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Abstract Making a categorical judgment can systematically bias our subsequent perception of

the world. We show that these biases are well explained by a self-consistent Bayesian observer

whose perceptual inference process is causally conditioned on the preceding choice. We

quantitatively validated the model and its key assumptions with a targeted set of three

psychophysical experiments, focusing on a task sequence where subjects first had to make a

categorical orientation judgment before estimating the actual orientation of a visual stimulus.

Subjects exhibited a high degree of consistency between categorical judgment and estimate, which

is difficult to reconcile with alternative models in the face of late, memory related noise. The

observed bias patterns resemble the well-known changes in subjective preferences associated with

cognitive dissonance, which suggests that the brain’s inference processes may be governed by a

universal self-consistency constraint that avoids entertaining ‘dissonant’ interpretations of the

evidence.

DOI: https://doi.org/10.7554/eLife.33334.001

Introduction
We make thousands of decisions every day based on sensory information - where to walk, who to

greet, and what to eat. How such perceptual decisions are formed through the integration and eval-

uation of sensory evidence has been extensively studied at the behavioral, computational, and neural

level. Helmholtz has described the perceptual decision process as a form of statistical inference

(Helmholtz, 1867; Westheimer, 2008), referring to the fact that sensory information is inherently

ambiguous and noisy (Kersten et al., 2004; Rust and Stocker, 2010). This idea is supported by the

recent success of Bayesian statistics in formulating accurate models of human judgments in percep-

tion (e.g., Curry, (1972); Knill and Richards, (1996); Geisler and Diehl, (2002); Körding and Wol-

pert, (2004); Stocker and Simoncelli, (2006); Wei and Stocker, (2015)). One common conclusion

of this large body of work is that humans typically act like rational decision-makers that trade prior

expectations about the world against uncertainty in the sensory evidence in order to optimize per-

ceptual accuracy. However, most of these previous studies considered perceptual judgments as

independent, isolated events, which starkly contrasts with real-world situations where perceptual

judgments are often embedded in a sequence of other judgments involving the same sensory evi-

dence. Indeed, it is well-known in social psychology and economics that decisions are not indepen-

dent and can impact subsequent cognitive judgments, leading to seemingly irrational behavior

(Tversky and Kahneman, 1974; Kahneman and Tversky, 1979; Ariely, 2008). For example, by

making a choice between two equally valued alternatives, subjects tend to adjust their ratings of the

two alternatives such that the new values become more consistent with their decision (Brehm, 1956;

Sharot et al., 2010; Egan et al., 2010) (but see Chen and Risen, (2010); Izuma and Murayama,
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(2013)). This has been described as a strategy with which humans resolve a state of so-called ‘cogni-

tive dissonance’ (Festinger, 1957; Festinger and Carlsmith, 1959). However, little is known about

whether decisions also interact with the interpretation of sensory information in subsequent percep-

tual judgments. A recent study found that a perceptual decision can bias the evidence accumulation

process by reducing a subject’s sensitivity to subsequent sensory information (Bronfman et al.,

2015). Similarly, data from two other studies may be interpreted in a way that suggests that percep-

tual decisions can bias subjects’ percept of a stimulus variable such that the percepts become more

consistent with their preceding decisions (Stocker and Simoncelli, 2007) – although this interpreta-

tion differs from that of the original authors (Baldassi et al., 2006; Jazayeri and Movshon, 2007).

Overall, while previous experimental results suggest that categorical decisions interact with subse-

quent perceptual judgments, the findings have been diverse, and their interpretation rather loose.

Most of all, we are lacking a clear quantitative model explanation that connects the various experi-

mental findings.

Here, we tested the hypothesis that an observer’s inclination to maintain a self-consistent, hierar-

chical interpretation of the world leads to the observed post-decision biases in perceptual judg-

ments. We expressed this hypothesis with a self-consistent Bayesian observer model, which assumes

that a subject’s estimate is not only conditioned on the sensory evidence but also on the subject’s

preceding categorical judgment. The model extends our previous formulation (Stocker and Simon-

celli, 2007) as it takes into account that sensory information in working memory degrades over time,

which has important implications with regard to the behavioral benefits of the proposed hypothesis.

We validated the model with three different psychophysical experiments that were based on a per-

ceptual task sequence in which subjects were asked to perform a categorical orientation judgment

followed by an orientation estimate of a visual stimulus. Results from the first experiment, using a

similar design as the original experiment by Jazayeri and Movshon, (2007), suggest that post-deci-

sion biases are general to different low-level visual stimuli. The other two experiments were targeted

to specifically test key assumptions of the model such as the probabilistic dependence of the biases

on sensory priors. We show that the self-consistent observer model accurately accounts not only for

the data from our experiments but also from a previous study (Zamboni et al., 2016). The similarity

to well documented bias effects in social psychology and economics suggests that the proposed

self-consistent model may provide a general framework for understanding sequential decision-

making.

Results
The first goal was to obtain a quantitative characterization of how the perceptual inference process

is affected by a preceding, categorical judgment (Figure 1a). In Experiment 1 subjects first indicated

whether the overall orientation of an array of lines was clockwise (cw) or counter-clockwise (ccw) rela-

tive to a discrimination boundary (discrimination task), and then had to reproduce their perceived

overall stimulus orientation by adjusting a reference line (estimation task). The experimental design

was similar to that of a previous experiment (Jazayeri and Movshon, 2007) (see also

Zamboni et al., (2016)) with the notable exceptions that we used an orientation rather than a

motion stimulus, and that subjects had to perform the estimation task in every trial rather than only

in one third of the trials (Figure 1b). We found that subjects’ perceptual behavior was very similar to

the findings of these previous studies. Discrimination performance monotonically depended on stim-

ulus noise. Furthermore, reported stimulus orientations showed clear repulsive biases away from the

discrimination boundary with larger biases for larger stimulus noise and orientations closer to the

boundary (Figure 1c). This behavior is fully revealed in the overall distributions of subjects’ estimates

for every noise level (Figure 1d; see Figure 1—figure supplement 1 for individual subjects): The dis-

tributions exhibit a characteristic bimodal shape for stimulus orientations close to the decision

boundary, with subjects’ estimates biased away from the decision boundary toward the side that

corresponds to their preceding discrimination judgment. Together with previous findings

(Jazayeri and Movshon, 2007; Zamboni et al., 2016), the results of Experiment 1 suggest that the

observed post-decision biases are independent of the specific type of stimulus used. Also, they indi-

cate that subjects’ anticipation of the frequency of the estimation task (every trial vs. only in 1/3 of

the trials) does not play a role in causing the biases.
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The self-consistent observer model
How are these post-decision biases explained? A Bayesian observer that regards the task sequence

as two independent inference processes does not predict the biases. The observer uses Bayesian

statistics to determine the correct categorical judgment (e.g., ’cw’) based on the stimulus response

of a population of sensory neuron, and does the same to infer the best possible estimate of the stim-

ulus orientation (Figure 2a). Consequently, this observer’s discrimination judgment does not affect

the estimation process; orientation estimates are unimodally distributed around the true stimulus ori-

entation and do not exhibit the characteristic bimodal pattern that we have observed in Experiment

1 (Figure 1d). In the context of this paper, we refer to this model as the ‘independent’ observer.

In contrast, we propose an observer model that regards the two tasks as causally dependent

(Figure 2b); that is, by making the discrimination judgment the observer constrains its subsequent

estimation process to consider only those stimulus orientations that are consistent with the judg-

ment. It is as if the observer regards its own, subjective discrimination judgment as an objective fact.

Such behavior seems irrational (obviously, the judgment could be incorrect) and furthermore leads

to characteristic estimation biases away from the discrimination boundary. It has the advantage,

however, that the observer’s perceptual inference process remains self-consistent throughout the

entire task sequence at any moment in time. We refer to this model as the ‘self-consistent’ observer.

It can be formulated as a conditioned Bayesian model (Stocker and Simoncelli, 2007) that jointly

Figure 1. Post-decision biases in a perceptual task sequence. (a) Perceptual decision-making in a discrimination-estimation task sequence: Does a

discrimination judgment causally affect a subject’s subsequent perceptual estimate? (b) Experiment 1: After being presented with an orientation

stimulus (array of lines), subjects first decided whether the overall array orientation was clockwise (cw) or counter-clockwise (ccw) of a discrimination

boundary, and then had to estimate the actual orientation by adjusting a reference line with a joystick. Different stimulus noise levels were established

by changing the orientation variance in the array stimulus. (c) Psychometric functions and estimation biases (combined subject). Estimation biases are

only shown for correct trials and are combined across cw and ccw directions. Subjects show larger repulsive biases the noisier the stimulus and the

closer the stimulus orientation was to the boundary. (d) Distributions of estimates for the three stimulus noise levels tested, plotted as a function of

stimulus orientation relative to the discrimination boundary (combined subject). Estimates are clearly biased away from the discrimination boundary

forming a characteristic bimodal pattern.

DOI: https://doi.org/10.7554/eLife.33334.002

The following figure supplement is available for figure 1:

Figure supplement 1. Full distributions of individual subjects’ estimates in Experiment 1.

DOI: https://doi.org/10.7554/eLife.33334.003
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accounts for subjects’ behavior in both the discrimination and the estimation task. However, a closer

comparison between the predicted (Figure 2b) and the measured distribution of the estimates

(Figure 1d) reveals that this basic formulation does not capture all details of the data.

We formulated the self-consistent observer model as a two-step inference process over the

extended hierarchical generative model shown in Figure 3a: Based on a noisy sensory signal m, the

observer first infers the category C 2 f0cw0;0 ccw0g by performing the discrimination task and then

infers the stimulus orientation � in the estimation task. Because the stimulus has long disappeared by

the time the observer performs the estimation task, we assume that estimation of � must rely on a

noisy memory recall mm of the sensory signal m. Inference on � is then conditioned on the preceding

discrimination judgment (e.g., Ĉ ¼ 0cw0), which results in the characteristic repulsive estimation

biases. Finally, we also took into account that subjects’ report of their perceived stimulus orientation

is corrupted by motor noise. We measured motor noise for every subject in a control experiment

(see Figure 3—figure supplement 1) and subsequently used these measured values for all model

fits and comparisons. The self-consistent observer model provides a full account of both the observ-

er’s discrimination judgment and orientation estimate in each trial, and is thus jointly predicting a

subject’s psychometric function as well as the distribution of their orientation estimates.

Figure 3b shows the model fit to the data from Experiment 1 for the combined subject. The stim-

ulus noise level determines both the slope of the psychometric curves in the discrimination task and,

in combination with the memory noise level, the magnitude of the bias in the estimation task, which

is well predicted by the model. A comparison between the distributions of subjects’ estimates and

model estimates fully reveals the extent to which the model accurately accounts for the observed

Figure 2. Bayesian observer models for the perceptual task sequence. (a) The discrimination judgment does not affect the estimated stimulus

orientation for an observer who considers both tasks independently. (b) In contrast, the self-consistent observer imposes a causal dependency such that

the judgment in the discrimination task (e.g., ’cw’) conditions the estimation process in form of a choice-dependent prior. It effectively sets the

posterior probability to zero for any orientation value that is inconsistent with the preceding discrimination judgment. The truncated posterior

distribution, together with a loss function that penalizes larger estimation errors stronger than smaller ones, leads to the characteristic bimodal

distribution pattern. Note, however, that this basic formulation is not quite sufficient to explain some details of the estimation data (Figure 1d).

DOI: https://doi.org/10.7554/eLife.33334.004
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human behavior (Figure 3c; See Figure 3—figure supplement 2 for a histogram representation).

Note that all model predictions in this paper are the result of a joint fit to both the measured psy-

chometric functions of the discrimination task and the estimation distribution.

The self-consistent observer model can also account for the substantial individual differences in

behavior across subjects. While individual bias patterns are all repulsive, they vary across subjects

both in shape and magnitude (Figure 4a). These variations are well captured by the model and

reflected in individual differences in the fit parameter values such as the prior width and the level of

sensory noise (Figure 4b; see Figure 4—figure supplement 1 for a goodness-of-fit analysis). Inter-

estingly, all subjects seemed to substantially overestimate the width of the stimulus prior as com-

pared to the true stimulus distribution. This did not come entirely as a surprise because subjects

were never explicitly informed about the stimulus range and thus had to learn it over the course of

Figure 3. The self-consistent Bayesian observer model. (a) Directed graph representing the generative hierarchical model: Sensory measurement m is a

noisy sample of stimulus orientation �. Every � belongs to one of two categories C 2 f0cw0;0 ccw0g. Given an observed m, the self-consistent model first

performs inference over C (discrimination task), and then infers the value of � conditioned on the preceding discrimination judgment (e.g., Ĉ ¼ 0cw0)

(estimation task). Inference for the estimation task is assumed to be based on a noisy memory recall mm of the sensory measurement m. Conditioning

on the categorical choice sets the posterior p �jmm; Ĉ
� �

to zero for all values of � that do not agree with the choice. This shifts the posterior probability

mass away from the discrimination boundary and results in the repulsive post-decision biases for any loss function that more strongly penalizes large

errors than small ones. Because subjects were instructed to provide estimates as accurate as possible we assumed a loss function that minimizes mean

squared-error (L2 loss). (b) We jointly fit the observer model to all discrimination-estimation data pairs of the combined data across all subjects in

Experiment 1 (combined subject). (c) The model not only predicts the mean estimation bias (as shown in (b)) but also the entire distributions of

estimates, including those trials where discrimination judgments were incorrect. Data and model show the characteristic bimodal pattern for orientation

estimates. Each column corresponds to one of the three stimulus noise conditions.

DOI: https://doi.org/10.7554/eLife.33334.005

The following figure supplements are available for figure 3:

Figure supplement 1. Measured motor noise of individual subjects.

DOI: https://doi.org/10.7554/eLife.33334.006

Figure supplement 2. Histogram plots of the orientation estimates together with the model fit for Experiment 1 (combined subject).

DOI: https://doi.org/10.7554/eLife.33334.007
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the experiment. Consistent with this interpretation is the fact that the subject with the most accurate

estimate of the prior distribution was the only non-naı̈ve subject S1 who had plenty of extra expo-

sure to the stimulus range through the participation in various pilot experiments. Extracted noise lev-

els differ across subjects with the worst subject being approximately twice as noisy as the best (non-

naı̈ve subject S1), yet consistently increase for increasing stimulus noise levels.

Probing the self-consistent observer model
We ran two additional experiments that were designed to specifically probe two key features of the

self-consistent model: Experiment 2 was aimed at testing how subject’s orientation estimates were

dependent on their precise knowledge of the stimulus prior and thus were consistent with the results

of Bayesian inference; Experiment 3 examined whether subjects indeed treated their discrimination

judgments as if they were correct. We recruited a new set of subjects (S6–S9, plus S1) that per-

formed both experiments. By jointly fitting the data from both experiments, we also tested how well

the model can generalize across tasks (Fits and model parameters for subject S1 are the result of a

joint fit to the data from all three experiments).

Experiment 2 was identical to Experiment 1 except that at the beginning of each trial, subjects

were explicitly reminded of the total range within which the stimulus orientation would occur in the

trial (Figure 5a). Our assumption was that an explicit display of the stimulus range provided subjects

with a better and presumably narrower representation of the stimulus distribution (given that

Figure 4. Experiment 1: Data and model fits for individual subjects. (a) Individual subjects (S1 non-naı̈ve) showed substantial variations in their bias

patterns (green curves). These variations are well explained by individual differences in the fit parameter values of the self-consistent model (blue

curves). For example, the width of the prior directly determines the location where the bias curves intersect with the x-axis. (b) Fit prior widths wp and

noise levels for the five individual subjects plus the combined subject (Sc). Subjects’ prior widths suggest that they consistently overestimated the actual

stimulus range in the experiment (± 21 degrees; arrow). For all subjects, fit sensory noise ss was comparable and monotonically dependent on the

actual stimulus noise. Memory noise sm was mostly small as expected, yet dominated for subjects S3 and S5. These two subjects performed poorly in

the estimation task, suggesting that they were not trying to provide an accurate orientation estimate but simply pointed the cursor to roughly the

middle of the stimulus range on the side of the discrimination boundary they picked in the discrimination task. The resulting bias curves are basically

independent of the stimulus noise and have a slope of approximately �1. The model captured this behavior by assuming that the sensory information

was ‘washed out’ with a large amount of memory noise. The full model also contained a motor noise component that was determined for each subject

in a separate control experiment. All errorbars represent the 95% confidence interval computed over 100 bootstrapped sample sets of the data. See

Materials and methods for details.

DOI: https://doi.org/10.7554/eLife.33334.008

The following figure supplement is available for figure 4:

Figure supplement 1. Goodness-of-fits for Experiment 1.

DOI: https://doi.org/10.7554/eLife.33334.009
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subjects seemed to substantially overestimate the prior in Experiment 1). If so, then the self-consis-

tent observer model would predict a shift of the bias curves’ crossover point towards

the discrimination boundary. As shown in Figure 5b, the measured bias curves indeed show the pre-

dicted shift compared to the bias curves measured in Experiment 1 (Figure 3b). This shift is also

clearly visible in the distributions of the orientation estimates (see Figure 5—figure supplement 1

for distributions of individual subjects), which is again accurately accounted for by the model

(Figure 5c).

In Experiment 3, we separated the discrimination judgment from the discrimination task. Subjects

were no longer asked to perform the discrimination task but instead were signaled right at the

beginning of each trial whether the stimulus orientation would be cw or ccw (Figure 6a). Subjects

were instructed that this categorical information was always correct, which it was. They then per-

formed an unrelated color discrimination task before finally performing the estimation task. The self-

consistent model predicts estimation biases that are basically identical to those of Experiment 2

because it assumes that subjects treat their own judgment as correct when performing the estima-

tion task. Indeed, as shown in Figure 6b, subjects’ estimation biases are very similar to the biases in

Experiment 2 (Figure 5b). Because Experiments 2 and 3 were both conducted on the same set of

subjects, the results are directly comparable. We can rule out that subjects may have ignored the

given category assignment in Experiment 3 and implicitly performed the orientation discrimination

task instead. If this were the case, then subjects would have exhibited a large fraction of inconsistent

Figure 5. Effect of the stimulus prior. (a) Experiment 2 was identical to Experiment 1 except that at the beginning of each trial, subjects were shown the

total range within which the stimulus orientation would occur in the trial (gray arc, subtending � 21 degrees). (b) We hypothesize that reminding

subjects of the exact stimulus range at the beginning of each trial helps them to form a more accurate (and more narrow) representation of their

stimulus prior. If subjects’ orientation estimates were indeed the result of the conditioned Bayesian inference as assumed by the self-consistent

observer model, then the bias curves should shift towards the discrimination boundary. The data support this prediction: Subjects’ bias curves

(combined subject, see Figure 7 for individual subjects) are shifted towards the discrimination boundary compared to Exp. 1. (c) As with Exp.1, the fit

self-consistent model provides an accurate description of the distribution pattern of subjects’ orientation estimates.

DOI: https://doi.org/10.7554/eLife.33334.010

The following figure supplement is available for figure 5:

Figure supplement 1. Full distributions of individual subjects’ estimates in Experiment 2.

DOI: https://doi.org/10.7554/eLife.33334.011
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trials (i.e., trials in which the estimated orientation was not in agreement with the given correct

answer) in particular for orientations close to the discrimination boundary. This was not the case as

we observed only small fractions of inconsistent trials (4% on average) that were of similar magnitude

as the error rates for the (irrelevant) color discrimination task (2%). We discuss these inconsistent tri-

als in more detail in the next sections below.

We again extended our analysis to individual subjects’ behavior. Figure 7a shows subjects’ esti-

mation biases in both experiments as well as the corresponding model predictions based on a joint

fit to data from both Experiments 2 and 3. Bias patterns, while quite variable across subjects, are

consistent across the two experiments for each subject. This confirms that the impact of the categor-

ical discrimination judgment on the perceived orientation does not depend on whether the judg-

ment was performed by the subjects themselves or not. The model captures both the inter-subject

as well as the within-subject variability across the two experiments. Biases are slightly smaller in

Experiment 3 compared to Experiment 2 for stimulus orientations close to the boundary. As shown

in Figure 7b, the model correctly predicts this difference because the self-made discrimination judg-

ments in Experiment 2 are based on the noisy stimulus measurement m and therefore can be incor-

rect, while the category cues in Experiment 3 were always correct. Consequently, the predicted bias

curves for Experiment 2 only represent trials for which the sensory measurement m was in favor of

Figure 6. Self-made vs. given category assignment. (a) Experiment 3: Instead of performing the discrimination judgment themselves, subjects were

provided with a cue indicating the correct category assignment right before the stimulus was presented. Then, after stimulus presentation, subjects first

performed an unrelated color discrimination task in place of the orientation discrimination task (they needed to remember the randomly assigned color

(red/green) of the cue indicating the correct category) before indicating their perceived stimulus orientation. (b) According to our model we should see

similar estimation biases in Exps. 2 and 3, which is indeed what we found. (c) Again, the fit model well accounts for the overall distribution of orientation

estimates (combined subject; see Figure 6—figure supplement 1 for distributions for individual subjects)). Because the discrimination judgment was

given and always correct independent of the noise in the sensory measurement m, estimates only occurred in the ‘correct’ quadrants. For the same

reason the model also predicts slightly smaller bias magnitudes (compared to Exp.2), which is also matched by the data (see also Figure 7b).

DOI: https://doi.org/10.7554/eLife.33334.012

The following figure supplement is available for figure 6:

Figure supplement 1. Full distributions of individual subjects’ estimates in Experiment 3.

DOI: https://doi.org/10.7554/eLife.33334.013
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the correct judgment (i.e., m was on the correct side of the boundary) whereas the bias curves for

Experiment 3 are computed over all trials. As a result, the biases in Experiment 3 are smaller for

stimulus orientations for which there is a substantial chance that the noise pushes the measurements

m to the other side of the discrimination boundary. Figure 7c shows the fit parameter values for indi-

vidual subjects. Compared to Experiment 1, the subjective prior widths are substantially smaller and

closer to the true stimulus prior width, which suggests that explicitly reminding subjects of the true

stimulus distribution in every trial was effective. As in Experiment 1, subjects showed large variations

in subjective noise levels although they consistently were monotonic in actual stimulus noise. Fit

memory noise levels were relatively small with the notable exception of subject S9 whose poor

Figure 7. Experiments 2 and 3: Joint fit to data for individual subjects. (a) Five subjects (S1, S6-9) participated both in Exp. 2 and 3. We performed a

joint model fit to the data from both experiments for every subject. Each column shows data (green curves) and fit (blue curves) for a particular subject.

As in Exp. 1, the bias pattern across subjects shows substantial variability yet is strikingly similar between the two experiments. (b) Comparing the mean

biases observed in Exps. 2 and 3 reveals that biases in Exp. 3 are slightly smaller for stimulus orientations close to the boundary. This effect is predicted

by the model. (c) Fit prior widths wp and noise levels for individual subjects and the combined subject. Subjects’ priors were closer to the experimental

distribution than in Exp. 1 because in Exps. 2 and 3 subjects were reminded about the stimulus range at the beginning of each trial. Noise levels were

comparable to those in Exp. 1 (for S1 we jointly fit data from all three experiments). Errorbars indicated the 95% confidence interval over 100

bootstrapped samples of the data. See Figure 7—figure supplement 1 for a goodness-of-fit analysis.

DOI: https://doi.org/10.7554/eLife.33334.014

The following figure supplement is available for figure 7:

Figure supplement 1. Goodness-of-fits for Experiments 2 and 3.

DOI: https://doi.org/10.7554/eLife.33334.015
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performance in the estimation task, quite similar to subjects S3 and S5 in Experiment 1, was picked

up by the memory noise parameter.

Inconsistent trials are due to lapses and motor noise
In a small fraction of trials (on average 4%) subjects’ discrimination judgment and their subsequent

orientation estimate were not consistent. We can show that these inconsistent trials are not a viola-

tion of self-consistent inference but rather can be entirely explained by two common sources of

behavioral errors not related to perceptual inference: lapses and motor noise. In fact, we can accu-

rately predict the estimation patterns and individual fractions of inconsistent trials based on model

fits to the consistent data, and individual measurements of lapse rates and motor noise.

Figure 8a shows the distribution of subjects’ estimates (combined data across all subjects and all

stimulus noise conditions) in inconsistent trials for all three experiments, together with predictions

from the self-consistent observer model for each of the two error sources. Lapses are defined as

Figure 8. Inconsistent trials are due to lapses and motor noise. (a) Distribution of estimates for the small fraction of inconsistent trials (4% of the data) in

each experiment (across all subjects and stimulus noise conditions). The estimation patterns can be explained as a weighted superposition of two

sources of erroneous, non-perceptual behavior: lapses and motor noise. The self-consistent model well predicts the estimation patterns. All predictions

are based on parameter values taken from the model fit to the consistent trial data (see Materials and methods). Lapse rates were extracted from the

psychometric functions of the discrimination judgment for the total data. Motor noise was measured in a control experiment (see

Materials and methods, Figure 3—figure supplement 1). (b) Quantitative predictions for each subject’s total fraction of inconsistent trials are

compared to the measured fractions. Predictions for the combined subjects suggest that inconsistent trials are mainly due to lapses.

DOI: https://doi.org/10.7554/eLife.33334.016
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trials in which subjects by mistake pushed the wrong button in the discrimination judgment (respec-

tively, incorrectly remembered the answer cue in Experiment 3) yet followed up with an orientation

estimate that corresponded to their actual judgment. For Experiments 1 and 2, the predicted esti-

mation patterns for lapse trials are similar to the predictions for consistent trials (Figures 3c and

5c), which makes sense since we assumed that subjects performed the estimation task correctly (i.e.,

were self-consistent) but mistakenly pushed the wrong button in the discrimination task. For Experi-

ment 3, the pattern is different because the misremembered answer cue is always incorrect, and

thus subjects’ estimates are based on the long tail of the sensory measurement distribution. In con-

trast, motor noise leads to inconsistent trials when it accidentally deflects subjects’ reported orienta-

tion estimates to the other side of the discrimination boundary. Thus for all experiments they are

predicted to be limited to stimulus orientations close to the boundary. A visual comparison between

the measured and the predicted estimation pattern (Figure 8a) confirms that the small fraction of

inconsistent trials are qualitatively well explained as the combined effect of errors due to lapses and

motor noise. Furthermore, we can quantitatively predict individual subjects’ overall fraction of incon-

sistent trials based on their fit model parameter values, and measured lapse rates and motor noise

(Figure 8b). Analyzing the contribution of each error source further reveals that the majority of

inconsistent trials are caused by lapses in the discrimination task.

Maintaining self-consistency in the face of working memory
degradation
To what degree is self-consistent inference a necessary condition for self-consistent behavior? If

working memory were perfect (i.e., the sensory signal m and its memory recall mm are identical) then

any reasonable observer model would be self-consistent. However, this is an unlikely scenario

because it is fairly well established that continuous visual information in working memory is degrad-

ing rather quickly over time (Wilken and Ma, 2004; Bays et al., 2011). We thus expect working

memory degradation to affect perceptual behavior, in particular in Experiments 1 and 2 where the

average time between stimulus presentation and the estimation task was on the order of 2–3 s. This

is supported by the model fits that revealed non-zero memory noise levels. In order to quantify how

challenging working memory noise is for maintaining self-consistency, we computed the fractions of

inconsistent trials we would expect without self-consistent inference, based on the fit memory noise

levels.

Figure 9a shows the predicted fractions of inconsistent trials as a function of stimulus orientation

for every subject and stimulus noise condition. The curves reflect the fraction of trials in which the

sensory measurement m and the working memory recall mm are on different sides of the reference

boundary. Predictions vary for individual subjects yet are typically large in particular for orientations

close to the boundary.

A comparison with the observed fractions of inconsistent trials in Experiments 1 and 2 reveals

that those are much smaller and relatively independent of the stimulus orientation (combined subject

for statistical reasons; Figure 9b), in line with our previous conclusion that inconsistent trials predom-

inantly reflect lapses (see Figure 8). This is further supported by a comparison with subjects’ individ-

ual memory noise levels: the predicted fractions are almost perfectly correlated with memory noise

whereas no such correlation can be found for the observed fractions (Figure 9c). Thus, above analy-

sis suggests that if memory noise is present, the proposed self-consistency constraint is necessary in

order to account for the low fractions of inconsistent trials in the data.

Further validation with existing experimental data
In a recent study, Zamboni et al., (2016) run different variations of the original experiment

(Jazayeri and Movshon, 2007). Specifically, they manipulated the presence and orientation of the

discrimination boundary at the time of the estimation task, as well as whether subjects had to explic-

itly perform the discrimination task or not. We fit our model to this dataset (combined subject) and

the results are shown in Figure 10. Experiment 1a was an exact replica of the original experiment

(Jazayeri and Movshon, 2007). The observed bias patterns are consistent with the original results

as well as the results from our Experiment 1, and thus well accounted for by our model (Figure 10a).

Experiment 1b was identical to 1a except that the discrimination boundary was removed right after

subjects performed the discrimination task. This manipulation led to an increase in variance and a
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loss of bimodality in the distribution of estimates (Figure 10b). Interestingly, however, the data are

consistently better fit by the self-consistent model than by the independent model that strictly pre-

dicts a unimodal distribution, if we assume that the observer had to rely on a noisy memory repre-

sentation of the discrimination boundary for the estimation task. A detailed inspection of the

estimate distributions shows that they are wider the closer the stimulus direction is to the boundary

and generally skewed towards the boundary. This suggests that subjects behaved according to the

self-consistent observer model, yet the characteristic bimodal estimation pattern is hidden in the

extra variance introduced by the uncertainty about the boundary orientation.

In Experiment 2, the boundary orientation was shifted by a small amount (�six degrees) before

subjects had to perform the estimation task. Introducing a short blank screen right before the shift

ensured that subjects were not aware of this manipulation. In contrast to Experiment 1, subjects

were only asked to perform the estimation task. Subjects’ estimates still show the same characteristic

bimodal distribution although they are shifted according to the boundary shift. This suggests that

subjects implicitly performed the discrimination task even though they were not asked to report

an explicit judgment, which is supported by the good model fit (Figure 10c). Based on these results,

we conclude that self-consistent inference takes place at the time of the estimation task, can occur

on memorized boundary information, and does not necessarily require an explicit discrimination

judgment.

Figure 9. Maintaining self-consistency in the face of working memory noise. (a) Shown are the predicted fractions of inconsistent trials if orientation

estimates are not conditioned on the preceding judgment. These are trials for which the sensory signal m and its memory recall mm are on different

sides of the discrimination boundary. Using the fit model parameters from Exps. 1 and 2, each curve represents the fraction of inconsistent trials as a

function of stimulus orientation for every subject (color code on the right). Each panel is for one of the three stimulus noise conditions. These large

fractions are predicted for any non-trivial model whose discrimination judgment is based on m and the estimate on mm but does not condition the

estimation process on the preceding discrimination judgment. For simplicity, we did not include lapses and motor error for this analysis, and thus these

predictions reflect the direct consistency benefit of conditioning the estimate on the preceding discrimination judgment. (b) The actual fractions of

inconsistent trials are much lower and relatively independent of stimulus orientation as they are mostly due to lapses (see Figure 8b); shown is the

combined subject. (c) The benefit of self-consistent inference is substantial for larger memory noise; predicted fractions are almost perfectly correlated

with the fit memory noise sm of individual subjects. In comparison, the actual fractions of inconsistent trials are uncorrelated with memory noise levels,

in line with our previous analysis showing that they are mainly due to lapses and motor noise.

DOI: https://doi.org/10.7554/eLife.33334.017
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Figure 10. Model fits for experimental data by Zamboni et al., (2016). (a) Experiment 1a: Exact replication of the original experiment (Jazayeri and

Movshon, 2007). Exemplarily shown is the estimation data (combined subject) at one stimulus coherence level (0.13) together with our model fit. (b)

Experiment 1b was identical except that the boundary was not shown during the estimation task. Estimate distributions are no longer bimodal yet the

self-consistent observer, relying on a noisy memory of the boundary orientation, consistently better fit the data than the independent observer model

(log-likelihood difference). (c) Experiment 2 introduced a shift in the boundary orientation right before the estimation task, which subjects were not

aware of (�six degrees). Subjects’ estimates were shifted accordingly (combined subject). The self-consistent model can account for the shift if we

assume that the conditional prior is applied to the shifted boundary orientation. See Figure 10—figure supplements 1–3 for distributions, fits, and

goodness-of-fits for all conditions.

DOI: https://doi.org/10.7554/eLife.33334.018

The following figure supplements are available for figure 10:

Figure supplement 1. Zamboni et al., (2016) data (Experiment 1, combined subject) and fit with the self-consistent observer model.

DOI: https://doi.org/10.7554/eLife.33334.019

Figure supplement 2. Relative log-likelihoods of model fits for Zamboni et al., (2016) data.

DOI: https://doi.org/10.7554/eLife.33334.020

Figure supplement 3. Zamboni et al., (2016) data (Experiment 2, combined subject) and fit with the self-consistent observer model.

DOI: https://doi.org/10.7554/eLife.33334.021
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Discussion
We have shown that in a discrimination-estimation task sequence, the estimated value of a stimulus

variable is systematically biased by the preceding discrimination judgment about that variable. We

have introduced a self-consistent Bayesian observer model that provides an accurate and complete

description of perceptual behavior in such sequential decision-making. The model assumes that the

estimates are the result of a Bayesian inference process over a hierarchical generative model, which,

however, is conditioned not only on the sensory evidence but also on the subject’s judgment in the

preceding discrimination task. This guarantees that discrimination judgments and estimates in any

given trial are consistent even when the observer must rely on working memory signals that are

noisy. We show that an observer that considers the tasks independently will substantially fail to pro-

vide the level of consistency observed in the data. With a set of targeted psychophysical experi-

ments we verified that the observed bias pattern generalizes for different low-level visual stimuli

(Experiment 1), and validated the self-consistent model by showing that the pattern indeed depends

on subjects’ knowledge of the stimulus prior (Experiment 2) and that subjects use their own decision

as if it was correct (Experiment 3). We further validated the model with existing data from experi-

ments that manipulated the presence and orientation of the discrimination boundary. Successful fits

of the proposed observer model to individual subjects data across the various experiments demon-

strate the power and accuracy of the model, and its ability to generalize across experimental condi-

tions. Furthermore, the model fits provide a meaningful interpretation of the substantial between-

subject differences in behavior in terms of individual differences in noise levels and knowledge of

the stimulus prior.

Alternative interpretations
While various dependencies in sequential perceptual choice tasks have been reported, such as

dependencies between decision outcomes (Fernberger, 1920; Senders and Sowards, 1952;

Gold et al., 2008; Fründ et al., 2014; Abrahamyan et al., 2016), decision confidence

(Rahnev et al., 2015; Fleming and Daw, 2017), reaction times (Laming, 1979; Link, 1975), and

error rates (Vervaeck and Boer, 1980), the impact of subjects’ choices on their immediate subse-

quent perceptual judgments has not yet been considered a cause for sequential dependencies.

Notably, Jazayeri and Movshon, (2007) interpreted the reported post-decision biases as the result

of a selective read-out strategy by which the brain preferentially weighs signals from those sensory

neurons that are most informative with respect to the discrimination task, yet is then compelled to

use the same weighted read-out signal when performing the subsequent estimation task. They con-

clude that a non-uniform read-out profile that more strongly weighs neurons with preferred tuning

slightly away from the discrimination boundary could explain the repulsive bias patterns. This is a

more mechanistic, neural interpretation, which complicates a direct comparison with our normative

computational model. Nevertheless, there is a fundamental difference between this interpretation

and our self-consistent model in the way the two perceptual tasks interact: the read-out model pro-

poses a feed-forward process where both tasks are performed independently based on the same

weighted sensory signal, whereas our model assumes that feed-back of the categorical judgment is

causally affecting the estimation process. Despite this difference, our experimental results alone may

not be sufficient to disambiguate between these two interpretations. Experiments 2 and 3 were fore-

most designed to test the specific aspects of our self-consistent observer model. Although subjects’

behavior in these experiments is not compatible with the originally proposed rationale for the partic-

ular shape of the read-out profile (optimized for the discrimination task [Jazayeri and Movshon,

2007]), relaxing this assumption by also allowing stimulus prior information to determine the shape

of the profile may lead to an alternative explanation of our data. Future work must show whether

this is true or not. It seems important that such work can establish a principled description of how

stimulus prior information ought to be reflected in the weighting function, otherwise the model’s

explanatory power will be reduced to that of a curve fit. It seems also important that any potential

model comparison takes full advantage of the richness of the behavioral data, that is, models should

be evaluated based on their ability to account for the entire distribution of subjects’ discrimination-

estimation response pairs and not only on summary statistics such as bias (Jazayeri and Movshon,

2007; Zamboni et al., 2016).
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More challenging to reconcile with the read-out model, or any other model that does not impose

some form of self-consistency constraint, are the experimental results by Zamboni et al., (2016) in

combination with our consistency analysis (Figure 9). The results by Zamboni et al., (2016) suggest

that a different (or at least adjusted) read-out profile must be applied at the time of the estimation

task, which implies that the sensory signal up to that point needed to be stored in some form of

working memory. With working memory quickly deteriorating over time (Wilken and Ma, 2004;

Bays et al., 2011), our consistency analysis shows that the observed degree of trial consistency can-

not be achieved by an observer model that does not condition the estimate on the discrimination

judgment (Figure 9). Future research is necessary to validate the levels of working memory noise we

have determined with our model.

General implications for computational and neural models of decision-
making
Our results and in particular the proposed self-consistent inference model have broad implications

for understanding human decision-making in general. For example, subjects did not distinguish

between a decision outcome they generated (as in Experiment 2) and a decision outcome that was

given to them (Experiment 3), which implies that for the purpose of performing the estimation task

they treat their own subjective judgment as if it was correct. Computationally, this is interesting

because on one hand it apparently seems to violate optimal behavior in terms of overall perceptual

accuracy (obviously, a subjective judgment can be wrong). On the other hand, however, it guaran-

tees that the observer remains self-consistent throughout the task sequence even when noise is cor-

rupting the sensory information in working memory (Figure 9). This is consistent with previous

results showing that selectively discarding evidence (a seemingly irrational behavior) can improve

performance when decision formation is corrupted by internal neural noise (Tsetsos et al., 2016),

and thus may be rational after all. Future work is needed to investigate in more detail the impact of

self-consistent inference on choice performance and perceptual accuracy.

Furthermore, self-consistent inference can also save computational costs in situations where the

task-sequence is more complex. Starting from the top, it reduces a decision tree at every level of the

hierarchy by considering only the chosen branch, which can substantially reduce the overall compu-

tational complexity and cost associated with solving the inference problem. Self-consistent inference

may represent a general strategy for the brain to address the cost-accuracy trade-off when solving

hierarchical decision-making problems. This also may have important implications for learning and

belief updating in biological as well as artificial neural networks, in particular for networks that are

aimed at learning a generative model (e.g., deep belief networks).

The fact that subjects condition their estimate on their preceding decision does not imply that

they are necessarily fully confident in their decision; we propose that they simply do so in order to

remain self-consistent. Our results show that conditioning is statistically independent of the difficulty

and thus on subjects’ confidence in their discrimination judgment (i.e., their psychometric function).

However, it remains an interesting open question particularly in context of the ongoing discussion

about decision confidence (Kepecs et al., 2008; van den Berg et al., 2016; Fleming and Daw,

2017) whether or not conditioning improves subjects’ confidence in their subsequent estimate since

it leads to a reduced posterior distribution.

Another interesting question is whether an explicit categorical commitment is necessary to induce

self-consistent conditioning or whether the brain always, and thus implicitly, performs conditioned

inference (Ding et al., 2017). This question is difficult to answer because without explicit access to a

subject’s trial-by-trial categorical judgment, differences in the subsequent feature inference process

are often hard to distinguish statistically. Only in special cases when, for example, a hard discrimina-

tion boundary is present, these differences have a clear behavioral signature that can be identified

(e.g., the characteristic repulsive estimation pattern in Experiment 2 of Zamboni et al., (2016)).

Identification is further complicated because repulsive biases may also have other causes such as the

efficient adaptation of sensory encoding resources (Wei and Stocker, 2015), which likely takes place

during perceptual learning (e.g., Szpiro et al., (2014)]; see also Wei and Stocker, (2017)]). In fact, it

may well be that implicit self-consistent inference is the fundamental process by which the brain sol-

ves inference problems, yet its behavioral characteristics are simply not often apparent. For example,

we expect self-consistent conditioning to implicitly occur in object recognition: when an observer

recognizes an object as an ‘apple’ the percept of the object’s features (e.g., the color) will
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automatically be conditioned on that recognized category. In order to detect the effects of this con-

ditioning in perceptual behavior, however, we would need to know the specifics of the learned gen-

erative models over the object categories, which is typically a difficult problem. In other situations,

such as in a typical psychophysical experiment with its sparse and artificial stimuli and little context,

the observer may simply be given little incentive to interpret the stimulus within a hierarchical repre-

sentation (generative model). Because the self-consistent inference model over a flat generative

model is identical to an optimal Bayesian observer model, the large number of studies that have

shown that perception is well explained as optimal Bayesian inference may actually not be conclu-

sive; their data is equally well explained by the self-consistent inference model! This is obviously a

strong hypothesis that needs further experimental evaluation.

Our results show interesting parallels to many well-known bias phenomena in cognition and eco-

nomics, such as confirmation bias (Nickerson, 1998), biases associated with cognitive consistency

(Brehm, 1956; Abelson, 1968) and dissonance (Festinger, 1957; Festinger and Carlsmith, 1959;

Egan et al., 2010; Sharot et al., 2010), as well as loss aversion and the sunk cost fallacy

(Kahneman and Tversky, 1984). Our findings seem also aligned with results from human probability

judgments over hierarchical representations which found that subjects rather follow individual proba-

bility branches than to resolve the entire probability tree (Lagnado and Shanks, 2003). It will be

interesting to explore to what degree the proposed self-consistent model generalizes to these cog-

nitive phenomena and is able to provide a parsimonious, quantitative explanation.

Finally, results from recent physiological recordings in primates suggest not only that decision-

making is associated with rapid cortical state-changes (Meindertsma et al., 2017) but also that deci-

sion-related signals are fed back along the perceptual processing pathway all the way to early sen-

sory areas (Nienborg and Cumming, 2009; Siegel et al., 2015). The proposed self-consistent

observer model provides a novel computational interpretation of these neural signals: at the

moment a decision is reached the belief state of the brain rapidly changes (in favor of the choice

made (Peters et al., 2017) and is fed back to ensure that the perceptual inference process remains

consistent across the different cortical levels of representation at any moment in time. The self-con-

sistent model may prove a useful hypothesis to constructively explore the function and purpose of

such decision-related signal flows in the brain. Future work needs to explore how exactly our model

formulation can be interpreted at a more mechanistic neural level (Luu and Stocker, 2016a). Various

theoretical frameworks have been proposed for how the brain might perform Bayesian inference (e.

g., Ma et al., (2006); Simoncelli, (2009); Wei and Stocker, 2012; Pitkow and Angelaki, (2017)). It

remains an interesting challenge to investigate how these frameworks can incorporate the self-con-

sistency constraint that we propose here, in particular the process of quickly and flexibly imposing a

conditional prior.

Materials and methods

Experimental setup
Ten subjects with normal or corrected-to-normal vision (six males, four females; one non-naı̈ve) par-

ticipated in the experiments. One subject (male) was excluded from the analysis because he failed to

correctly execute the estimation task. All subjects provided informed consent. The experiments were

approved by the Institutional Review Board of the University of Pennsylvania under protocol

#819634.

General methods
Subjects sat in a dimmed room in front of a special purpose computer monitor (VIEWPixx3D, refresh

rate of 120 Hz and resolution of 1920 x 1080 pixels). Viewing distance was 83.5 cm and enforced

with a chin rest. We programmed all experiments in Matlab (Mathworks, Inc.) using the MGL toolbox

(http://justingardner.net/mgl) for stimulus generation and presentation. The code was run on an

Apple Mac Pro computer with Quad-Core Intel Xeon 2.93 GHz, 8 GB RAM. Subjects were asked to

fixate a fixation dot whenever it appeared on the screen. Before subjects did the main experiments,

they had 2–3 training sessions during which they familiarized themselves with the discrimination and

the estimation task. After that, every subject either completed 1800 trials in 3–4 sessions for Experi-

ment 1 or completed 3600 trials in 6–8 sessions for Experiment 2 and 3. This is equivalent to 40 trials
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per every one of the 15 stimulus orientations and the three noise conditions. Sessions lasted approx-

imately 50 min. Subjects used a gamepad (Sony PS4 Dualshock) as input device: they reported their

decision in the discrimination task by pressing the corresponding trigger button (left for ’ccw’, right

for ’cw’), and used the analog joystick of the gamepad to indicate their perceived stimulus orienta-

tion by adjusting a reference line and then confirming their estimate with an additional button press.

Screen background luminance was 40 cd/m2 and mean stimulus luminance was 49 cd/m2.

Experiment 1
Five subjects (S1-5) participated in Experiment 1. In each trial, subjects viewed a white fixation dot

(diameter: 0:3o) and two black marks (length: 3o, distance from fixation: 3:5o) indicating a discrimina-

tion boundary whose orientation was randomly chosen in each trial. After 1300 ms, the orientation

stimulus consisting of an array of white line segments (length: 0:6o) was presented for 500 ms. The

array consisted of two concentric circles of lines centered on the fixation: the outer (diameter: 3:8o)

contained 16 line segments and the inner (diameter: 1:8o) contained eight line segments. Small ran-

dom variations (from �0:15o to 0:15o) were independently added to the x-y coordinates of each line

segment. The orientation of every line segment was drawn from a Gaussian distribution with mean

given as one of 15 stimulus orientations relative to the boundary (from �21
o to 21

o in steps of 3o)

and standard deviation s as one of 3 values (0o; 6o and 18
o). After the stimulus disappeared, subjects

were asked to indicate whether the overall orientation of the array was clockwise or counter-clock-

wise of the boundary. If subjects responded within 4 s, they then were also asked to indicate their

perceived stimulus orientation. Otherwise the current trial was skipped and added to the back of the

trial list. Every trial was followed by a randomly chosen inter-trial interval of 300-600 ms duration

(blank screen; mean background luminance).

Experiment 2
Five subjects (S1 and S6-9) participated in Experiment 2. The procedure was identical to Experiment

1 except that at the beginning of every trial, subjects were reminded of the stimulus distribution by

presenting a prior cue consisting of a gray arc for 800 ms. The arc (width: 0:2o, eccentricity from fixa-

tion: 3:5o) spanned the range �21
o relative to the discrimination boundary indicating the total true

stimulus distribution. Subjects were instructed that stimulus orientation was guaranteed to occur

anywhere within this range with equal probability.

Experiment 3
The same five subjects that participated in Experiment 2 also participated in Experiment 3. The pro-

cedure was identical to Experiment 2 except for the following: First, the prior cue was present only

for 500 ms, after which it was reduced to a colored arc that only spanned the orientation range at

the side of the discrimination boundary where the stimulus orientation in this trial would occur. This

colored cue indicated the correct answer (’cw’ or’ccw’) and was shown for 300 ms. Its color (red or

green) was randomly assigned and uncorrelated with the stimulus orientation. Second, instead of

the orientation discrimination task, subjects were tasked to recall the color of the cue.

Control Experiment (Motor noise)
As part of the training, all subjects participated in a control experiment that allowed us to estimate

subjects’ individual motor noise levels. They were first presented with a fixation dot and

the boundary (like in Experiment 1–3). After that, they were presented with an orientation stimulus

consisting of a single white line (like the reference line in Experiment 1–3, see for example

Figure 1a) for 500 ms. They then had to reproduce the stimulus by adjusting said reference line with

the analog joystick of the gamepad. After subjects pressed a button to confirm their response, they

received feedback in form of a green reference line indicating the true stimulus orientation. This con-

trol experiment consisted of 600 trials. The boundary orientation was uniformly sampled around the-

circle. The stimulus orientation was uniformly distributed around the boundary as in Experiment 1–3.

We used the measured standard deviation s0 in subjects’ estimates as a direct measure of subjects’

individual motor noise levels. Figure 3—figure supplement 1 shows the measured s0 for all nine

subjects. We used these measured levels as fixed parameters in all our model fits and predictions,
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assuming that motor noise is Gaussian and is uniform and independent of the reproduced orienta-

tion relative to the discrimination boundary.

Self-consistent Bayesian observer model
The model is formulated as an observer that performs Bayesian inference over the hierarchical gen-

erative model shown in Figure 3a. The observer is assumed to solve the two perceptual inference

tasks in sequence: the observer first judges whether the stimulus orientation was clockwise or

counter-clockwise of a random discrimination boundary, and then performs an estimate of the actual

stimulus orientation. The key feature of the model is that the inference process associated with the

estimate is conditioned on the observer’s preceding categorical judgment. As such, the observer

treats their own, subjective categorical judgment as if it was a correct statement about the stimulus

(see Experiment 3). In the following we describe the Bayesian formalism of this conditioned task

sequence.

Discrimination judgment
Let � be the true stimulus orientation relative to the discrimination boundary, m the noisy sensory

measurement of the stimulus orientation at presentation, and C 2 0cw0; 0ccw0f g the categorical deci-

sion variable indicating whether the stimulus orientation is clockwise (cw) or counter-clockwise (ccw)

of the discrimination boundary. Assuming a symmetric loss structure (i.e., no benefit for one correct

decision over the other), the observer solves the categorical decision task by picking the category

with maximal posterior probability given the sensory measurement m, thus

Ĉ mð Þ ¼ argmaxC2 0cw0;0ccw0f gp Cjmð Þ: (1)

The decision process Ĉ mð Þ is a deterministic mapping from any particular m to either one of the

two categories. The posterior distribution p Cjmð Þ is given as

p Cjmð Þ / p mjCð Þp Cð Þ; (2)

where p Cð Þ is the prior probability and p mjCð Þ the likelihood over the choices. We can obtain this

likelihood by marginalizing the stimulus likelihood over all stimulus orientations, that is

p mjCð Þ ¼

Z

p mj�ð Þp �jCð Þd�: (3)

The stimulus likelihood is fully determined by the noise characteristics of the sensory measure-

ment m, thus by the distribution p mj�ð Þ of sensory measurements m for any given stimulus orientation

�. Finally, the model’s prediction of the psychometric function in the decision task (e.g., ’Fraction cw’

- see Figure 2b) is obtained by marginalizing the mapping (Equation 1) for a particular choice over

the sensory measurement distribution,

p Ĉ¼ 0cw0j�
� �

¼

Z

p Ĉ¼ 0cw0jm
� �

p mj�ð Þdm : (4)

Estimation task
Following the categorical judgment, the observer then solves the estimation task by computing the

mean of the posterior distribution (i.e., assuming a loss function that minimizes squared error) over

�. In contrast to the independent observer, however, we assume that the posterior probability is con-

ditioned on the observer’s own choice Ĉ in the preceding categorical decision task. Because the

stimulus has long disappeared by the time the subject performs the estimation task (see experimen-

tal design), we formulate the posterior on a memorized version of the sensory measurement. With

mm referring to a noisy recall sample from working memory of the measurement m (doubly stochas-

tic) we write the optimal conditioned estimate as

�̂ mm; Ĉ
� �

¼

Z

� p �jmm; Ĉ
� �

d� (5)

with the posterior
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p �jmm; Ĉ
� �

¼
p mmj�; Ĉ
� �

p �jĈ
� �

p mmjĈ
� � : (6)

The estimate �̂ mm; Ĉ
� �

, even though the result of Bayesian inference, describes a deterministic

mapping from any particular mm to an estimate. However, we obtain two different formulations for

the estimate, one for each potential categorical judgment.

With Equation 5 the distribution of the estimates can be computed based on the distribution of

the memorized sensory measurement

p mmj�; Ĉ
� �

¼

Z

p mmjmð Þp mj�; Ĉ mð Þ
� �

dm: (7)

Note that the above marginalization is limited to measurements m that led to the particular cate-

gorical judgment Ĉ mð Þ (as given by Equation 1).

The model’s description of the conditioned distribution of the estimates p �̂j�; Ĉ
� �

is obtained by

a variable transformation for the conditional measurement distribution p mmj�; Ĉ
� �

, that is substituting

mm with the estimate �̂ mm; Ĉ
� �

(Equation 5). Finally, the model’s prediction of the entire distribution

of the estimates pð�̂j�Þ (i.e., the density plots shown in, e.g., Figure 2c) is given by marginalizing

over the decision outcomes, thus

p �̂j�
� �

¼
Ĉ

P

p �̂j�; Ĉ
� �

p Ĉj�
� �

: (8)

Estimation task with known correct category assignment (Experiment 3)
If the observer knows the category assignment upfront (as in Experiment 3), the above formulation

of solving the estimation task slightly changes in that Equations 5–8 are conditioned on the correct

category assignment C rather than a the inferred category Ĉ. In particular, this changes the marginal-

ization over m in Equation 7 such that it is no longer limited to values of m that are consistent with a

desired category assignment (according to Ĉ mð Þ), and also Equation 8 where the sum is over the

actual category probability p Cj�ð Þ rather than the inferred probability p Ĉj�
� �

. As a result, the pre-

dicted biases for identical model parameters are slightly smaller when the observer knows the cor-

rect category assignment compared to when the category has to be inferred first.

Specific assumptions defining the generative model
We made the following specific assumptions in defining the components of the generative model

(Figure 3a):

. We set the category prior p Cð Þ ¼ 0:5 because the two choices are equally likely in all our
experiments.

. The categorical stimulus prior p �jCð Þ was assumed to reflect subjects’ individual expectations
about the experimental distribution of stimulus orientations. We modeled this prior to be iden-
tical but mirrored around the discrimination boundary for the two choices. More specifically,
we assumed it to be uniform over the angle a relative to the boundary with a smooth cosine
fall-off from the uniform density value to zero over the additional angle b. We then defined
the prior width wp (see Figures 4b and 7c) as the total angle relative to the boundary where
the prior density decreased to half of its uniform value, that is wp ¼ aþ 2=3bð Þ.

. We assumed the sensory measurements m to reflect noisy samples of the true stimulus orienta-
tion �, with p mj�ð Þ to be a Gaussian with mean � and standard deviation ss that is monotoni-
cally depending on the array distribution width s of the orientation stimulus. Although ss was
assumed to be subject dependent and thus a free parameter, we assumed that across experi-
ments ss was the same for a given subject and stimulus noise condition.

. We treat the sensory evidence in the estimation task mm as being a sample from a Gaussian
with mean m (original sensory measurement) and standard deviation sm. We assumed that sm

is independent of stimulus uncertainty yet is different for different subjects.
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Independent Bayesian observer model
The ‘independent’ observer model, as defined in our paper, is formulated on the same generative

model as the self-consistent observer model (Figure 3a) and thus has identical model parameters.

The only formal differences are that

. the posterior over stimulus orientation is not conditioned on the discrimination judgment Ĉ (as
in Equation 6), thus

p �jmmð Þ ¼
p mmj�ð Þp �ð Þ

p mmð Þ
with p �ð Þ ¼

C

P

p �jCð Þp Cð Þ; (9)

. marginalization over the memorized sensory signal is not limited to measurements that are in

agreement with a particular discrimination judgment Ĉ (as in Equation 7), thus

p mmj�ð Þ ¼

Z

p mmjmð Þp mj�ð Þdm: (10)

Having the same parameters as the self-consistent observer model allows a direct log-likelihood

comparison in judging the goodness-of-fit.

Model fits
We jointly fit the model to the data of both the decision and estimation task by maximizing the likeli-

hood of the model given the data:

p Dj�ð Þ ¼
Y

n

i¼1

P Dij�ð Þ ¼
Y

n

i¼1

P Ĉij�;�
� �

p �̂ijĈi; �;�
� �

(11)

where D is the data, � represents the parameters of the model, � is the true orientation, Ĉi is the

decision outcome, �̂i is the orientation estimate, i is the trial index and n is the number of trials.

For all fits, we only excluded trials with inconsistent response pairs (i.e., trials in which subjects’

discrimination judgment and estimate were not consistent in terms of their categorical identity;

approximately 4% of the trials.). As we demonstrate (Figure 8), the fractions and the bias character-

istics of these inconsistent trials can be fully predicted based on the fit model parameters to the con-

sistent data, assuming that they are caused by motor noise and lapses (Figure 8).

Subjects’ motor noise was accounted for by assuming that the recorded orientation estimates fol-

low the distributions of estimates pð�̂j�Þ (Equation 8) convolved with the motor noise kernel. We

assumed motor noise to be additive Gaussian with a standard deviation s0 that was individually

determined for each subject from the control experiment (see above). Motor noise levels across sub-

jects were fairly similar with an average s0 ¼ 4.3 degrees. Figure 3—figure supplement 1 shows

measured noise levels for all subjects.

Our model fit contained a total of 6 free parameters:

. standard deviations ss for the three noise levels of the stimuli (additive Gaussian noise).

. standard deviation sm for memory noise (additive Gaussian).

. two parameters a;b for the prior distribution over stimulus orientation, defining its uniform
range and smoothness, respectively.

The Nelder-Mead simplex algorithm was used to minimize the term �log p Dj�ð Þð Þ. Twenty itera-

tions of the optimization procedure were performed using randomized initial parameter values in

order to obtain the best fitting model.

Model fit to data by Zamboni et al., (2016)
Experiment 1:
For the condition where the decision boundary was always present, we fit the data with exactly the

same model assumptions as we used for fitting the data from our Experiment 1. We added motor

noise as a free parameter because Zamboni et al., (2016) did not use a control experiment to deter-

mine the motor noise. For the condition where the decision boundary was removed after subjects
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did the discrimination task, we assumed that the observer had to rely on a noisy memory recall of

the true boundary orientation �b when performing the estimation task. As a result, the conditioned

prior varies in every trial depending on that memory recall. We assumed the recalled orientation to

be Gaussian distributed around the true boundary orientation with a standard deviation sb that was

a free parameter. Because the same group of subjects run both versions of the experiments, we first

fit the self-consistent model to the data from the boundary-present condition and then used those

parameters to fit the data in the boundary-absent condition with the only free parameter being sb

(Figure 10—figure supplement 1). When computing the goodness-of-fit (Figure 10—figure supple-

ment 2) we assumed the independent observer model to have the same additional noise parameter

sb.

Experiment 2
Although the discrimination boundary was present throughout the entire trial, subjects were only

asked to perform the estimation task. Furthermore, unknown to the subjects, the decision boundary

was either kept the same or shifted six degrees (cw or ccw). For our model fit, we assumed that sub-

jects, implicitly performed the discrimination task and then subsequently conditioned the estimation

process on that implicit decision as described by the proposed self-consistent observer model. Thus

we fit the data with exactly the same model assumptions used to fit the data from our Experiment 1,

with the addition that for the conditions where the decision boundary was shifted, the conditioned

prior was shifted accordingly. The fits shown in Figure 10, Figure 10—figure supplement 3 are joint

fits to data from all three shifted conditions.

Code availability
Computer code (MATLAB) providing model simulations for all three experiments is freely available

at https://github.com/cpc-lab-stocker/Self-consistent-model (Luu and Stocker, 2018). A copy is

archived at https://github.com/elifesciences-publications/Self-consistent-model.
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