (Meunier et al., 2009). However, a 

different topological study considering brain topological organization did find whole brain 

effects, but the observations were not of a linear fashion (Wu et al., 2012). The regression 

model included a quadratic age term that resulted in a significant age effect that is more in 

agreement with Wu's data (Wu et al., 2012), where the brain's global efficiency is larger for 

mature than either young or old populations. Similarly, the negative direction of βage
2 

indicates less randomness towards maturity and more randomness for the younger and older 

sides of the ageing spectrum. On the other hand, a quadratic relationship with L was found 

for the domain submatrix ATT-ATT, but with an opposite direction of effect compared to the 

whole brain results. This case demonstrates that randomness trends in whole FCMs are 

different from those in its constituent submatrices.

An important fact is observed in the subdomain ATT1, which is composed of RSNs with 

peak activations in left and right angular gyri. Although the angular gyrus is a parietal region 

that may be grouped among the attention brain areas, it has been also identified as part of the 

default mode network (Greicius et al., 2009). After separating both angular giri in Figure 8, 

we can visually observe a similar connectivity to the DMN with the exception of the 

connectivity for the FRT RSNs. In this case, randomness assessment helped in finding an 

extra level of modularity within the ATT domain. The angular giri placement in the DMN is 

further supported by the results obtained in the lower order gICA displayed in Figure 9. The 

case of the modularity in the SEN domain, also illustrated in Figure 8, is less obvious 

because the two RSNs in the subdomain SEN1 embrace sensorimotor anatomical areas. 

Visual inspection of Figure 8 allows us to see small differences of connectivity between 

SEN1 and SEN2 in relation to themselves and to the VIS domain.

Finding the mean FCM in this analysis as composed by many random submatrices would 

raise the concern that a lower model order could describe the data and remove the observed 

randomness. Randomness in this view could be seen as unnecessary noise. However, this is 

not consistent with the results. In our data, lowering the model order increased the FCM 

randomness. This can be seen after comparing Figure 5 and Figure 9. The increased 

randomness indicates that some structure is missing. This loss of structure is expected since 

the low order model provides fewer degrees of freedom. As part of this loss of randomness, 

the relationship with age found in the higher order model is also lost. We must conclude that 

compared to low order, high order gICA contains structure and information important for 

data analysis.

An important limitation of the current method is rooted on the asymptotic characteristic of 

its Gaussianity assumptions. Although pdf and histogram comparisons in Figure 3 fit very 

closely, we have to consider small discrepancies between the two. These discrepancies 
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asymptotically disappear as the matrix elements changes from real, complex, quaternion, 

etc. as previously described (Dumitriu and Edelman, 2005). Since the complex numbers can 

be seen as an extension of the real numbers, quaternions (first described by William Rowan 

Hamilton (Rosenfeld, 1988)) are a similar extension of complex numbers. Dimitriu and 

Edelman (Dumitriu and Edelman, 2005) described several systems of these numerical 

extensions as applies to random matrix theory. However, our case of real FCM matrices is in 

fact the lowest point in this asymptote and prone to errors. Moving beyond correlation, other 

studies of coherence have estimated complex valued FCMs (Yaesoubi et al., 2015). Future 

applications of the randomness metric to other types of FCMs (including complex or 

possibly quaternion) will decrease the inexactitude of the chi-square pdf describing the 

distribution of metric L. Another caveat in our theory is the comparison between random 

matrices with statistically independent elements and correlation matrices with 

interdependent elements. Pitfalls of the use of correlation in connectivity matrix have been 

previously studied in graph theory (Zalesky et al., 2012). Although the comparison between 

dependent and independent matrix elements might be unfair, the results demonstrate that 

some matrices with dependent elements exhibit a similar spectrum to that of a random 

matrix with independent elements (see Figure 1). A theoretical development for the 

similarity of random matrices with dependent and independent elements, including the case 

of symmetric matrices, has been presented by Adamczak (Adamczak, 2011). Results 

obtained must be interpreted with this limitation in mind.

In conclusion, the randomness test developed here allows us to identify purely random 

matrices from non-random. This can be used as a first test for new observations with a 

pattern that is not known or readily found by manual and visual methods. Further, as 

illustrated, the randomness test can be an important resource in identifying subpatterns 

within a matrix. In the context of functional connectivity, this translates into an extra 

resource that improves our ability to assess RSN grouping in different functional domains 

and a more data-driven FCM structure. In this work, the advantage of RSN grouping 

assessment was demonstrated by the fracture of the ATT and SEN in smaller subdomains 

due to their lack of randomness. This is important because correct matching between RSNs 

and domains is crucial when interpreting functional connectivity results. Furthermore, 

randomness of whole brain FCMs may be a time dependent measure (Hutchison et al., 2013; 

Sakoğlu et al., 2010). Future work on dynamic FCM can examine these momentary FCM 

configurations to characterize possible changes over time in randomness and modularity. 

Such dynamic analysis of randomness could provide further evidence to support temporal 

connectivity dysfunctions seen in schizophrenia and other brain diseases (Calhoun et al., 

2014; Damaraju et al., 2014; Liu et al., 2016; Mayer et al., 2014). Finally, as FCM 

randomness varies with age, this may also be an important variable to consider in future 

research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• This work proposes a measure of randomness for functional connectivity 

matrices.

• The method is based on Random Matrix Theory comparing against matrices 

with Gaussian elements.

• This assessment based on Random Matrix Theory measures a different aspect 

of randomness than similar methods using Graph Theory.

• The randomness measure is more resilient to matrix size problems and can be 

applied to whole matrices as well as its submatrices.
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Figure 1. 
Different types of matrices and their eigen-spectrum. Random permutations have been 

applied to demonstrate that it is visually difficult to determine if the matrix is random or not. 

Column (a) corresponds to random matrices with Gaussian i.i.d. elements. The eigen-values 

tend to fill a circle in the complex plane following Girko's Circle Law. Column (b) shows the 

case of random symmetric matrices (in this particular case, the main diagonal has been set to 

zero) where the eigen-values are real due to the symmetry. However, both matrix cases 

exhibit a similar bulk distribution of the SVs that reveals the randomness of the matrices. 

The matrix in column (c) is a combination of a specific pattern plus a random matrix. Both 

eigen-value and SV spectrums reveal two distinct patterns. One pattern is similar to that 

found in random matrices with its eigenvalues following the Circle Law. The second pattern 

includes eigen-values and SVs with larger magnitude that separates them from the rest. 

Column (d) show a typical FCM obtained from fMRI data. All eigen-values are real, making 

it difficult to compare with the Circle Law. On the other hand, the SV spectrum is always 

real and can be compared with the SV spectrum of random matrices. The figure illustrates 

the notable difference between the SV spectrums of random and FCM matrices.
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Figure 2. 
Eigen-value spectrums for zero and non-zero mean random matrices. In (a), the zero mean 

case follows the Circle Law as the spectrum fills a disk in the imaginary plane. In the non-

zero mean case (b), all except for one eigen-value follows the Circle Law. This largest eigen-

value is linked to the mean of matrix elements. The mean value can be argued to represent 

the amplitude of the whole matrix while the random part following the Circle Law 

represents only deviations from the mean.
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Figure 3. 
SV histograms for several random matrices. At the left, the picture shows histograms for 

random and random symmetric matrices where elements follow a Gaussian distribution. In 

the case of random symmetric matrices, the main diagonal has been set to ones to make 

them similar to the FCM matrices found in fMRI data analysis. The histograms resemble a 

composite histogram made out of individual Gaussian distributions, but this behavior is only 

asymptotic (Dumitriu and Edelman, 2005). The composite Gaussian distribution has been 

included to compare with the estimated histogram. The estimated histogram is also 

influenced by cross correlated SVs. This characteristic is also different from the 

independency assumption used to build the composite Gaussian distribution. At the right, 

histograms and theoretical chi-square (χ2) distributions are plotted for the metric L. The SV 
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mean values and covariance matrix have been estimated using 100000 realizations of 

corresponding random matrices.
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Figure 4. 
Examples of connectivity matrices. In a), the noiseless adjacency matrices have a modularity 

q-value of 0.5 and an L-value of 470. Gaussian noise of different variances is added to the 

uncorrupted adjacency matrix simulating noise. SNRdB values are decibels of the ratio 

between the adjacency matrix and the Gaussian noise. In b), L-values for modular matrices 

forming unconnected communities are calculated for noiseless (main plot) and noise added. 

In c), the plot is similar to b), but considering connected communities.
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Figure 5. 
Results for whole mean FCM. The connectivity pattern coincides with previously observed 

connectivity. The SVs of this mean matrix, averaged across all subjects, were compared with 

random matrices using the metric L that achieved a magnitude of 8.24. The resulting small 

p-value corroborates the assumption that FCM matrices do not display a connectivity pattern 

that can be easily found by chance; thus it qualifies as a non-random matrix.
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Figure 6. 
Correlation between L and q. This correlation exists when the number of non-zero edges is 

kept constant. In the figure, the FCM for each subject was binarized using different value 

thresholds to achieve the same non-zero edges. a) shows the dependence between selected 

number of non-zero edges and the correlation between L and q. b) shows the scatter plot for 

the maximum correlation detected.
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Figure 7. 
Randomness test results on all submatrices. White-out submatrices had a non-significant L 

value. Since some submatrices were indeed just vectors, we utilized the Matlab command 

runstest() to test randomness for vectors. It was out of scope to test randomness for single 

values and thus we avoided performing such tests. Following the idea presented in Figure 2, 

we filled in the non-significant submatrices with their mean value and present a picture of 

the non-random content of each submatrix.
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Figure 8. 
Results after permuting and regrouping the RSNs. Two attention RSNs with peaks in the 

angular gyrus and two sensorimotor RSNs with peaks in somatosensory and motor areas 

were segregated in their own groups. This step provided a larger number of random 

submatrices than the results presented in Figure 7. The larger number of random submatrices 

might indicate that groups have more similar elements than groups exhibiting smaller 

quantities of random submatrices.
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Figure 9. 
Results from a lower order gICA for comparison. The original gICA from Figure 5 exhibited 

a large number of random submatrices, suggesting that a lower order model could describe 

the data. The FCM of this figure is closer to a random matrix than the FCM of the higher 

order, not only because of the L value, but also because of the larger p-value.
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Table I
Submatrices with significant non-randomness (L value). Results survived false discovery 
rate (p<0.05) correction

Domain 1 Domain 2 L value p value (uncorrected)

SEN SEN 3.215 0.004

SEN DMN 3.929 0.003

SEN FRT 3.509 0.007

ATT ATT 2.864 0.009
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