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Abstract

Using a nonparametric Bayesian approach Palacios and Minin [1] dramatically improved the 

accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. 

These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method 

for the intensity function of non-homogeneous Poisson processes. They found that not only the 

statistical properties of the estimators were improved with their method, but also, that key aspects 

of the demographic histories were recovered. The authors’ work represents the first Bayesian 

nonparametric solution to this inferential problem because they specify a convenient prior belief 

without a particular functional form on the population trajectory. Their approach works so well 

and provides such a profound understanding of the biological process, that the question arises as to 

how truly “biology-free” their approach really is. Using well-known concepts of stochastic 

population dynamics, here I demonstrate that in fact, Palacios and Minin’s GP model can be cast 

as a parametric population growth model with density dependence and environmental 

stochasticity. Making this link between population genetics and stochastic population dynamics 

modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of 

the effective population size. The results presented here also bring novel understanding of GP as 

models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and 

Minin [1]’s prior adds to the conceptual and scientific value of these authors’ inferential approach. 

I conclude this note by listing a series of insights brought about by this connection with Ecology.
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1. Introduction

Statistical inference for stochastic processes in biology was central to the research in Paul 

Joyce’s lab. I was humbled and challenged by the request to write a paper celebrating the 

memory of Paul Joyce’s contributions to mathematical modeling and statistical inference in 

population genetics. Little by little, my fears became excitement when I envisioned a little 

note illustrating the type of interactions that would occur between the members of his lab, 

and anyone who approached him to talk about science. Those interactions often occurred 

very early in the morning, around seven AM, his favorite moment of the day to indulge in 

research (with coffee).

At the time I started to study under his guidance (summer 2002), professors Zaid Abdo and 

Vladimir Minin were my lab mates. I had the privilege to learn with and from them through 

day to day conversations, classes, homeworks, research problems and most importantly, 

from our successes and failures. The diversity of topics that we talked about and worked on 

was naturally, a reflection of Paul’s innate fascination for any problem in biology having to 

do with mathematical statistics and stochastic processes. Indeed, he would often be the glue 

connecting the thinking and ideas among topics. Seeking to see beyond a particular area or 

application, and understand the connections between probabilistic results applied to one or 

another area in biology is perhaps, one of the most valuable lessons I got from him.

During one of my last visits to Idaho before his tragic accident, we reminisced about the 

times when “Vlad” (Minin) was a student. We naturally talked about his (then) latest work, a 

successful attempt to dramatically improve the accuracy and precision of Bayesian inference 

of population size trajectories from gene genealogies [1]. During the rest of our 

conversation, I proceeded to build a case to demonstrate why I thought that this novel 

methodology had a remarkable ability to recapitulate fundamental biological properties of 

the system: because unbeknownst to them, Palacios and Minin’s contribution was strongly 

connected with theoretical concepts and results from statistical ecology. My argument met, 

of course, a skeptic listener but after my exposition and many interjections, Paul apparently 

conceded because he exclaimed: “Well I hope you’re right, because if so, then this would be 

one of these cool instances in which mathematical population genetics learns from 

ecological thinking”. The reasoning I presented to Paul, formally written, constitutes the 

contents of this note.

Palacios and Minin [1] proposed a Bayesian nonparametric methodology to reconstruct past 

population dynamics using genomic data and the Coalescent process. This non 

homogeneous Markov death process specifies the relationship between ancestral genealogies 

of a random sample of genes and effective population size. Because changes in population 

size result in changes on the genetic pool in a population, at any point in time genomic data 

carries information regarding past demographic processes and population dynamics. 

Although estimating the effective population size amounts to estimating the total population 

size in an idealized Wright-Fisher model, studying changes in this parameter remains 

important because of its interpretation as a metric of relative genetic diversity.
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Motivated by the lack of statistical methods to infer past population dynamics from a sample 

of genes that didn’t depend on strong parametric assumptions, Palacios and Minin [1] 

proposed a transformed Gaussian Process (GP) as the prior for past population trajectories. 

These authors justify their choice because such process “does not adhere to a particular 

functional form, or hypothesis on past population dynamics” [1]. In this article, I borrow 

results from theoretical ecology, to show that Palacios and Minin [1] prior choice, although 

justifiable under numerical and statistical grounds, can be interpreted as a class of stochastic 

population dynamics models, albeit one previously not studied and hence, one that brings 

novel insights into both population genetics and statistical ecology.

Engen et al. [2] published what now is considered one of the standard references to 

understand the concepts of “demographic stochasticity” and “environmental variability 

(stochasticity)” in population dynamics modeling. These authors drew their ideas from the 

stochastic processes models of Keiding [3] and Ludwig [4] which incorporated two main 

sources of stochasticity: stochasticity due to random births and deaths, known as 

demographic stochasticity; and temporal stochasticity in any of the demographic rates (e.g. 
good years/bad years for survival, etc…). Traditional ecological concepts, such as density-

dependence (the regulation of population growth rates according to the density of such 

population) were also explicitly incorporated in these models. Operationally, formulating a 

model with the so called ‘demographic stochasticity’ amounted to specify, for instance, a 

Branching Process (BP) model with a density dependent offspring distribution of 

individuals. To add temporal stochasticity into one of the demographic rates, or what came 

to be known as ‘environmental stochasticity’ [5], a temporally un-correlated random shock 

was added to the mean of the offspring distribution (often assumed to be Poisson). The result 

was a density-dependent, BP in Random Environments (BPRE) model [6]. At that time, 

various properties of simpler BPRE’s had already been worked out by Athreya and Karlin 

[7, 8].

Diffusion approximations of the BPRE models later opened the door to the study of animal 

abundance fluctuations as modeled by realistic, stochastic population dynamics models [3, 4, 

6, see Appendix 1]. Straightforward analytical expressions of the properties of the density-

dependent BPRE models (such as stopping times and quasi-extinction probabilities) are 

often too unwieldy or difficult to obtain. Their approximation by means of diffusion 

processes however, have led to a remarkable improvement in the understanding of how 

stochasticity from demographic events (births, deaths, etc.) and hence persistence, are 

affected when the rates themselves are allowed to vary randomly over time. To date, research 

in this field has yielded a plethora of results that guide the decisions and questions of 

wildlife managers, population biologists and theoretical ecologists alike [9, 10, 11, 12, 13, 

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

The diffusion approximation of ecological BP models are usually presented as a Stochastic 

Differential Equation (SDE) model [6]. The infinitesimal mean of these models usually 

corresponds to one of the well-known deterministic ODE models of population growth, such 

as the logistic equation. If only demographic stochasticity is considered (i.e., if a BP model 

in constant environments is approximated with a diffusion), then the infinitesimal variance 

of the process scales proportionally to population size, whereas including both 
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environmental and demographic stochasticities results in an infinitesimal variance with two 

terms, one proportional to population size and one that scales like the square of population 

size [see 25, and citations therein]. Finally, a density-dependent (or density-independent) 

SDE model of population abundances where the infinitesimal variance scales only like the 

square of population size has been shown to correspond to a model that assumes no 

demographic stochasticity and only environmental stochasticity. In what follows, first I 

briefly summarize the approximation of BPRE’s with diffusions. I then expose the 

relationship between Palacios and Minin [1]’s prior for the effective population size and 

stochastic demography. I conclude by showing how, unbeknownst to Palacios and Minin [1], 

their GP model brings about a novel parametric understanding of stochastic population 

dynamics.

2. Palacios and Minin’s model and Stochastic Demography

At the core of these author’s approximation is the usage of a transformation of a GP as a 

prior for the effective population size, Ne(t). GP are stochastic processes such that any finite 

sample from the process has a joint multivariate normal distribution [26]. As I explain 

below, this defining property of GPs is crucial for Bayesian inference of a quantity that 

varies through time, like Ne(t).

In the context of Bayesian statistics, the ‘nonparametrics’ labeling refers to placing priors to 

a potentially infinite number of parameters. This approach differs from the classic definition 

of nonparametric (e.g. distribution free) statistics. Palacios and Minin’s inference is 

nonparametric in the sense that they do not adopt any particular functional form for past 

changes in effective population size (like exponential or logistic growth back from past to 

present). Their contribution is novel, because instead of choosing from a set of prior beliefs 

consisting of different functional forms of time for these changes, the authors chose to 

model the prior for the past trajectory of the effective population size as a collection of 

points all drawn at random from a general stochastic process. This stochastic process then 

becomes the prior for the parameter of interest: the entire trajectory of the effective 

population size Ne(t). As Rasmussen and Williams [26] put it, a function of time f(t) can be 

loosely thought of as a very long vector where each entry in the vector specifies the function 

value f(t) at a particular time t [26]. In Bayesian Inference, the difficulty imposed by having 

to specify an infinite dimensional object like a function of time as a prior is nicely overcome 

with GPs. Because finite samples from GPs are jointly multivariate normal, eliciting a prior 

for the function of interest at a finite number of points in time (here at a collection of points 

of Ne(t)) loosely amounts to sampling from a multivariate normal distribution at those 

points. As Rasmussen and Williams [26] explain, the resulting inference gives the same 

answer as if the infinitely many other points were taken into account. In this particular case, 

following Adams et al [27], Palacios and Minin go one step beyond and use a transformation 

of a GP to elicit a flexible prior for the changing effective population size back in time, 

Ne(t).

Flexibility of a GP prior is obtained by tuning the general properties of the process. These 

properties are completely specified by the GP mean and covariance functions. Changing 

these two functions results in the specification of different GP models. One of the best 
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known GP models is the Ornstein Uhlenbeck (OU) process. As a GP, its values at multiple 

points in time have a joint multivariate normal distribution. Furthermore, sampled at regular 

discrete time intervals the OU process is an Autoregressive process of order 1 (an AR(1) 

process), a model well-known in the field of time series analysis [22]. In particular, if at the 

initial time point 0, the OU process X0 is x0, then the conditional distribution of the process 

at any other point t is normal with mean and variance given by [22, 28]

E[Xt ∣ X0 = x0] = μ − (μ − x0)e−θt,

V[XtX0 = x0] = β2
2θ (1 − e−2θt)

where μ, θ and β2 are the parameters that control the process. The covariance elements of 

the multivariate normal process at two different times t, s > 0 is given by

Cov[Xt ∣ Xt + s] = β2
2θ (1 − e−2θt)e−θs .

As time grows large, the distribution of the process attains a normal stationary distribution 

with mean

E[X∞] = μ

and variance

V[X∞] = β2
2θ .

Now, in their usage of a transformation of a GP as a prior for Ne(t), Palacios and Minin were 

exploiting the fact that a general GP can be thought to represent a vague prior. If the 

information is the data is strong enough, the vagueness in such prior would be overcome by 

the steepness of the likelihood function. A subjective Bayesian however, would seek to 

formulate a prior that embodies a biological mechanism by adopting a particular GP 

covariance structure. Under a likelihood approach, specifying a biology-based GP model 

would be a way to propose a hierarchical, state-space model that would embody a particular 

scientific hypothesis.

The point of this paper is to hypothesize and demonstrate through a simple mathematical 

development, that Palacios and Minin’s approach works very well, perhaps because un-

intentionally, the GP transformation they proposed as a prior for Ne(t) is in fact non-other 

than a special stochastic population dynamics model albeit with very deep connections with 

the theory of population biology. By exploring those deep connections I show below that 

their prior is in fact the point of entry to a plethora of biologically motivated GP priors. Such 
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view could motivate eliciting a vast array of novel hypotheses that would seek to understand 

the processes behind the temporal fluctuation in Ne. Finally, it is important to note that those 

connections with population biology are possible because of the Stochastic Differential 

Equation (SDE) representation of GP models like the OU process. Written as such, the OU 

model is a type of stochastic process known as a diffusion process [29]. In what follows I 

briefly explore those connections. The mathematical details are presented in the Appendix.

2.1. Diffusion approximation of density-dependent BP in random environments

In this section I briefly summarize the work of numerous authors, which work under 

different hypotheses and notations [30, 3, 4, 31, 6, 32, 33, 34]. This account is accompanied 

by a detailed appendix and is the basis for a later discussion of the key assumptions of the 

diffusion approximation of a BPRE, and its relation to Palacios and Minin [1]’s GP-based 

model for Ne(t). These author’s prior for Ne(t) is given by the transformation

Ne(t) = λ
1 + exp − f (t)

−1
, (1)

where f(t) is a Gaussian Process (GP). By so doing, the authors posit a priori sigmoidal, 

scaled logistic function of a GP with a restricted range between (0, λ) for 1/Ne(t). Their 

approach to build a prior is then purportedly devoid of an explicit biological mechanism 

(phenomenological). For the sake of computational tractability, the authors use a Markovian 

GP and compare, for one of their examples, the performance of Brownian motion, an OU 

process and a Brownian Motion (BM) model. In the case of the BM and OU diffusion 

processes, because a smooth transformation of a diffusion process is also a diffusion [see 29, 

Theorem 2.1 p. 173], Palacios and Minin [1]’s prior for Ne(t) is also a diffusion. The key 

point of this note is to show that the resulting diffusion prior for Ne(t) is in fact a class of 

well known diffusion processes representing density-dependent, stochastic population 

growth. Hence, Palacios and Minin [1]’s prior for Ne(t) is in fact, parametric, in the sense 

that can be made to represent different hypotheses regarding population growth, density 

dependence and the structure of stochasticity in a population.

Diffusions that model stochastic population growth are usually presented as SDEs of the 

form

dYt = m(y)dt + σ2(y)dWt,

where m(y) is the infinitesimal mean of the diffusion, σ2(y) is its infinitesimal variance and 

dWt ~ N(0, dt). Both m(y) and σ2(y) are continuous functions of y. In these models, the 

infinitesimal mean is usually given by the deterministic skeleton of an Ordinary Differential 

Equation (ODE), logistic-type model. The authors above have shown that a suitable 

diffusion approximation of a BP with a density dependent offspring distribution has an 

infinitesimal variance of the the form σ2(y) = yα, α > 0, whereas a diffusion approximating 
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a BPRE has an infinitesimal variance of the form σ2(y) = yα + (yβ)2, β > 0. Thus, if the 

mean of the offspring distribution of a BP varies randomly every generation, then the 

infinitesimal variance of the corresponding approximating diffusion scales like the square of 

population size. This scaling then represents random fluctuations in the quality of the 

environment (i.e., for instance, if there are good/bad years for reproduction), and is 

analogous to the variance scaling brought about by random, temporal changes in selection of 

population genetics models [29]. As I show in the following sections, the model for Ne(t) 
that Palacios and Minin [1] present as a transformed GP is in fact, to a very close 

approximation, a stochastic logistic-type model with only environmental fluctuations.

In ecology, a plethora of sigmoidal mathematical models describing population growth as a 

function of continuous time have been reported in the literature [e.g. 35]. In light of 

empirical data, and among many equations in a large family of models related to Malthus’ 

“law of geometric growth”, it has been shown that the Gompertz equation emerges as one of 

the best models of the growth of population size as a function of time [see citations in 36, 

22, 24]. In bacterial growth research for instance, the Gompertz model has served as a 

golden reference to which models that account for various idiosyncratic phenomena of 

microbial cultures have been compared [37]. The solution of the Gompertz ODE model 

dyt/dt = θyt[lnκ − lnyt], where κ is the carrying capacity and θ is the speed of equilibration 

is given by yt = κ exp (eθtln(y0/κ)), where y0 is the initial population size. This solution has 

an inflection point at κ/e, provided y0 is below the carrying capacity. The stochastic 

Gompertz diffusion written in SDE form is given by [22]

dY t = θY t[ ln κ − log Y t]dt + αY t + β2Y t
2dW t . (2)

The construction of this diffusion starts with a family of BP’s denoted as Zk
N , where k = 0, 

1, 2, … indexes the time and N represents some arbitrarily large population size that 

represents a key quantity in the model. It is a family of BP models because a different model 

is obtained with different values of N. This is akin to the formulation of the Wright-Fisher 

model with different (gene) population sizes. In the case of the stochastic Gompertz model 

derivation from these BP models, the N represents an unusually large population size. For 

example, [30, 3, 4, 31, 6] all use the carrying capacity of the logistic model as N (see explicit 

derivation in the appendix). The idea is then to accelerate time by N (i.e. so that N 
generations of the original process occur in one new unit of time) and scale the state by a 

factor 1/N. Writing the scaled process as Y t
N ≡ 1

N ZN([Nt]), where [Nt] is the smallest integer 

close to Nt, then our diffusion Yt is defined as limt ∞ Y t
N. Now, such approximation works 

provided

i. 1
1/N E[Y

t + 1
N

N − Y t
N ∣ Y t

N = z
N ] m(y),

ii. 1
1/N E[(Y

t + 1
N

N − Y t
N)2 ∣ Y t

N = z
N ] σ2(y),
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iii. 1
1/N E[(Y

t + 1
N

N − Y t
N)4 ∣ Y t

N = z
N ] 0

as N → ∞ and z/N → y [29], where m(y) and σ2(y) are continuous functions of y. To 

obtain the diffusion approximation, the moments of the one-step differences in the unscaled 

process Zk
N are first computed. Then, the process’ time unit and state are re-scaled, and this 

allows the calculation of the infinitesimal moments and checking if the limits above 

(conditions i–iii) hold. In the Appendix, I present as an example the steps leading to the 

construction of the stochastic Gompertz diffusion model with environmental and 

demographic stochasticity (eq. 2). Although going through these calculations is a simple 

exercise, understanding this process is crucial to understand the rest of the ideas presented 

here, and in particular, to understand the population dynamics interpretation of Palacios and 

Minin [1]. But perhaps, the main reason why I kept this explanation here is that, while 

writing, I remembered Paul making fun of any of us (and of himself) whenever the word 

“Clearly…” appeared as the connection between two equations in a a manuscript or paper. 

In talks, he would seldom miss the opportunity to explain even the most elementary math 

steps. And one had to be vigilant, because those same explanations were often the key to 

understand the punchline of his message.

2.2. The Gompertz SDE and the OU process

Let Yt be a Gompertz diffusion with environmental stochasticity and no demographic 

stochasticity [22]. Then, its infinitesimal mean and variance are given by mY (y) = θy[ln κ − 

ln y] and σY
2 (y) = β2y2 respectively. In SDE form we write

dY t = θY t[ ln κ − ln Y t]dt + βY tdW t . (3)

Let Xt = g(Yt) be a smooth invertible transformation of Yt. Then, it immediately follows that 

Xt is also a diffusion with infinitesimal mean and variance given by 

mX(x) = mY(y)g′(y) + 1
2σY

2 (y)g″(y) and σX
2 (x) = σY

2 (y )[g′(y)]2 respectively [29], where y = g

−1(x). This transformation of an SDE is known as Ito’s transformation or “Itô’s formula” 

(see [28]), and differs from what one would obtain by using R. Stratanovich’s definition of 

stochastic integrals.[28, 32, 33] clarify such differences. All the stochastic integrals in this 

paper follow It̂o’s stochastic calculus. Then, it follows that setting g(y) = ln y yields mX (x) 

= θ(μ − x), where μ = ln κ − β2
2θ , and σX

2 (x) = β2. Thus, written in SDE form the diffusion Xt 

becomes

dXt = θ(μ − Xt)dt + βdW t, (4)

which is a special OU process, one where the mean is a function of both the strength of 

return to μ, given by θ, and the scaling of the environmental variance of the original process. 
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Conversely, if we start with the OU process defined in eq. 4 and transform it using y = g(x) = 

ex, then we retrieve the Gompertz diffusion with environmental stochasticity (eq. 3). These 

results suggest that Palacios and Minin [1]’s transformation (eq. 1), when applied to an OU 

process, should result in a population growth diffusion under density-dependence and either 

environmental stochasticity, demographic stochasticity or both. This Itô transformation is 

explored in the next section.

2.3. Palacios and Minin’s prior on Ne(t) as an SDE model

Palacios and Minin’s mathematical transformation of a GP in eq. 1 can be simply written as

n = g(x) = λ
1 + exp − x

−1
,

where x is playing the role of the GP and n is the effective population size. Naming the 

transformation as g(x) is a conventional practice in stochastic calculus and is useful to apply 

It̂o’s transformation. Noting that g(x) can also be written as n = g(x) = 1
λ + 1

λ exp { − x}, then 

the transformation of the OU process in eq. 4 is obtained by computing g−1(n) = ln 1
nλ − 1

and applying Itô’s formulae to get the infinitesimal mean and variance of the Ne(t) process. 

The infinitesimal mean is

mN(n) = mX(x)g′(x) + 1
2σX

2 (x)g″(x)

= θ n − 1
λ ln 1

λn − 1 − μ + β2

2θ

(5)

= θ
λ

β2

θ − ln κ − ln (nλ − 1) (nλ − 1) . (6)

This expression is readily recognized as a translated Gompertz growth equation, one where 

the state space n is defined so that nλ − 1 > 0. The solution of the ODE 

dn/dt = θ
λ

β2
θ − ln κ − ln (nλ − 1) (nλ − 1) is also readily found to be

n(t) = 1
λ + K

λ exp e−θt ln
n0λ − 1

K , (7)
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where K = 1
κ eβ2/θ and the equilibrium state is given by n = 1

λ + K
λ . The infinitesimal variance 

of the resulting Ne(t) diffusion is σNe
2 (n) = β2

λ2 (λn − 1)2. Because the process is re-scaled to 

have a lower bound, then this form of the infinitesimal variance is immediately recognized 

as the variance of a diffusion model where the quantity nλ − 1 displays a ‘density-

dependent’, Gompertzian growth (see Figure 1) instead of logistic growth, and with added 

environmental variation (see Appendix 1). Thus, Palacios and Minin [1]’s prior can be cast 

as a fully recognizable stochastic population dynamics model, one that bears specific 

biological hypotheses regarding population size trajectories and their associated structure of 

both growth and stochasticity.

The transformed OU process according to eq. 1 has a direct connection with a class of 

discrete-time population dynamics models. This class of population trajectory models 

consists of discrete-time, density-dependent stochastic models, which Melbourne and 

Hastings [17] and Ferguson and Ponciano [23] show to be very flexible and accurately 

represent various biological systems. The connection between the OU and this class of 

models is possible because, as shown by Dennis and Ponciano [22], the OU process (eq. 4) 

has also a one-to-one transformation with the discrete-time, stochastic Gompertz model 

Dennis et al. [14] with environmental stochasticity, whose one-step changes are given by:

Nt + 1 = nt exp a + b ln nt + σZt ,

where Zt ~ N(0, 1) and Nt+1 is conditional on Nt = nt. Setting c = b + 1 and X = ln N, the 

transition probabilities of the log-transformed Gompertz process and of the OU process 

coincide by setting a = μ(1 − e−θ); c = e−θ; σ2 = (1 − e−2θ)β2/(2θ); μ = a/(1 − c) and β2 = 

−[2σ2ln c]/(1 − c2). Although the connection with both the continuous-time and the discrete-

time ecological model is a rare and particular property of the Gompertz equation, it opens 

the door to the investigation of wether other, discrete-time ecological models can be suitably 

approximated by continuous processes. If carefully treated, the topic of finding equivalent, 

continuous-time stochastic models for these ecological processes could lead to the 

construction of a biologically rich (and parametric) class of priors for Ne(t). To exemplify 

this claim, in what follows I briefly describe how thinking about these ecological models 

leads to i) a multivariate prior for a set of p jointly varying effective population sizes Ne(t)(i), 
i = 1, 2, …, p and ii) to a better understanding of the biological process that modulates the 

tempo and variance of the loss of information about past Ne sizes after a sudden change.

2.4. A multivariate prior for jointly varying effective population sizes

The stochastic Gompertz model with environmental stochasticity can readily be written in 

multivariate form to study the joint fluctuation of population abundances of a set of p species 

[38]. Importantly, the logarithm of this model also corresponds to a multivariate OU process, 

which can be subject to the same transformation used by Palacios and Minin [1] to obtain 

multivariate Ne(t) priors. According to this Gompertz model, the set of effects of each 

population in each other’s rate of change, or interaction coefficients, specified as the 

elements of the “interactions matrix” in Ives et al. [38] formulation, determines the joint 
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response and fluctuations of population trajectories in the face of environmental buffeting. 

Interestingly, this set of coefficients determines the strength of the stochasticity of the 

fluctuations, the rate of approach to (multivariate) stationary behavior and the speed of 

return to stationarity following an external perturbation of population sizes. Ives et al. [38] 

go as far as eliciting novel “stochastic stability” measures for multivariate time series of 

population trajectories. These stochastic stability measures and the corresponding 

multivariate prior for jointly fluctuating effective population sizes could find many 

applications in the study of joint gene genealogies.

2.5. A stochastic prior for Ne with a change point

The topic of parameter estimation for stochastic models with a change point is a topic that 

has been extensively treated in the statistical literature (see Ponciano et al (submitted) and 

citations therein). However, thinking of the OU-generated prior for Ne(t) as a population 

dynamics model brings novel understanding of the nature of the the biological processes 

behind the speed of change, the means, variances and covariances of a stochastic Ne(t) 
process undergoing a change. Such understanding opens the door to novel avenues of 

including meaningful biological insights regarding changes in Ne.

Consider the OU process in equation 4 undergoing a change in all of its parameters (e.g. 
from θ1 to θ2, μ1 to μ2 etc…) at some point in time. If, for instance, a drop in the stationary 

mean of the process occurs (see figure 2), then the statistical properties of the transitional 

process are expressed as a function of both, the OU parameters before and after the change. 

In particular, it is well known that the expected value of the transitional process is a 

weighted average of the stationary mean before the change and the stationary mean 

predicted by the new set of OU parameters [39]. As time increases, the weight of the pre-

change point stationary mean decreases and that of the post-change point process increases 

(see Figure 2). The weight that controls the loss of importance of the pre-change parameter 

values is e−θ2. On its own, this result bears little biological significance but upon 

transformation of the OU process to a stochastic Gompertz prior, it is readily seen that the 

weight parameter controlling the loss of relevance of the past parametrization (or history), 

turns out to be the post-change point strength of density-dependence, c2 = e−θ2 (see legend 

in Figure 2).

The realization that Palacios and Minin [1]’s prior can be thought as a population dynamics 

model opens the door to biologically relevant ways to elicit priors for changes in Ne, but 

defining these require analytical work not done to date (but see Ponciano et al, submitted). In 

statistical time series analyses and computer intensive calculations, it is customary to specify 

the form of the time series process with a change point as a partitioned vector. The value of 

the mean and variances and covariances pre and post change point are then immediately 

available numerically for their use in posterior calculations. At that point, all biological 

interpretation is lost in the computer intensive calculations. However, analytical calculations 

and careful simplifications show that the variances and covariances of the stochastic 

Gompertz SDE model similar to the Ne(t) SDE shown in equation 6 can be reduced to 

readily interpretable variance components that are also modulated by the post-change 

strength of density dependence (Ponciano et al, submitted).
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3. Discussion

In this note I show that Palacios and Minin [1]’s prior for Ne(t), when obtained as a 

transformation of an OU process, belongs to a class of well-known stochastic population 

dynamics models and as such, is well rooted in a family of ecological parametric models. In 

ecology, the different variance scalings brought about by either type of stochasticity have 

enabled the separation of the contribution of environmental and demographic processes to 

the rate of change of the population size. If we adopt the cautious interpretation of the 

effective population size as a measure of the relative genetic diversity [see 1], then using the 

population dynamics SDE models presented here would allow the specification of different 

hypotheses regarding the nature of the variance components of the rate of change of genetic 

diversity.

Palacios and Minin [1]’s prior is indeed general because any GP, Markovian or not, can be 

substituted in their transformation. Thus, the nonparametric labeling of the inference they 

propose remains valid as well as generally applicable. However, without prior information or 

guidance as to what constitutes a good candidate GP, practitioners are left with a plethora of 

possibilities. One possibility is however, to posit as priors for Ne(t) an array of models 

exhibiting all different combinations of the type of density dependence and structure of 

stochasticity in its growth rate (demographic, environmental or both).

Besides opening the door to new, obvious candidate priors (like the flexible theta-logistic 

model with both environmental and demographic variabilities), the results presented here 

also suggest novel approaches with applications in both gene genealogies inference and 

stochastic population dynamics modeling in ecology [23]. One of them is the formulation of 

a multivariate prior for jointly varying effective population sizes. Another one is the 

formulation of a prior for Ne(t) with change points, where the strength of the changes is 

modulated by a parameter, which in the population dynamics world represents the strength 

of density-dependence, or the strength of auto-regulation of the state variable of interest. In 

Ecology, this auto-regulation is given by intra-specific competition. The equivalent 

genealogical interpretation of this parameter would be that parameter which self-regulates 

the measure of genetic diversity.

The work presented here also reveals a first-principles justification of using the OU process 

to model the evolution of a quantitative trait. This process has been extensively used to 

model the evolution of a quantitative trait, or as it is often the case, the logarithm of a 

quantitative trait Butler and King [39], Pennell and Harmon [40]. Considerable amount of 

work is devoted to improve and expand this model capabilities with phenomenological 

modifications to the original process [e.g 41], and aiming to understand its benefits and 

limitations. It is in that respect that the connection presented here between Palacios and 

Minin [1]’s transformation of the OU process and stochastic population dynamics brings 

novel understanding into the evolution of a quantitative trait: because exponentiating an OU 

process results in a stochastic Gompertz model with environmental noise (stochasticity) and 

no demographic stochasticity, by modeling the logarithm of a trait with the OU process, a 

biologist is in fact hypothesizing that the trait, in its original scale grows over evolutionary 

time in a Gompertz-like manner (i.e., ‘size-dependent’) and with a random, epochal rate of 
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change. Furthermore, by excluding demographic stochasticity this model is stating that the 

total trait size is composed of equal, non-random partitions. Including ‘demographic’ 

stochasticity would amount to hypothesizing that the trait is composed by a sum of random, 

unequal contributions at any point in time.

The Itô transformation of the stochastic Gompertz model with environmental stochasticity 

also reveals why it is difficult to tease apart the parameter estimates θ, μ, β2 of the OU 

process, when used in contexts like modeling the evolution of a trait [42]. The parameter μ 
in eq. 4 is in fact, itself a function of the other two parameters and the carrying capacity κ of 

the process in its original scale. If what is being modeled is the logarithm of a quantitative 

trait, then the carrying capacity denotes a limiting size or constraint of the value of the trait. 

In fact, thinking of the branching process formulation, and because the model has no 

demographic stochasticity, this model is implicitly hypothesizing that a trait as a whole is 

conformed by the sum of individual contributions that are identical in size, and eventually 

converge to a given biological constrained size. A model for the evolution of a trait that 

includes both the analogous of demographic stochasticity and environmental stochasticity is 

thus, easily conceivable as a reasonable alternative to the OU process. Other forms of 

‘density-dependence’ besides Gompertz can be considered too.

It could be argued that simple logistic-type models are themselves phenomenological 

descriptions of population growth dynamics, and thus that, the SDE Gompertz model with 

environmental stochasticity that results from the transformation (eq. 1) is itself 

phenomenological and hence, non-parametric. However, a full body of research in 

mathematical biosciences exists illustrating “first-principles” derivations of logistic-type 

models [see for instance 43].

Using well-known concepts of stochastic population dynamics, here I demonstrate that in 

fact, Palacios and Minin’s GP model is a special case of a population growth model with 

density dependence and environmental stochasticity. One of the main advantages of the 

Bayesian approach is the ability to include meaningful a priori information to conduct 

inference. However, eliciting priors is by far one of the most challenging problems that 

practitioners in population genetics and ecology face. It is in that sense that I hope that the 

parametric interpretation brought about by this contribution proves to be a useful, 

constructive critique. Finally, although the OU process has been shown to be insufficient and 

a current need of new parametric models has been expressed [40], its connection with 

stochastic, logistic-like growth pointed in this note opens the door to a plethora of other 

models for the evolution of a trait. Thus, Palacios and Minin [1]’s transformation has deep 

implications for the advancement of other areas of modeling in evolution.
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Appendix A

Appendix A.1. Diffusion approximation of an ecological density-dependent 

branching process in random environments

Let Zk be the total population size at time k and Bi be the (density-dependent) offspring 

distribution such that pj(z) = P(Bi = j|Zk = z). According to the standard definition of a 

branching process, we let the population size in generation n + 1 be given by 

Zk + 1 = ∑i = 1
Zk Bi. Let also denote the conditional mean and variance of the offspring 

distribution as E[Bi|Zk = z] = h(z) and V [Bi|Zk = z] = v(z) respectively. The idea behind the 

diffusion approximation is to scale both the process by some reference population size and 

then time. Once both the process and the original time unit have been re-scaled, in order for 

the diffusion approximation to hold, the first and second moment of a small increment in the 

process have to converge to continuous functions of the scaled process and the new time 

scale (see [29] eqs. 1.2 and 1.3 page 159 and eqs. 1.21 and 1.22 page 169). These two 

continuous functions are then the infinitesimal mean and variance of the diffusion process. 

The first and second moment of a one-step change in population size for the branching 

process above is given by:

E[ΔZk ∣ Zk = z] = E[(Zk + 1 − Zk) ∣ Zk = z] = E[ ∑
i = 1

z
(Bi ∣ Zk = z)] − z = z[h(z) − 1],

E[(ΔZk)2 ∣ Zk = z] = E[(Zk + 1 − Zk)2 ∣ Zk = z] = Var ∑
i = 1

z
(Bi ∣ Zk = z) − z

+ E ∑
i = 1

z
(Bi ∣ Zk = z) − z

2
= zv(z) + z(h(z) − 1) 2 .

(A.1)

Once these moments are computed, we accelerate time by N (i.e. so that N generations of 

the original process occur in one new unit of time) and scale the state by a factor 1/N. Recall 

that the scaled process is denoted as Y t
N ≡ 1

N XN([Nt]), where [Nt] is the smallest integer close 

to Nt. With the process re-scaled, in order to find the infinitesimal mean and variance of the 

approximating diffusion, if it exists, we compute the infinitesimal moments and limits 

presented as conditions i–iii in the main text. For the first condition we get that

1
1/N E Y

t + 1
N

N − Y t
N ∣ Y t

N = z
N = 1

1/N E Z([Nt] + 1)
N − Z([Nt])

N
Z([Nt])

N = z
N

= N
N E Z([Nt] + 1) − Z([Nt]) Z([Nt])

N = z
N

= N × z
N (h(z) − 1) .

(A.2)
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[3, 4, 6] all require that small changes in the scaled process occur in small time increments 

(i.e. that the offspring mean is close to replacement) because they set h(z) = 1 + 1
N μ( z

N ). Thus, 

the deviations from perfect replacement are of the order 1
N . Their function μ(x), on the other 

hand, takes the form of the per capita growth rate given by any deterministic, single species 

ODE model with density dependence. Assume, for instance, that population growth 

conforms to the Gompertz equation shown in the main text. Then μ(x) = θx[log κ − log x]. 

Substituting this expression for the rescaled offspring mean in eq. A.2 and simplifying we 

get that 1
1/N E Y

t + 1
N

N − Y t
N ∣ Y t

N = z
N = z

N μ z
N yμ(y) = m(y) as N → ∞ and z/N → y. 

Thus, re-scaled first difference moments converge to a continuous function of y, the 

infinitesimal mean m(y) of the diffusion. Under the hypotheses imposed by the form of h(z), 

the infinitesimal mean of the diffusion can be made equal to the deterministic trend of any 

single species ODE model. This fact opens the door to the possibility of specifying a wide 

array of biological hypotheses in the form of logistic-like population growth. The second 

condition becomes

1
1/N E Y

t + 1
N

N − Y t
N

2
∣ Y t

N = 1
N = 1

1/N E Z([Nt] + 1) − Z([Nt])
N

2 N([Nt])
N = z

N

= N × 1
N2 (zv(z) + (z(h(z) − 1))2)

= z
N v(z) + 1

N
z
n μ z

N
2
,

(A.3)

which converges to yd(y) as N → ∞ and z/N → y, where following [3, 4] and [6] we 

denote v(z) with the unspecified function of the scaled process, d( z
N ). Thus, the infinitesimal 

variance of the diffusion is σ2(y) = yd(y). Therefore, both the first and the second moment 

converge to finite functions of y and t. The simplest assumption regarding the general 

function d(y) is to make it equal to a constant, say α > 0, which we will adopt in what 

follows for simplicity. [44] formally proved the convergence to a diffusion of a BP so 

defined. Then, the infinitesimal variance will be written as yα. Besides these two conditions, 

it is necessary for higher order moments to be negligible, i.e. that

lim1
N 0

1
1/N E[ Y

t + 1
N

N − Yt
N

j

∣ Yt = x] = O[(1/N) j/2 − 1], j > 2,

which has been done formally elsewhere [3, 4, 44]. Adding environmental stochasticity 

amounts to adding random fluctuations to the mean of the offspring distribution. 

Operationally, this is achieved by adding an iid process denoting random environmental 
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fluctuations at time k. We denote this process with Wk, and let E(Wk) = 0 and V (Wk) = 1, 

and assume that the Wk are independent from the Zm, m < k. Then, the probabilities of the 

offspring distribution are defined as

p j(z, w) = P(Bi = j ∣ Zk = z, Wk = w) .

Again, h(z,w) and v(z,w) are the conditional mean and variance of the offspring distribution. 

To get the marginal mean and variance, using conditional expectation we average the mean 

and the variance of the offspring distribution over the environmental process. For the 

variance, authors to date have written E[v ∣ Zk = z] = E[E[v ∣ Zk = z, Wk]] = d z
N . This is the 

expected value of the variance of the offspring distribution over the environmental process. 

This is then, by definition, the average demographic variance. As for the mean, adding the 

environmental fluctuation results in its conditional form being written as 

h(z, w) = 1 + 1
N μ z

N + 1
N e z

N w, where the fluctuations due to the environment are of order 

1
N  (a sum of a large number of iid random variables) and e(.) is a general function of the 

scaled process. As with the function d(.) above, the simplest assumption is to set e(z/N) 

equal to a constant, say β2. The diffusion approximation of a BPRE has then been found by 

computing the infinitesimal mean and variance of the re-scaled process as in eqs. A.2 and A.

3. For the first moment, and averaging over the environmental process we get that:

1
1/N E E Y

t + 1
N

N − Y t
N Y t

N = z
N , W t = NE z

N (h(z) − 1) = z
N μ z

N yμ(y) = m(y), (A.4)

whereas for the second moment

1
1/N E E Y

t + 1
N

N − Y t
N

2
Y t

N = z
N , W t = N 1

N2 E[zv(z) + (z(h(z) − 1))2]

= z
N v(z) + z

N
2
e z

N yd(y) + y2e(y) .

(A.5)

For simplicity, we assume that the functions d(x) and e(x) are constants equal to α and β2 

respectively. Authors that have adopted this constance assumption, like [6] have implicitly 

stated that only the mean of the offspring distribution is affected by the environmental 

process. This assumption, however, has been recently been lifted by Ferguson and Ponciano 

[24], who also showed under which conditions the extinction probabilities predicted by the 

model with a constance assumption are meaningfuly under or over estimated. Finally, note 

that in the equation for the environmental variance, yα is the expected value of the variance 

of the offspring distribution: this term specifies on average, how much does the offspring 
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distribution varies. The term y2β2 in turn represents the variance of the expected value of the 

offspring distribution: it quantifies how much does the mean of the offspring distribution 

changes over time.
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Figure 1. 

The stochastic Gompertz growth generated by the prior Ne(t) = 1
1 + exp − X(t)

−1
, where 

X(t) is the OU process presented in equation 4. Ne(t) is the diffusion with infinitesimal mean 

given by equation 6. The solid black line is the equivalent translated Gompertz trajectory 

(see equation 7). The horizontal dashed line corresponds to (1/λ) + (1/(κλ)) exp(β2/θ). 

Values of the parameters used in the plot are β2 ≈ 0.002630, κ = 3.9140, θ = 0.2876, Ne(0) = 

0.0678. This plot was done by first simulating trajectories according to the OU process 

(equation 4), applying the prior transformation to these and then overlaying the infinitesimal 

mean calculation from equation 6 (as well as equation 7) as a check of calculations for the 

SDE transformation.
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Figure 2. 
The stochastic Gompertz change-point process and the half life of the change in the mean of 

the dynamical process, t̄ = ln(1/2)/ln c2. Plotted are 5 realizations of the Stochastic Gompertz 

model of population abundance under a change-point process. Dotted lines mark the process 

mean before the breakpoint (μ1), the mean after the breakpoint (μ2), and the arithmetic 

average of both means ((μ1 + μ2)/2). The time at which such arithmetic average is reached is 

the half life of the process, t̄. As noted in the text, c2 = e−θ2 corresponds to the post-change 

point strength of density dependence.
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