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Abstract

Understanding how gene-level mutations affect the binding affinity of protein–protein interactions 

is a key issue of protein engineering. Due to the complexity of the problem, using physical force 

field to predict the mutation-induced binding free-energy change remains challenging. In this 

work, we present a renewed approach to calculate the impact of gene mutations on the binding 

affinity through the structure-based profiling of protein–protein interfaces, where the binding free-

energy change (ΔΔG) is counted as the logarithm of relative probability of mutant amino acids 

over wild-type ones in the interface alignment matrix; three pseudo-counts are introduced to 

alleviate the limit of the current interface library. Compared with a previous profile score that was 

based on the log-odds likelihood calculation, the correlation between predicted and experimental 

ΔΔG of single-site mutations is increased in this approach from 0.33 to 0.68. The structure-based 

profile score is found complementary to the physical potentials, where a linear combination of the 

profile score with the FoldX potential could increase the ΔΔG correlation from 0.46 to 0.74. It is 

also shown that the profile score is robust for counting the coupling effect of multiple individual 

mutations. For the mutations involving more than two mutation sites where the correlation 

between FoldX and experimental data vanishes, the profile-based calculation retains a strong 

correlation with the experimental measurements.
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Introduction

Protein–protein interaction plays an essential role in many biological processes, ranging 

from immune defense to cellular communication [1]. The ability to rationally design protein 

mutants with improved binding affinity is important in developing protein inhibitor as 

therapeutic agents. However, predicting the binding affinity change upon amino acid 

mutations remains a challenge for physical force field due to the lack of accurate methods 

describing the interactions [2]. Another major obstacle for physics-based approach is the 

need of building full-atomic model for the mutant complex, where both backbone and side-
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chain conformation can change due to the mutations in the interface region. Since physical 

energy calculation is sensitive to the subtle changes of atomistic structure models, this 

greatly restricts its performance, especially when multiple mutant sites are involved, where 

the complex coupling effect from individual residues could further complicate the problem 

[3].

A useful approach to alleviate this limitation is the utilization of evolutionary interface 

structure profiles built from the multiple sequence alignments of analogous protein–protein 

interactions collected from known protein–protein interface databases [4]. The assumption 

behind the idea is simple, that is, amino acids with a higher degree of conservation in the 

structural and evolutionary analogies tend to have a higher binding affinity. Due to the 

fundamentally different principles that they are built on, the information from the structure 

profile is complementary to the physics-based energy terms. The profile score has also an 

advantage compared with physics-based energy terms in that the calculation is not sensitive 

to the accuracy of the complex structures of target proteins, which enables the utilization of 

low-resolution models from threading and docking approaches [5,6] for mutation 

calculations. Meanwhile, the coupling of different mutation sites can make it challenging for 

the physical potential to predict the effect from multiple-point mutations, where the 

correlation may still hold in the profiling score of interfaces given the completeness of the 

statistics.

How to build a connection between the interface profiles and the protein binding affinity 

change upon mutations is, however, a question, especially given the limit number of known 

interactions in the current structure library [7,8]. One of the mostly used methods is the log-

odd likelihood score [9] that is equivalent to the average of the substitution scales from the 

Dayhoff [10] or BLOSUM [11] matrix between target amino acid and all amino acids at the 

corresponding position in the multiple interface alignments; this approach was taken in the 

former version of BindProf [4]. Another approach is to calculate the binding free-energy 

change according to the statistical energy derived from the Boltzmann distribution. Since the 

number of collected sequences is often much lower than that required for stable Boltzmann 

statistics, here it is necessary to make corrections to the amino acid probability in the 

interface multiple structural alignment (iMSA) according to amino acid substitution matrix 

[12].

In this work, we tested both methods to predict the binding affinity change in an 

experimental database of mutant protein interactions, SKEMPI [13]. We found that the 

statistical energy has a significantly improved correlation with the experimental ΔΔG than 

the log-odds–based profiling approach. It also shows advantage compared to the state of the 

art physical potentials [14] in both nsSNP and multiple-point mutations. An online server 

and the standalone open-source program of the approach, called Bind-ProfX, are freely 

available at http://zhanglab.ccmb.med.umich.edu/BindProfX/.
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Results and Discussion

Experimental mutation datasets

Experimental protein–protein binding affinity data were derived from the SKEMPI database 

[13], which contains the experimentally measured binding affinity change of protein 

complexes upon amino acid mutations. To construct the structure profile, we collected a 

non-redundant set of the interface mutations from SKEPMPI, where the residues with the 

nearest atomic distance <5 Å to the opposite chain are identified as interface residues. 

Average ΔΔG value is used when there are multiple entries for the same mutation. The final 

non-redundant interface mutation set contains entries for 114 protein complexes, where 1131 

entries are single-point mutations, 195 are double-points mutations, and 76 are three or 

higher-order mutations. A list of the non-redundant mutations is available at http://

zhanglab.ccmb.med.umich.edu/BindProfX/download/.

Statistical protein binding energy from interface analogy alignments

For a query protein–protein complex, its interface is structurally aligned to the interfaces in 

the non-redundant interface library (NIL) collected from the PIFACE library [7] (see 

Methods). The interface comparison is performed by the I-align program [15], where all 

interfaces with a high interface similarity score (IS score, see Methods) are used to construct 

an iMSA matrix. The binding free-energy change upon mutation is calculated by

ΔΔGevo(i) = − λ ln
P(AMut, i)
P(AWT, i)

= − λ ln
Nobs(AMut, i) + Npesudo(AMut, i)
Nobs(AWT, i) + Npesudo(AWT, i)

(1)

where P(AMut, i) and P(AWT, i) are the possibility of mutant and wild-type amino acids, 

respectively, appearing at the ith position of iMSA. Nobs(Mut, i) and Nobs(WT, i) are the 

number of the corresponding amino acids observed in the iMSA matrix, where Npseudo(A, i) 
is the corresponding pseudo-count number introduced to offset the limit of statistics that will 

be discussed in detail in next section.

In Fig. 1a, we listed the correlation coefficient of the predicted and experimental binding 

free-energy changes (ΔΔG) upon the single-point mutations in SKEPMPI. The experiments 

were performed at different IS score cutoffs (from 0.2 to 0.98). It was shown that the profile 

score has an inverted U-shaped curve versus the IS score cutoff. This is understandable 

because the iMSA with a high IS score cutoff may contain too few interface samples that 

can reduce the efficiency of the statistical counting, while a too low IS score cutoff should 

introduce false-positive interfaces into the matrix. The method achieves a reasonable score 

with correlation coefficient above 0.5 for all cutoffs in [0.45, 0.65]. The best correlation 

coefficient is achieved at IS score cutoff = 0.55 which has a ΔΔG correlation coefficient = 

0.68.
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We also listed in the figure the correlation coefficient data when we use the Gribskov log-

odds profile score [9], that is, using the log-odds difference between the wild-type and 

mutant amino acid to calculate the free-energy changes, which has been adopted in the first 

version of BindProf [4]. The data show a similar inverted U-shaped curve versus different IS 

score cutoffs, with a platform in [0.3, 0.8]. However, the best performance, with a ΔΔG 
correlation coefficient of 0.33, is much lower than the pseudo-count-assisted Boltzmann 

probability calculations. The result is largely consistent with the results obtained by the 

BindProf program, although BindProf used a different interface template structure library 

from multiple-chain threading approach that consists of ~55,000 protein–protein complexes 

[16]. These data suggest that the use of Boltzmann probability with pseudo-counts could 

better associate the interface structural profiles with the binding free-energy change 

calculations.

Improving binding free-energy calculation with pseudo-counts

The accurate calculation of the mutation probability requests for an infinite number of 

structural analogies in the interface MSA. However, we could only find on average five 

structurally similar interfaces to the target with an IS score cutoff of 0.55. To construct an 

optimal binding free-energy model from structurally derived sequence information, we take 

the strategy of introducing pseudo-counts to Eq. (1) to partly alleviate the limit of the current 

structure library. The pseudo-counts consist of three parts, that is, Npesudo = Nfix + Ngap + 

Nevo, where Nfix, Ngap and Nevo are the fix-number pseudo-count, gap penalty count and 

evolutional pseudo-count, respectively.

Fix number pseudo-count—The fix-number pseudo-count is a constant parameter, that 

is, Nfix = α, added to the observation of both mutant and wild-type frequency. To test how 

this parameter affects the binding correlation results, we change the fixed pseudo-count 

number from 1 to 50, with the resultant correlation curve shown in Fig. 1b. When α 
increases from 1 to 15, the correlation coefficient rapidly increases from 0.586 to 0.641, and 

then keeps almost unchanged afterward. In our calculation, we take α=25. Given the low 

number of interface analogies identified on average (~5), the data suggest that Nfix should be 

much larger than the number of observed amino acids in the interface alignments.

Pseudo-count of gap penalty—The second part in pseudo-count is used to decrease the 

absolute value of predicted ΔΔG for the positions with gap in the alignment, where Ngap = 

βngap is proportional to the number of gaps (ngap) at each position of iMSA. This count is 

introduced based on the observation that the prediction accuracy of mutants with gapped 

alignment is much worse than mutants without gap; that is, the average correlation 

coefficient of predicted and experimental ΔΔG values is only 0.25 at the positions with gaps 

in the alignment, where it increases to 0.65 at the positions without gap. Physically, such 

dependence may be attributed to the fact that the structure of proteins at the poorly aligned 

positions has a higher variation and the structure profiles derived at these positions are 

therefore less reliable.

Although the introduction of pseudo-count could not increase the accuracy of ΔΔG 
prediction of mutants with gaps in alignment, it helps balance the contribution of the 

Xiong et al. Page 4

J Mol Biol. Author manuscript; available in PMC 2018 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unreliably alignment regions to the total score calculation when combined with other 

binding score. As it is shown in Fig. 1c, this pseudo-count indeed slightly increases the 

overall correlation coefficient between predicted and experimental ΔΔG values, where an 

optimal parameter β=15 was selected.

Evolutionary pseudo-count—The third part of pseudo-count is a sum of the counts of 

the amino acids evolutionally related to the observed amino acid in the iMSA, which is 

designed to offset the missing of the amino acid variations due to the limited number of 

interface analogies, i.e.

Nevo(A, i) = Y ∑
a = 1

20 Nobs(a, i)
Ntot

M(a, A) (2)

where Nobs(a, i)/Ntot is the relative frequency of amino acid a appearing at the ith position of 

iMSA. M(a,A) is the interface probability transition matrix (iPTM) derived from the 

PIFACE homologous interface structures (see Methods and Table S1 in Supplementary 

Materials).

It is of interest to compare interface-based iPTM and the widely used BLOSUM-based PTM 

that was derived from the homologous sequence blocks [11] (Table S2). One of the most 

significant differences is the frequency of substitution between the polar and hydrophobic 

amino acids, where the frequency in the iPTM is higher than that in the BLOSUM PTM. For 

example, T(Glu, Leu) is 0.093 in the iPTM and 0.026 in the BLOSUM PTM, and T(Leu, 

Glu) is 0.042 in the iPTM and 0.022 in BLOSUM PTM. This probably reflects the enhanced 

interactions between the polar and non-polar residues in the interface regions.

Fig. 1d shows the dependence of the ΔΔG correlation on the evolutionary pseudo-counts, 

where adding a small number of evolutional pseudo-count could increase the correlation 

coefficient from 0.667 to 0.686 at γ=5. Although the overall enhancement is relatively low, 

this pseudo-count is more helpful if the number of structural neighbors is low. For those 

targets with only one or two structurally similar interfaces, for example, the correlation 

coefficient increased from 0.207 to 0.323.

Result of cross-validations—The results in Fig. 1 were obtained using four parameters 

(IS score cutoff, α, β, γ) trained on the global samples, which may have a danger of over-

fitting. To examine this issue, we made a protein-level cross validation on the SKEMPI 

dataset, in which the mutation samples were randomly divided into five groups according to 

the proteins that the mutations are associated with, where sequence identity between the 

proteins in any two groups is lower than 30% (a list of proteins in the five groups is 

displayed in Table S3). Next, we randomly select three groups as the training set to optimize 

the parameters and test the BindProfX potential on the rest two groups. Out of the 10 test 

experiments, the average correlation coefficient between the predicted and experimental 

ΔΔG is 0.663 for the training set and 0.625 for the testing set. The data show a slight 

dependence of the correlation on the training process because the correlation coefficient on 
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the testing is slightly lower than the training set. However, the difference is statistically 

insignificantly, as the p value in Student’s t test is 0.29.

As a control, we also performed a mutation-level cross-validation test based on random split 

of the mutation samples without applying the 30% sequence identity cutoff. The average 

correlation coefficient between the predicted and experimental ΔΔG is 0.662 for training and 

0.657 for testing sets. As expected, the difference between the training and test becomes 

smaller in the mutation-level cross-validation compared to the protein-level ones, probably 

due to the effect of homologous correlation between test and training samples, which is 

consistent with the observation made on the cross-validation of monomer-chain mutations 

[17,18].

Overall, the magnitudes of the correlation coefficients in the cross-validations are largely 

comparable to that of Fig. 1, suggesting the robustness of the BindProfX performance. 

Although the global parameter training can slightly improve the correlation, it does not 

count for the major contribution of the BindProfX performance.

Combination of profile score with physics based potentials

FoldX [14] is an empirical potential that combines multiple physics-based energy terms and 

has been widely used to calculate protein–protein binding energy. In the recent study [4], it 

was shown that FoldX outperforms all other physics-based potentials in generating the ΔΔG 
prediction with the highest correlation with the experimental data. When using this potential 

to predict ΔΔG, the energy terms and parameters were optimized to reproduce experimental 

ΔΔG upon single mutation. One assumption here is that the backbone structure will be kept 

unchanged after single amino acid substitution, with the mutant structure often built by 

optimizing the side chain conformation. To calculate the FoldX score, the crystal structures 

of experimental proteins are downloaded from SKEMPI Web site (http://life.bsc.es/pid/

mutation_database/database.html), with water and ligand molecules removed from the 

structural files. RepairPDB function within FoldX is used to perform a quick optimization in 

native structures, and BuildModel function is then used to generate the structures of mutant 

complex. Finally, AnalyseComplex function is used to determine the interaction energy of 

all wild-type and mutant complexes.

Using the same single-point mutation dataset from SKEMPI, the correlation coefficient 

between the FoldX score and the experimental binding energy change ΔΔG is 0.457, with a 

root mean square error (RMSE) being 2.31 kcal/mol, compared to the profile score that has 

the correlation coefficient 0.675 and RMSE 1.82 kcal/mol. These two score terms are 

complementary, which are built on different principles. If we combine these two scores by a 

simple linear combination: ΔΔGcomb =0.9× ΔΔGevo +0.4× ΔΔGfoldx, a correlation coefficient 

0.738 can be achieved for the single-point mutations, with the RMSE reduced to 1.70 kcal/

mol. The relative weight (0.9/0.4) was decided according to the optimized RMSE of the 

randomly selected half of the single-mutation database from SKEMPI. Fig. 2 presents the 

correlation between experimental ΔΔG data and that predicted by the combined evolutionary 

and FoldX scores, for the 1131 single-point mutation samples in SKEMPI. We note that we 

have tried both versions of FoldX.v3 and FoldX.v4 and found that the old version achieved a 

slightly higher correlation coefficient (0.457) than the newer version (0.430) for the single-
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point mutations. Therefore, all the data presented in this study were based on FoldX.v3 

unless mentioned otherwise.

Free-energy changes on multiple mutations

The binding free-energy changes of mutations on different amino acids are usually non-

additive due to the coupling effect between individual residues [3]; this makes the physics-

based prediction of ΔΔG particularly difficult for the multiple-point mutations, because the 

coupling effect can be complicated, the strength of which depends on the separation of the 

mutated residues along the sequence and the relative spatial locations in the structure. 

Another difficulty to physics-based approaches is that the structural changes induced by 

multiple mutations are usually larger than that by single-point mutations, where the 

implicated fixed-backbone assumption is less likely held [14].

In Table 1, we list the correlation coefficient data of experimental and predicted ΔΔG on 

single and multiple mutations by different methods. Compared to the single-point mutations, 

the correlation by FoldX is reduced by 2.57 times on double mutations and almost vanishes 

for three and higher-order mutations (column 3). The correlation coefficient by the interface 

profile score is also reduced but the magnitude of reduction is much smaller; that is, the 

correlation decreases by 1.47 times on double mutation and 1.66 times on three and higher-

order mutations, relative to the single mutations (column 6).

Interestingly, the correlation coefficient by the interface profile score is stronger for the 

multi-point mutations than that by the combined profile and FoldX scores (column 7). These 

data suggest that the profile score is more robust than the physics-based potentials in 

calculating the coupling effect of different amino acids in the multiple mutations. 

Accordingly, we use the combined score for single-point mutation, where only the profile 

score is utilized for treating multiple mutations in the BindProfX program (column 8).

Comparison of BindProfX with other statistical potentials

In addition to the physics-based approach of FoldX, we reported in Table 1 the results 

obtained from two statistical potentials: BeAtMuSiC [19] and Dcomplex [20]. In 

BeAtMuSiC, the binding free energy was calculated by a linear combination of multiple 

coarse-grained statistical terms with the weighting parameters determined by neural network 

training; the current BeAtMuSiC program allows only for single-point mutation 

calculations. Dcomplex is a distance-specific contact potential trained on the monomer 

structures from the PDB [20]. The data in Table 1 show that both statistics-based potentials 

have a relatively lower correlation coefficient compared to the composite FoldX potential 

[14], which is consistent with the observation in the previous study [4]. The outperformance 

of BindProfX demonstrates again the advantage of the structure-profile based approach over 

both the statistics and physics-based potentials.

BindProfX on low-resolution complex structure models

The experiments tested above are all based on experimental complex structures. To examine 

the performance of BindProfX on low-resolution structures, we tested the profile score on an 

independent mutation set taken from the ZEMu dataset [21], where only complex 
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reconstructed from the monomer structures solved in a unbound form used. Here, we only 

consider the mutations involved in dimer complexes with those involved in higher-order 

complexes excluded. We also found several mutations in the ZEMu dataset that have 

inconsistent amino acid type to that in the PDB structure (e.g., “Immunoglobulin FC/

Fragment B of protein A” in 2jwd_3dz8_1fc2 has a single mutation “YC133W” in ZEMu, 

but residue 133 of chain C in the structure is actually W, not Y); these mutations have been 

excluded as well. A final set of 104 mutations from the ZEMu set is listed in Table S4.

To calculate the BindProfX score, we first constructed the complex structures by overlaying 

the unbound monomer structure to the template complex structure provided by ZEMu, using 

the TM-align structural alignment program [22]. The BindProfX program is then used to 

calculate ΔΔG values based on the interface analogous alignments searched from the NIL 

database. As shown in Table S4, BindProfX achieves an overall correlation of 0.454 to the 

experimental values, which is 3.8 times higher than that of ZEMu (0.118), which was based 

on FoldX potential [14] using the complex structure refined from MacroMoleculeBuilder 

(MMB) simulations after the structural-alignment overlay [21].

We note that the complex structures used by BindProfX were built by a simple structure-

alignment overlay without the MMB refinement. Given that the structural profile 

construction is not sensitive to the atomic details of the interface structures, the skip of the 

MMB refinement should not affect much of the BindProfX performance. The ZEMu ΔΔG 
values were directly taken from the Supplementary Information of Ref. [21], where the 

correlation coefficient we obtained (0.118) is lower than that reported in the ZEMu paper 

(0.34); this is probably due to the fact that only a subset of the ZEMu dataset was used here, 

as the mutations from higher-order complex structures and those with inconsistent amino 

acid types have been excluded from our calculation.

Conclusion

We developed a renewed algorithm, BindProfX, to assess the binding free-energy changes of 

protein–protein interactions induced by single- or multiple-point mutations. Different from 

the statistics and physics-based approaches that are based on atomistic interactions between 

protein structures, BindProfX is built on the structural and evolutionary profile analyses that 

are derived from the interface analogies in the PDB structure databases. A large-scale 

benchmark test on mutation samples shows that the BindProfX generates ΔΔG with a 

stronger correlation with the experimental data than both the statistical and physical 

potentials.

Because the approach relies more on the global interface structure comparison rather than 

the subtle atomic-details of the complex structures, the BindProfX prediction has the 

potential to be used for the cases with low-resolution complex structure built by protein 

docking [5,23] and multi-chain threading approaches [6,24]. On a test set of 104 mutations 

with only unbound monomer structures available [21], BindProfX uses the complex 

structure docked from structural overlay of monomers onto the homologous complexes and 

achieved a correlation 0.454 to the experiment that is 3.8 times higher than that calculated 

from the physics-based potentials. The study also demonstrated the robustness of BindProfX 
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in predicting multiple-point mutations, in which the correlation from statistics and physics-

based potentials almost vanishes but the profiling score retains a strong correlation 

coefficient (0.406) to the experimental ΔΔG data in the three and higher-order mutations.

Compared to an earlier version of BindProf [4], the major difference is in the derivation of 

the interface profile scoring function from the interface MSA. In BindProf, the profile was 

calculated based on the log-odds likelihood score [9], whereas the approach in this study 

calculated the binding free-energy as the logarithm of relative Boltzmann possibility of 

mutant and wild-type amino acids. Three pseudo-counts, including fix-number, gap penalty 

and evolutionary composition, were introduced to offset the limited counting of interface 

analogies in the current structure databases. These pseudo-counts were found to be 

particularly useful for the cases that have less than 3 homologous complexes identified.

Mathematically, the log-odds likelihood score counts only for the similarity between the 

target amino acids and a set of amino acids at the interested position by the average 

BLOSUM substitution scale, while the relative frequency of the target amino acids 

appearing at the position, which reflects the propensity of the amino acids among different 

binding sites, is missed. The BindProfX score measures both the probability of the target 

amino acids at the binding site and the effect of amino acid substitution with each other, with 

the latter counted by the evolutionary pseudo-count (Nevo) in Eq. (2). In fact, if we increase 

γ to make Nevo much larger than the observed amino acid number (Nobs), the result of 

BindProfX would become almost the same as that by the log-odds likelihood score. 

Similarly, if we reduced γ to 0, that is, ignoring the similarity between amino acids, the 

correlation will also decrease as shown in Fig. 1d. Thus, although the pseudo-counts were 

originally introduced for offsetting the limit of data samples, they provide a balanced count 

of different sources of information from frequency and mutation, the former of which has 

been missed in the log-odds likelihood scoring.

The large-scale benchmark data showed that the new approach could significantly enhance 

the correlation of calculated ΔΔG with the experimental data by almost doubling the 

correlation coefficient value provided by the profile score from BindProf. The second 

advantage of the approach is that there are only very few free parameters, including the 

weights combining physics-based potentials, whereas in the BindProf program a neural-

network training was developed to combine different energy terms, which can be in the 

danger of over-training on the test and training samples [4].

Among many potential uses of the PPI mutation predictions, including, for example, 

function analyses of protein networks and disease diagnosis [2,25,26], the one particularly 

interesting to us is the possibility to switch and/or gain new protein–protein interactions 

through the redesign of nature protein sequences. The application of the BindProfX scoring 

approach to guide the evolutionary-based protein design [27] on protein–protein interactions 

is under progress.
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Methods

NIL

Our NIL is derived from the PIFACE library [7] that consists of 130,209 protein dimer 

interfaces extracted from the PDB. These interfaces were first classified into 22,604 clusters 

according to interface structural similarity, where a set of non-redundant interfaces is then 

collected from each cluster with a sequence identity cutoff 50%. The final NIL contains 

24,962 dimer interfaces from all the clusters, which can be downloaded at http://

zhanglab.ccmb.med.umich.edu/BindProfX/download/.

Interface structure comparison and alignment

Interface alignment and structural analog search are performed by the I-align program [15], 

which is built on IS score:

IS‐score =
S + s0
1 + s0

(4)

where S = 1
LQ

∑i = 1
Na f i

1 + (di/d0)2
 is the raw interface similarity score, and s0 = 0.18 − 0.35

LQ
0.3  is a 

scaling factor to normalize the interface size. In the raw score S, LQ is the average number of 

interface residues, Na is the number of aligned interface residues, fi is the fraction of 

conserved interface contacts at ith aligned position, and di/d0 is the normalized Cα distance 

at the ith aligned position. When running I-align, non-sequential alignment is allowed, that 

is, the alignment of interfacial residues does not need to follow their sequential order.

iPTM

A hierarchical procedure is developed to construct the pool of interface pairs that was used 

to create the iPTM. First, from the PIFACE library [7], 1083 representative dimer structures 

were selected from the 1083 dimer clusters that have >20 members. I-align is then used to 

compare the 1083 representative dimers with the 24,962 dimers in the NIL, resulting in 1083 

new dimer clusters with a cutoff of IS score >0.4. An all-to-all sequence and interface 

alignment is then conducted on all the dimers in each of the new dimer clusters. Only those 

dimer pairs with an IS score >0.5 and sequence identity <0.7 were selected, which resulted 

in 40,299 aligned dimer pairs. Considering a Cα distance cutoff <1 Å, we obtained 1.16 

million of aligned residue pairs from the 40,299 aligned dimer pairs.

The iPTM is derived by

M(A, B) = p(A, B)
q(A) (5)

where p(A,B)=[N(A,B)+N(B,A)]/2Npair and q(A)= N(A)/Nres · N(A, B) is the number of 

residue pairs with amino acid type A and B, Npair (=1.16 million) is the total number of 
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residue pairs, N(A) is the number of residues with type A, Nres (=2* Npair) is the total 

number of residues in the selected interface pool.
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Fig. 1. 
Correlation coefficient between the predicted and experimental ΔΔG using difference 

scoring functions and parameters. (a) Profile score by BindProf and BindProfX at different 

IS score cutoffs. (b) Dependence of correlation coefficient on the fix number pseudo-count, 

where β= γ=0. (c) Dependence of correlation coefficient on the gap penalty pseudo-count, 

where a=25, γ=0. (d) Dependence of correlation coefficient on the evolutionary pseudo-

count, where a=25,β=15.
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Fig. 2. 
Predicted versus experimental ΔΔG values using combined profile and FoldX score. Data 

contain all 1131 single-mutation samples taken from the SKEMPI database [13].
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