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Abstract

Background—Real-time detection of drinking could improve timely delivery of interventions 

aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods 

are burdensome or impractical.

Objective—To evaluate whether phone sensor data and machine learning models are useful to 

detect alcohol use events, and to discuss implications of these results for just-in-time mobile 

interventions.

Methods—38 non-treatment seeking young adult heavy drinkers downloaded AWARE app 

(which continuously collected mobile phone sensor data), and reported alcohol consumption 

(number of drinks, start/end time of prior day’s drinking) for 28 days. We tested various machine 

learning models using the 20 most informative sensor features to classify time periods as non-

drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (≥4/5 

drinks per occasion for women/men).

Results—Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk 

drinking episodes were reported. A Random Forest model using 30-minute windows with 1 day of 

historical data performed best for detecting high-risk drinking, correctly classifying high-risk 
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drinking windows 90.9% of the time. The most informative sensor features were related to time 

(i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen 

duration), and communication (e.g., call duration, typing speed).

Conclusions—Preliminary evidence suggests that sensor data captured from mobile phones of 

young adults is useful in building accurate models to detect periods of high-risk drinking. 

Interventions using mobile phone sensor features could trigger delivery of a range of interventions 

to potentially improve effectiveness.
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1. INTRODUCTION

Binge drinking, defined as consuming ≥4/5 drinks (women/men) per occasion, is a serious 

but preventable public health problem, with young adults disproportionately affected [1]. 

Digital interventions are a promising strategy to reduce excessive alcohol consumption, with 

most evidence for effectiveness in young adults [2, 3]. Still, effects of digital interventions 

are typically small [4, 5], suggesting that designs are not optimized.

To improve longitudinal engagement and effects of digital interventions, the right support 

material should be delivered to the right person at the right time [6]. Therefore, a digital 

intervention aimed at reducing binge drinking should deliver support “in the moment”, that 

is, in the context of a drinking episode to enhance motivation for setting and keeping 

drinking limits, and to reduce the likelihood of negative alcohol-related consequences (i.e., 

reinforce explicit intentions). To accomplish these goals, it is critical that a digital 

intervention be able to detect when the person is drinking.

Recent developments in sensor miniaturization provide the ability to collect multimodal data 

continuously from mobile phones with minimal participant burden. Continuous smartphone 

sensing can capture time-stamped data elements that can be used to track a person’s daily 

routine in line with a computer science-based “context aware” theoretical framework [7]. 

Phone sensor data has been shown to be useful in inferring other states such as mood [8]. 

Still, it remains unknown whether phone sensors could be useful in detecting periods of 

drinking.

In previous work [9], we described the computer engineering methods involved in using 

phone sensors for detection of drinking periods. In this study, we expand upon this work by 

describing how sensor features differ between periods of high-risk (e.g., binge) drinking, 

low-risk drinking, and non-drinking. We hypothesized that phone sensor features related to 

time [10], movement patterns [11, 12], communication [13, 14], and psychomotor 

impairment [15–17] would contribute to detection models. We also examined the time it 

takes for machine learning models to reach stability in accuracy, and differences in model 

performance on weekends versus weekdays. We discuss implications of our findings for 

delivery of just-in-time mobile interventions.
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2. METHODS

This prospective study recruited a convenience sample of young adults with hazardous 

drinking to provide phone sensor and self-reported measures of alcohol consumption for 28 

consecutive days. All participants provided informed consent and were offered resources for 

alcohol treatment. This study was approved by the Institutional Review Boards at the 

University of Pittsburgh and Carnegie Mellon University.

2.1 Participants

Recruitment occurred through an Emergency Department (ED) and college campus, using 

similar methods. From the ED, 51 medically stable patients who were not seeking treatment 

for substance use, not intoxicated, and who were going to be discharged to home were 

screened for eligibility. At the college campus, 17 students who responded to study flyers or 

a Craigslist posting were screened for eligibility. At both sites, individuals who were 

between the ages of 21–28 years of age, reported recent hazardous alcohol consumption 

based on Alcohol Use Disorder Identification Test for Consumption (AUDIT-C) score of ≥3 

for women or ≥4 for men [18] and at least one high risk drinking occasion (≥4/5 drinks for 

women/men) on any day in the prior month were eligible for participation. We excluded 

those who did not own an iOS or Android phone. A total of 38 participants (21 ED patients, 

17 students; see Table 1) met enrollment criteria and completed informed consent.

2.2 Procedures

Enrolled ED patients completed a brief questionnaire and downloaded the AWARE app [19] 

to their phone in the ED. Enrolled college students presented to an on-campus office to 

complete the same questionnaire and download the AWARE app. All participants were 

instructed to keep the AWARE app open on their phone and to refrain from any non-drinking 

substance use (excluding cigarette use) during the study period. During enrollment, 

participants were provided with the definition of a standard drink (e.g., 12 oz. can of beer or 

5 oz. glass of wine or 1.5 oz. 80-proof liquor) as well as an illustration of a typical standard 

drink for common beverage types: beer, wine, liquor. From the day after enrollment through 

28 days, participants were sent a text-message (EMA) at 10am: “Did you drink alcohol 

yesterday?” If they reported drinking, they received the following text queries: 

““Approximately what time did you start drinking?”, “Approximately what time did you 

stop drinking?”, and “How many standard drinks did you have during this period?” If there 

were multiple drinking episodes in a day, participants were instructed to report the episode 

when the largest number of drinks was consumed. All other potential drinking periods that 

day were coded as non-drinking. Participants received $20 for completing the baseline 

survey and $2 for each day they completed EMA.

2.3 AWARE App

When downloaded, AWARE app [19], for iOS and Android, places an icon on the phone 

screen which, when opened, automatically begins recording sensor data without requiring 

further participant interaction. When AWARE is opened for the first time, a unique IDwas 

randomly generated for research purposes. AWARE temporarily stored the sensor data on a 

participant’s device and then synchronized this information to a university server over a 
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secure connection via Wi-Fi every 30 minutes, when available. We configured AWARE to 

collect 56 sensor features related to time (e.g., day of week, time of day), movement patterns 

(e.g., accelerometry, rotation), communication (e.g., phone calls, texts), and psychomotor 

impairment (e.g., keystroke speed; available for Android phones only)).

2.4 Measures

2.4.1 Baseline Questionnaire—Demographics. Participants reported age, sex, race, 

ethnicity, and education. Drug use. NM-ASSIST [20] assessed frequency of past month drug 

use (e.g., tobacco, cannabis, opiates). Alcohol Consumption. AUDIT-C [18], includes 3 

items on drinking quantity and frequency in the past 3 months. AUDIT-C score ≥4 for men, 

and ≥3 for women is considered positive [21].

2.4.2 Event-Level Alcohol Use—We used daily text message reports of alcohol use to 

label time periods (i.e. windows) as non-drinking, low-risk (1 to 3/4 drinks per episode for 

women/men), and high-risk (≥4/5 drinks per episode for women/men).For example, if a 

female reported consuming 5 drinks on the prior day, starting at 5pm and ending at 8pm, the 

time between 5pm-8pm was labeled “high-risk drinking”, whereas all other times that day 

were labeled “non-drinking” (Supplemental Figure 1). We labeled the time after drinking 

offset as “non-drinking” although blood alcohol concentration may still be elevated, given 

that activities likely differ between active drinking and end of drinking.

2.5 Analyses

2.5.1 Protocol Adherence and Data Preparation—We measured two main 

components of protocol adherence: 1) completion of daily text queries, and 2) time running 

the AWARE app on their phone. We excluded individuals who did not provide ≥1 report of a 

day with no drinking and ≥1 report of a day on which alcohol was consumed over the 28 

days (n=2); or manually disabled sensor plug-ins, closed the AWARE app, or turned off the 

smartphone for >80% of days (n=6). If there were brief time periods (<1 hour) when sensor 

data was not captured, we interpolated average values based on neighboring data. The non-

drinking, low-risk drinking, and high-risk drinking episodes with sensor data were first 

divided into non-overlapping 5 minutesegments which were used to extract sensor features. 

The analyses examined 30-minute, 1-hour, and 2-hour “windows”, which aggregated (e.g., 

averaged for numerical values) sensor data over the relevant 5-minute segments. As an 

example outcome of interest, using the 30-minute window, there were 12,442 total segments 

across participants, which were labeled “non-drinking” (n=11,798), “low-risk drinking” 

(n=243), or “high-risk drinking” (n=401).

We created three non-overlapping datasets using all of the coded segments across 

participants (e.g., N=12,442 coded segments using 30-minute window size). The “training” 

dataset (60% of coded segments) was used to select features and build the initial model, 

“cross-validation” dataset (20%) optimized the initial model (e.g., modified feature 

weighting to optimize performance), and “test” data (20%) evaluated the optimized model’s 

performance. To reduce imbalances that can bias model building due to under-represented 

events (i.e., low- and high-risk drinking), in the training dataset, we used Synthetic Minority 

Over-Sampling Technique (SMOTE) [22]. For example, prior to SMOTE, the training 
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dataset (30-minute window) included 7078 non-drinking, 145 low-risk drinking, and 240 

high-risk drinking segments. After SMOTE, non-drinking segments did not change 

(n=7078), whereas low-risk increased to 1160, and high-risk segments increased to 960, 

reducing imbalance.

2.5.2 Model Building—For both raw sensor data (e.g., number of calls) and processed 

sensor data (e.g., min/max, standard deviation), we ran correlation and Information Gain 

[23] analyses to identify the 20 most informative features in the “training” dataset. We used 

the “cross-validation” dataset to select the top 20 features and to optimize the model built 

with the training dataset. Using only the top-20 features identified in training and cross-

validation datasets, we evaluated the following machine learning classifiers on the “test” 

dataset: C4.5 decision tree, Bayesian Network (BN) and Random Forest (RF) for each 

window size (30-minutes, 1-hour, 2-hours). Multiple methods evaluated model performance 

[24]: accuracy, Kappa, F-score, and Receiver Operating Characteristic (ROC) [9]. We report 

Kappa and ROC as they provide good representation of results across methods.

Using the “test” dataset, we also determined whether phone sensor data collected before 

drinking onset (1-, 2-, 3-days; “historical sensor data”; Supplemental Figure 1) improved 

model performance, hypothesizing that there may be changes in patterns of activity that 

routinely precede alcohol use. We then evaluated model performance for detecting drinking 

on weekends (Friday to Sunday) versus weekdays (Monday to Thursday), based on research 

showing that drinking on these days involve different processes [25]. Finally, we compared 

model performance using (1) only time of day and day of week, and (2) all top-20 sensor 

features against a naïve model (ZeroR) that predicts the most frequent (largest N) class. We 

also explored the amount of time in days for the best performing model to stabilize (i.e., 

accuracy does not change beyond a small threshold, by adding more additional training 

data). This is a measure of how many days of data must be collected to build a detection 

model for a new individual. We also examined whether single sensor features (e.g., number 

of calls), in addition to time of day and day of week, improved accuracy of the best 

performing model.

3. RESULTS

3.1 Protocol Adherence: Daily Query and Sensor Data

3.1.1 Adherence rates—To the 38 enrolled, we sent out a total of 1064 daily surveys, 

among which 764 (71.8%) were completed. Completion rates decreased from 87.9% on day 

1 to 53.9% by day 28, with the greatest decline in the last week (Figure 1). Sensor data was 

captured on 57% of the 28 days. Across the 30 participants in the analyzed sample, who did 

not differ significantly in baseline attributes from the 38 enrolled, there were 207 days on 

which no drinking was reported, 41 days on which a low-risk drinking episode was reported 

and 45 days on which a high-risk drinking episode was reported where both sensor and 

drinking data were available. Participants reported an average of 6.9 (SD=6.7) non-drinking, 

1.4 (SD=1.9) low-risk drinking, and 1.5 (SD=1.6) high-risk drinking episodes. 22 

participants provided at least 1-week of data, 20 provided at least 2-weeks of data, and 10 

provided at least 3 weeks of data.
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3.1.2 Drinking episode characteristics—Mean number of drinks consumed during an 

entire low-risk drinking episode was 2.2 (SD=1.0), and during a high-risk drinking episode 

was 7.6 (SD=2.7), with a maximum of 15 drinks. Low- and high-risk drinking episodes were 

distributed across participants (Supplementary Figure 2). Regarding drinking onset, 41.2% 

of drinking episodes commenced between 8–9 pm and 40.7% stopped after midnight. 

Almost half (47%) of low-risk drinking episodes occurred on weekends whereas 69.7% of 

high-risk drinking occurred on weekends (Figure 2).

3.2 Correlation of Sensor Features with Drinking

Using 1-hour windows, drinking categories were significantly correlated with time of day 

(r=0.11) and day of week (r=0.06), in addition to 9 other sensor-based features measuring 

phone usage (e.g., screen interaction, r=0.07) and movement features (e.g., transitions 

between walking and in vehicle; r= 0.03). Many of these correlations increased when adding 

historical data of 23-, 47- and 71-hours prior to that categorized hour.

3.3 Information Gain and Descriptive Statistics for Select Sensor Features

Information Gain, using 1-hour windows, applied to the “training” dataset identified the top 

20 sensor features associated with drinking cateogires [9]. During high-risk drinking 

windows, there were higher activity levels, and higher change in activity levels, yet lower 

distance travelled compared to low-risk and non-drinking (Table 2). There were also longer 

average periods of screen duration and lower frequency of phone unlocking during high-risk 

drinking windows compared to low-risk and non-drinking windows. Regarding 

communication features, there were longer and more missed calls during high-risk drinking 

windows, compared to low-risk drinking windows. For typing features, there was greater 

time between keypresses, more text deletions and insertions, and greater use of happy 

emoticons during high-versus low-risk drinking, and non-drinking windows.

3.4 Machine Learning Model Performance

3.4.1 Best performing model and inclusion of “historical” sensor data—Among 

the machine learning models tested, Random Forest (RF) generally performed best. The 

following results are for RF applied to “test” dataset. The best performing model to detect 

drinking overall used RF, 30-minute windows and 3-days of historical data, which had a 

Kappa of 0.804 and ROC of 0.961, correctly classifying non-drinking 98.5% of the time, 

low-risk drinking 70.2% of the time, and high-risk drinking 84.4% of the time.

The best performing model to detect high-risk drinking, however, used RF, 30-minute 

windows and 1-day of historical data. In this model, the “1-day” (including the current 30-

minute window being classified) corresponds to 23.5 hours of historical data in 30-minute 

windows, for a total of 47 windows, plus the 30 minute window being evaluated. The total 

number of features in this model was 48 windows * 20 top-features = 960 total features. In 

this model, Kappa increased to 0.842 and ROC to 0.976 (relative to RF using 30-minute 

windows and 3-days of historical data), correctly classifying non-drinking 97.9% of the 

time, low-risk drinking 68.3% of the time, and high-risk drinking 90.9% of the time. In this 

optimal model to detect high-risk drinking, the 9.09% of actual high-risk drinking segments 
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that were misclassified (n=7), and the 31.7% of actual low-risk drinking segments that were 

misclassified (n=13), were all incorrectly classified as non-drinking (Supplemental Table).

3.4.2 RF model performance in detecting weekday versus weekend drinking—
Using RF to detect both weekend and weekday drinking using 30 minute windows and 3-

days of historical data in the “test” dataset, performance was slightly lower for detecting 

weekday (Kappa=0.728, ROC=0.951) compared to weekend drinking (Kappa=0.832, 

ROC=0.991). Based on this RF model, high-risk drinking was correctly classified 81.8% of 

weekdays versus 80.4% of weekends, whereas low-risk drinking was correctly classified 

35.3% of weekdays versus 87.1% of weekends.

3.4.3 RF models using time of day/day of week and single sensor feature to 
detect drinking—Comparing the performance of RF models (30-minute window, 3-day 

historical data) in the “test” dataset using only time of day and day of week, and all top-20 

sensor features against a naïve model (ZeroR), the RF model using all top-20 features 

showed a relative improvement in accuracy of around 6% compared to a RF model using 

only time of day and day of week (Figure 3). It took approximately 10 days for the RF 

model (30-minute window, 3-day historical data) to reach a stable accuracy (around 96%) 

regardless of what subset we chose for training. Finally, when examining whether individual 

sensor features, in addition to time of day and day of week, improved model performance, 

for the RF model, 30-minute window without any historical data, only time between 

keypress improved performance, albeit slightly. The two sensor features that independently 

improved performance in a RF model, 30-minute window with 1-day of historical data, were 

number of incoming calls and screen interaction duration.

4. DISCUSSION

Preliminary evidence suggests that sensor data captured from mobile phones of young adults 

are useful in building accurate models to detect periods of high-risk drinking. Our study 

design has several noteworthy strengths. First, we recruited a diverse sample of young adults 

from two different settings that are both key points of contact for providing brief alcohol 

interventions [2, 5]. We longitudinally captured onset and offset of prior day’s drinking 

using daily recall, minimizing potential reporting biases [26]. Our outcomes classified high- 

and low-risk drinking windows separately, since type of behavioral support provided for 

these events differ. We tested several machine learning models, varying time windows for 

detection and amounts of historical data to detect low- and high-risk drinking. Finally, we 

examined differences in accuracy of models for detecting weekend versus weekday drinking.

We found that time of day and day of week alone resulted in accuracy of 90% in detecting 

low- and high-risk drinking, which is consistent with research examining timing of young 

adult drinking [10]. Adding other phone sensor features (e.g., change in activity) resulted in 

a 6% increase in accuracy, which represents 1 out of 16 (on average) times when we 

improve classification. In this regard, important phone sensor features to detect drinking 

included movement (activity change), device usage (e.g., screen duration), communication 

(e.g., call duration) and typing (speed/errors). There seemed to be more change in activities 

(e.g., walking, in a vehicle) associated with high-risk drinking. Also, prior to high-risk 
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drinking, there were more incoming calls and longer screen interactions, which fit with the 

social-ecological model of alcohol use [11, 12], in which drinking and making plans to drink 

are social activities.

Within high-risk drinking windows, we found increased time between keystrokes, which is 

in line with a pharmacological model of the effects of alcohol on psychomotor functioning 

[15, 16]. Alternatively, these sensor-based features could simply reflect, for example, 

distractions in social settings, or some combination of the acute effects of alcohol on 

psychomotor functioning and environmental context [27].

Based on the accuracy of our optimized model, we can detect high-risk drinking periods 

with 90% accuracy, within 30 minutes after drinking onset, using data collected over a 

relatively short time (~10 days). Thus, for 9 out of 10 high-risk drinking periods, we 

theoretically have the potential to intervene early during a drinking episode (e.g., within 30-

minutes after drinking onset) to enhance motivation toward setting drinking limits and/or 

intervene later to reduce the likelihood of negative alcohol-related consequences. Example 

interventions include delivering supportive messaging, or contacting supportive friends or 

family.

Despite high accuracy, the model also generated false classifications. As one day is 

composed of forty-eight 30-minute windows, a 2.1% false positive rate means around one 

“30-minute window” where an individual was not drinking was estimated as drinking per 

day. A 9.1% false negative rate means that around four “30-minute windows” per day when 

an individual is in a high-risk drinking episode would be misclassified as non-drinking. To 

minimize intervening during non-drinking windows, without missing any potential drinking 

occasion, a program could send an electronic (e.g. text message) query to individuals to 

verify at that moment whether or not they are drinking. Missing high-risk drinking events 

completely is unlikely given that consecutive misclassification over two 30-minute windows 

is probabilistically rare.

This pilot study is limited by the small sample size and by the amount of missing sensor 

data. Although we did not systematically record reasons for missing sensor data, feedback 

from participants who stopped the AWARE app involved concerns about privacy, data usage, 

or perception of battery drain. Generalizability of results may be limited, since participants 

who did not provide adequate data for analysis were excluded, and these excluded 

individuals would not be eligible for interventions that rely on the detection model. In 

addition, we used self-report of alcohol use, which has demonstrated reliability and validity 

[28], but may be subject to bias. We only coded the episode of heaviest drinking on a given 

day if there were multiple drinking episodes, which could affect model accuracy (i.e., result 

in more false negatives). Future work could use some form of alcohol sensor (e.g., 

WrisTAS) to validate findings, and to examine number and pacing of drinks consumed. 

Machine learning models, which are data-driven, do not provide explanations regarding why 

a feature is related to an outcome, but may have potential to inform more dynamic theories 

of behavior [29]. Finally, although we used training, cross-validation, and testing data sets, 

we did not externally validate our model.
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5. Conclusions

Phone sensors can provide useful data for use in machine learning models to accurately 

detect high-risk drinking in young adults. Although these results need to be replicated in a 

larger sample, next generation mobile interventions could consider using phone sensor 

features analyzed in real-time by machine learning algorithms to trigger just-in-time 

behavioral support.
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Highlights

• Mobile phone sensor data is useful in building accurate models to detect 

periods of drinking.

• Useful sensor features relate to activity/movement, phone use/calls, and 

keystrokes.

• Interventions could use phone sensor features to trigger remote support when 

it is most needed.
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Figure 1. 
Daily Query Response Rates Over 28 Study Days
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Figure 2. 
Drinking Episodes by Day of Week
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Figure 3. Cumulative Accuracy of Random Forest Models (30-minute window, 3-day historical 
data) Over 28 Days
X-axis represents number of days (maximum 28 days), Y-axis represents accuracy of 

classifying non-drinking, low-risk, and high-risk drinking. The Red and Blue lines represent 

results from Random Forest (30-minute window, 3-days of historical data) model, since it 

had the best overall performance in classifying non-drinking, low-risk, and high-risk 

drinking. Red line: only top-20 features were used for classification. Blue line: only 2 

features, time of day and day of week, were used for classification. ZeroR model (dashed 

line) is a naïve model that just predicts the most frequent ‘N’ class. The graph depicts 

cumulative accuracy up to a given day, and not accuracy per day. Cumulative accuracy was 

determined by incrementally training models on successively larger sets of data. The figure 

shows higher classification accuracy (i.e., non-drinking, low-risk drinking, high-risk 

drinking) when using the top-20 features (red line) compared to the model using only time 

of day and day of week (blue line).
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Table 1

Sample Characteristics

Characteristics ED Patients
(n=21)

College students
(n=17)

Age, mean (SD) 23.1 (1.7) 23.9 (1.9)

Female sex, n (%) 7 (33.3) 8 (47.1)

Race White 8 (38.1) 4 (23.5)

Black 11 (52.3) 1 (5.9)

Asian 1 (4.8) 12 (70.6)

Other 1 (4.8) 0

Highest education < High school 2 (9.5) 0

High school grad. 5 (23.8) 1 (5.9)

Some college 11 (52.4) 3 (17.7)

College grad. 3 (14.3) 13 (76.4)

AUDIT-C score 6.0 (2.2) 6.2 (3.4)

Other drug use, last month Daily or almost daily tobacco 2 (9.5) 2 (11.8)

Any cannabis 12 (57.2) 6 (35.2)
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Table 2

Mean Values per 1-Hour Window of Select Sensor Features by Drinking Classification

Features Non-drinking Low-Risk Drinking High-Risk Drinking

Movement Features

 Activity level 4.98 3.67 5.75

 Count of changes in activities 5.71 5.72 8.24

 Distance traveled (meters) 43.3 56.27 28.35

Phone Usage Features

 Screen duration (secs) 23.19 16.32 57.27

 Phone screen unlocks (per min) 13.41 3.24 1.48

Communication Features

 Duration of outgoing calls (secs) 29.02 5.13 11.93

 Time between keypress (msec) 513.63 502.16 743.35

 Letter deletions 14.75 11.58 16.30

Note: Information Gain Analyses using 1-hour window
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