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Gliomas are the most common primary brain tumors, and the objective grading is of great importance for treatment. This paper
presents an automatic computer-aided diagnosis of gliomas that combines automatic segmentation and radiomics, which can
improve the diagnostic ability. The MRI data containing 220 high-grade gliomas and 54 low-grade gliomas are used to evaluate
our system. A multiscale 3D convolutional neural network is trained to segment whole tumor regions. A wide range of radiomic
features including first-order features, shape features, and texture features is extracted. By using support vector machines with
recursive feature elimination for feature selection, a CAD system that has an extreme gradient boosting classifier with a 5-fold
cross-validation is constructed for the grading of gliomas. Our CAD system is highly effective for the grading of gliomas with an
accuracy of 91.27%, a weighted macroprecision of 91.27%, a weighted macrorecall of 91.27%, and a weighted macro-𝐹1 score of
90.64%. This demonstrates that the proposed CAD system can assist radiologists for high accurate grading of gliomas and has the
potential for clinical applications.

1. Introduction

Gliomas are the most common primary brain tumors, char-
acterized by the uncontrolled proliferation of abnormal brain
cells.This disease is one of themost common causes of cancer
death in men and women [1]. According to classification
of the World Health Organization (WHO), gliomas can be
subdivided by their malignancy into grade II (lower grade)
to grade IV (high grade) [2]. The clinical patients with high-
grade gliomas, such as glioblastomas, have themedian overall
survival rate of 23.1 months, the 2-year survival rate of 47.4%,
and the 4-year survival rate of 18.5% [3]. On the contrast, the
slower growing low-grade gliomas, such as astrocytomas and
oligodendrogliomas, come with an overall 10-year survival
rate of 57% [4]. Therefore, early detection is considered as an
effective way to get a hopeful prognosis.

Modern imaging techniques allow clinicians and radiol-
ogists to evaluate the progression of tumors and choose opti-
mal treatment strategy, without invasive neurosurgery. There
are many imaging modalities that can be used to study the
brain, such as computed tomography (CT), positron emission
tomography (PET), and magnetic resonance imaging (MRI).

These imaging modalities can provide effective and reliable
information about brain tissues. In view of the advantages of
high soft tissues contrast and high spatial resolution, MRI is
widely used to evaluate the tumor heterogeneity [5].However,
there are several common MRI modalities including T1-
weighted (T1), T2-weighted (T2), gadolinium enhanced T1-
weighted (T1c), and Fluid-Attenuated Inversion Recovery
(FLAIR), which generate a large number of medical images.
This has become a huge burden for radiologists, resulting in
inaccurate detection ormisinterpretation.Therefore, with the
development of computer technology, there is an increasing
demand for computer-aided diagnosis.

Recently, computer-aided detection diagnosis (CAD) has
gradually become a research hotspot in the area of medical
imaging. The main idea of CAD is to assist radiologists in
making clinical decision by using the report of computer
system as a “second opinion” [6]. El-Dahshan et al. [6]
developed a CAD system that used feedback pulse-coupled
neural network for image segmentation, discrete wavelet
transform for features extraction, the principal component
analysis for feature reducing, and the feed forward backprop-
agation neural network for classifying inputs into normal or
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abnormal. Zacharaki et al. [7] suggested that MRI texture
and shape features in a machine learning scheme can help to
evaluate the malignancy of brain tumor and identify certain
tumor. The CAD system based on the use of automatic
segmentation and ensemble classification techniques can
accurately classify brain tumor as benign ormalignant [8]. All
of these studies have shown that CAD can help to improve the
accuracy and efficiency of the diagnostic process and reduce
the burden of work.

In themeantime, a technology called radiomics has devel-
oped rapidly, which explores the correlation betweenmedical
images and underlying genetic characteristics using a large
number of automated data characterization algorithms to
transform the region of interest (ROI) into high-throughput
quantitative features. In 2008, Diehn et al. [9] found that
the image features and genetic characteristics are highly
correlated through the study of glioblastoma multiforme.
The degree of enhancement within the tumor can indirectly
reflect the expression level of epithelial growth factor receptor
(EGFR). Patients with an infiltrative imaging phenotype have
more tendency to have multiple tumor foci and show signifi-
cantly shorter survival than the corresponding counterparts.
In 2012, Dutch scholar Lambin et al. [10] formally proposed
the concept of radiomics; that is, high-throughput extraction
of a large number of image features from radiological images
and the adoption of a large number of automated data
characterization algorithms transform the image data in the
ROI to high-resolution and exploitable spatial data. Hsieh et
al. [11] proposed a computer-aided diagnosis system based
on local and global MRI features to predict the malignancy
of diffuse gliomas. The proposed image features have great
potential in distinguishing glioblastomas from lower-grade
gliomas. Lao et al. [12] proposed a deep learning-based
radiomics model that has better performance than con-
ventional models relying on explicitly designed handcrafted
features for survival prediction in glioblastoma multiforme.

However, many CAD systems ignore the meaning of the
features in the process of classification. Meanwhile, most
radiomics studies focus on manual segmentation based ROI,
which largely limit the development of radiomics. In this
paper, we present an automatic computer-aided diagnosis for
gliomas grading that combines automatic segmentation and
radiomics. We use the MRI data provided by MICCAI Brain
Tumor Segmentation Challenge 2015 containing 220 high-
grade gliomas and 54 low-grade gliomas to evaluate our sys-
tem. Amultiscale 3D convolutional neural network is trained
to segment whole tumor regions. Compared with the ground
truth, satisfying segmentations of the whole tumor regions
are obtained. A wide range of radiomic features including
first-order features, shape features, and texture features is
extracted from segmented tumor regions. Using support
vectormachineswith recursive feature elimination for feature
selection, we construct a 20-feature radiomic signature and
train an extreme gradient boosting classifier. Robustness and
accuracy results are obtained via 5-fold cross-validation. The
experimental results show that the proposed CAD system is
highly effective in the grading of gliomas. We further analyze
the selected feature subset for gliomas grading. We also test
our system using ground truth segmentation and achieve

comparable results.The system is automated and general and,
if a significant number of subjects exist, has the potential for
clinical applications.

2. Method

In this section, the methods involved in the CAD system
are mainly introduced, which are organized as 5 parts: data
preprocessing, automated tumor segmentation, radiomic fea-
tures extraction, feature selection, and data classification.

2.1. Preprocessing. One difficulty in dealing with MRI scans
is to deal with the artifacts caused by the inhomogeneity of
the magnetic field and the small motions that the patient
produces during scanning. The existence of artifacts has a
great impact on the segmentation performance.N4ITK [13] is
a widely used algorithm for removing bias field. In addition,
the intensities may vary significantly between different scans
because MRI scans were acquired from multiple institutions.
Therefore, histogram matching algorithm [14] is used to
transform each image to a specified histogram to ensure that
all the images have the similar gray level ranges.

2.2. Segmentation. Segmentation is the most important and
challenging part of a CAD system.The purpose of segmenta-
tion is to extract the ROI that is of great value to the diagnosis.
This is a challenging task because of the unclear boundary
of gliomas. Furthermore, gliomas may appear anywhere in
the brain with different shapes and sizes. A lot of automated
methods have been developed for brain tumor segmentation
problem, including generative modeling method and dis-
criminative model method. The former method relies on the
prior knowledge of health and oncology tissue and the latter
method relies on a large number of features extracted from
the raw image such as local histograms and texture features.
Relying on traditional machine learning methods, these
segmentationmethods have achieved great success. However,
these methods may not be able to take full advantage of
the training data due to the complexity of medical images.
Recently, deep learning methods, especially convolutional
neural networks (CNN), have led to great success in the
field of medical image processing, such as classification and
segmentation of medical images. These approaches incorpo-
rate feature engineering steps into learning steps that allow
learning awider range of features, thus contributing to amore
robust representation of image data.

The CNN-based methods are performed by stacking
several convolutional layers to form a hierarchy of features.
The stack of input planes is fed into the convolutional layers,
producing an output containing several feature maps by the
application of kernels. The kernels, often interchangeably
called filters, are arrays of values representing some sort of
feature.

The automatic brain tumor segmentation method we
used for CAD is DeepMedic, which is a 11-layer deep,
multiscale 3D CNN first presented by Kamnitsas et al. [15]
for brain lesion segmentation. Figure 1 is a simplified version
of DeepMedic. As can be seen from the figure, the network
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Figure 1: The basic architecture of DeepMedic.

consists of two pathways, one with normal resolution input
segments and the remaining one with the lower resolution
input segments. These segments then pass through a series
of convolutional layers and two fully connected layers and
finally a classification layer to produce soft segmentation
maps.

One of the most prominent features of DeepMedic is
the use of 3D CNNs as a basis for its architecture, which
are characterized by convolving each layer’s channels with a
3-dimensional kernel rather than traditional 2-dimensional
kernel. This can be thought as a rectangular prism traversing
the volume of the image at hand. Using these 3D CNNs can
better represent volumetric data but will lead to increased
computational costs. In order to overcome this problem,
the dense inference technique was adopted. When the input
image patch is larger than the CNN’s receptive field, the
classification layer can output multiple predictions.

In general, the deeper network with more convolutional
layers has better discrimination power. This is attributed
to the richer structures captured by the deeper models.
However, with the deepening of themodel, the computational
cost is also getting higher and higher. To solve this problem,
the small 33 kernels with less weights are adopted. These
smaller kernels have the advantage of faster convolving speed
and fewer parameters, thus contributing to a significant
decrease in computational cost.

Deeper networks are also harder to train. As the network
becomes deeper and deeper, preservation of loss functions
becomes more and more difficult due to the multiplication of
the variance of the loss function as it propagates through each
layer. In order to alleviate this obstacle, DeepMedic initializes
the kernel weights with the normal distributionN(0, √2/𝑛in

𝑙
)

where 𝑛in
𝑙
is the number of weights through which a neuron

of layer 𝑙 is connected to its input. Batch normalization is also
used to deal with the issue of covariate shift.

2.3. Radiomic Features Extraction. From the perspective of
brain tumor medical characteristics and clinical cognition,
doctors mainly determine the tumor grade from a lot of
points. The brain tumor intensities of MRI scans with
different modalities may have high signal, low signal, or
equal signal due to different internal components. According

to the degree of intratumoral vessels, the amplitude of the
signal enhancement after MRI enhanced scan is either high
or low. The size and margins of the tumor may reflect the
growth pattern of the tumor.Most brain tumorswith uniform
signal intensity are benign. In contrast, most brain tumors
with nonuniform signals intensity are malignant. Higher-
grade tumors usually show irregular shapes with larger size
than lower-grade tumors. The high-grade tumors are more
likely to appear to be significant enhancement of the signals,
suggesting the destruction of the blood brain barrier, while
low level tumors generally have no enhanced signals. The
morphological and marginal features of the tumor can also
provide some information to distinguish between benign and
malignant tumors.

As mentioned above, conventional magnetic resonance
imaging has been able to provide diagnostic information
related to tumor grade, such as the location, shape, size, signal
characteristics, mass effect, and peritumoral edema of brain
tumors. However, these characteristics are often described
subjectively and qualitatively. Recent advances in image
analysis and machine learning facilitate the establishment of
objective and accurate quantitative imaging descriptors that
may be used as prognostic biomarkers [16].

Consistent with the features described by Imaging
Biomarker Standardization Initiative (IBSI) [17], a wide
range of radiomic features including first-order features,
shape features, and texture features was extracted from the
segmented brain tumor regions. First-order features (energy,
entropy, standard deviation, skewness, kurtosis, etc.) describe
the characteristics about voxel intensities and are calculated
according to the intensity distribution and histogram. Shape
features describe the three-dimensional size and shape of
the tumors. These features can provide important diagnostic
information; for example, the extent of tumor diffusion is
usually measured by the longest diameter. Texture analysis
contains a series of techniques that can quantify the gray-level
pattern and the relationship of pixels through a wide range
of statistical measures. Several studies have demonstrated the
importance of texture features in evaluating the malignancy
of gliomas [7, 11]. An extensive discussion of texture features
can be seen in [18]. Inspired by them, we extracted a wider
range of texture features as shown in Table 1. The detailed
description of these features can be found in [17].
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Table 1: Texture features.

Texture feature groups Abbreviation
Gray level cooccurrence matrix GLCM
Gray level size zone matrix GLSZM
Gray level run length matrix GLRLM
Neighbouring gray tone difference matrix NGTDM
Gray level dependence matrix GLDM

2.4. Feature Selection. Too many features will increase the
computational cost, and the redundancy between features
will reduce the accuracy of the classification. Furthermore,
the number of features is more than the number of samples
in this work, whichwill increase the probability of overfitting.
Therefore, feature selection is essential. There are two main
types of feature selection algorithms: filtering methods and
wrapping methods. Filter methods use a statistical measure
based on the inherent information of samples to compute a
score for each feature.The features are then ranked according
to their scores, and the top-ranked features are kept as the
final features for classification. However, the selected features
may contain many redundant features because the scores
are calculated independently for each feature, completely
ignoring the dependencies on other features. On the contrary,
the wrapping methods consider a subset of features that have
best discrimination power by evaluating the performance of
the classifier using this feature subset. Therefore, wrapping-
based feature selection methods is more suitable for selecting
radiomic features because of their obvious correlation.

A quintessential example of wrappingmethods is Support
Vector Machine Recursive Feature Elimination (SVM-RFE)
algorithm, which was proposed by Guyon et al. [19] for
selecting gene data for cancer classification. SVM-RFE is a
feature selection algorithm utilizing support vector machine
(SVM) methods based on recursive feature elimination
(RFE). SVM is a widely used classification technique based
on the idea of finding a separating hyperplane that best
divides a dataset into two classes [20]. The RFE method
selects features by recursively considering smaller and smaller
sets of features according to their weights assigned by an
external estimator. To be specific, given training exam-
ples X0 = [x1, x2, . . . , x𝑘, . . . , x𝑙]𝑇 and class labels 𝑦 =
[𝑦1, 𝑦2, . . . , 𝑦𝑘, . . . , 𝑦𝑙]𝑇; let s = [1, 2, . . . , 𝑛] be the subset of
surviving features. In each loop, an SVM classifier is trained
on s, and the correspondingweight vectorw is calculated.The
features are then ranked based on w, and the features with
smallest ranking criterion are removed from s. This proce-
dure is repeated until s = [ ]. Thus, we can obtain the feature
ranked list r using feature removing sequence, as the features
removed later are more important. The features removed
in the last iteration have the highest rankings. In order to
find the optimal number of features to be selected, cross-
validation can be used. The SVM-RFE with cross-validation
starts with all the features, computes the cross-validated
performance score, and removes the lowest 𝑘 features. These
procedures are repeated until all the features are eliminated.
Finally, a feature subset with the best performance score can
be obtained.

2.5. Classification. In order to solve the problemof a relatively
small dataset in our work, an ensemble learning model is
used to trade off the approximation error and estimation
error. Ensemble learning model incorporates a variety of
machine learning algorithms and typically achieves signif-
icantly superior generalization performance over a single
learner. Gradient boosting tree (XGBoost) [21] is a kind of
ensemble learning models for regression and classification
problems, which generates a prediction model in the form of
an ensemble of decision trees.

Given a dataset D = {(x𝑖, 𝑦𝑖)}, the tree ensemble model
can be seen as an addictive model consisting of𝐾 trees.

𝑦𝑖 = 𝜙 (𝑥𝑖) =
𝐾

∑
𝑘=1

𝑓𝑘 (𝑥𝑖) , 𝑓𝑘 ∈ F, (1)

where F is the tree space containing all possible regression
trees.The function𝑓𝑘, whichwe need to learn, corresponds to
the tree structure and leaf weights. In contrast to traditional
decision tree, every leaf in the tree consists of a continuous
score, and the final prediction is based on the summation of
these scores. To learn the model, the following regularized
objective will be minimized.

L (𝜙) =
𝑛

∑
𝑖

𝑙 (𝑦𝑖, 𝑦𝑖) +
𝐾

∑
𝑘=1

Ω(𝑓𝑘)

where Ω(𝑓) = 𝛾𝑇 + 12𝜆 ‖𝑤‖
2 .

(2)

In (2), 𝑙 is restricted to be a differentiable convex loss
function that measures the difference between the prediction
𝑦𝑖 and the target 𝑦𝑖. The second term Ω(𝑓) penalizes the
complexity of tree in terms of the number of leaves in the
tree 𝑇 with coefficient 𝛾 and the vector of scores on leaves 𝑤
with coefficient 𝜆. Two additional techniques, shrinkage and
column subsampling, are further used to reduce overfitting.
Shrinkage reduces the influence of each tree by scaling
newly added weights and thus leaves space for the following
trees to improve the model while reducing the possibility of
overfitting. Similar to random forest, column subsampling
only considers the attributes of a random subset to establish
a tree. This will not only improve the speed of training, but
also help to reduce the overfitting.

3. Result

3.1. MRI Data. Experiments were carried out on the MR
images obtained from BraTS’15 challenge [22], which con-
tains 220 high-grade gliomas (HGG) and 54 low-grade
gliomas (LGG). Each subject contains four modalities:
native T1-weighted (T1), postcontrast T1-weighted (T1c), T2-
weighted (T2), and T2 Fluid Attenuated Inversion Recov-
ery (FLAIR). All subjects were confirmed pathologically
by experts. The HGG group consists of anaplastic astrocy-
tomas and glioblastoma multiforme tumors, and the LGG
group consists of astrocytomas and oligoastrocytomas. All
images were skull stripped and registered to the T1c image
and resampled to 1mm isotropic resolution within a stan-
dard axial orientation. All images were labeled into five
parts: necrosis, edema, active-enhanced tumor, nonenhanced



International Journal of Biomedical Imaging 5

T1

T2

T1c

Flair

Figure 2: The whole tumor region with ground truth segmentation.

tumor, and normal region. In this work, we merged all tumor
subregions into the whole tumor region as shown in Figure 2.

3.2. Preprocessing. The N4ITK bias correction method was
applied to all scans using advanced normalization tools
(ANTS) [23]. Then the histogram matching algorithm was
applied to transform each scan to a specified histogram
using SimpleITK [24]. The images of “brats 2013 pat0001 1”
were selected as reference samples. Then all images were
normalized to the zero-mean and unit variance through
subtracting the mean and being divided by the standard
deviation. Some preprocessing results are shown in Figure 3.
Column (a) shows the reference images, column (b) shows
the images before preprocessing of a random selected subject,
and column (c) shows the results after preprocessing.

3.3. Segmentation. The detailed architecture of the network
is shown in Table 2. We have four modalities, that is, T1,
T1c, T2, and FLAIR. Therefore, a total of four channels are
fed into the network. The predicted labels are classified into
two sets: whole tumor (including necrosis, edema, active-
enhanced tumor, and nonenhanced tumor) and nontumor
region. There are two parallel identical pathways, and the
number of feature maps of each convolutional layer is
[30, 30, 40, 40, 40, 40, 50, 50]. The input dimensions of the
normal resolution path is 25∗25∗25, and the input dimension
of the low resolution path is 19 ∗ 19 ∗ 19. Two hidden

Table 2: Network architectures.

Structure name Value
Input channels T1, T1c, T2, FLAIR
Output classes Tumor, normal
Pathways 2
FMs/layer 30, 30, 40, 40, 40, 40, 50, 50
FMs/Hidd 150, 150
Seg. norm 25 ∗ 25 ∗ 25
Seg. low 19 ∗ 19 ∗ 19
Batch size 10

layers with 150 feature maps follow the concatenation of the
pathways. The network was trained on a GeForce GTX 1080
Ti GPU with a batch size of 10. RMSProp was used as the
optimizer. The start learning rate was set to 0.001.

Multiple criteria were computed as performance metrics
to quantify the segmentation results. Dice coefficient (see (3))
is the most commonly used metric for evaluating medical
image segmentations [25]. 𝑃 is the area that is predicted to
be tumor and 𝐺 is true tumor area. It measures the overlap
between the automatic segmentations and ground truth with
a value between 0 and 1. The higher the Dice score, the better
the segmentation performance.

Dice (𝑃, 𝐺) = 𝑃 ∩ 𝐺(|𝑃| + |𝐺|) /2 . (3)
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(a) (b) (c)

Figure 3: The results of preprocessing.
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Figure 4: Examples of segmentation results.

Sensitivity and specificity are also commonly used statis-
tical measures.The sensitivity, also called true positive rate, is
defined as the proportion of positives that are correctly pre-
dicted. Itmeasures the portion of tumor regions in the ground
truth that are also predicted as tumor regions by the auto-
matic segmentation method. The specificity, also called true
negative rate, is defined as the proportion of negatives that are
correctly predicted. It measures the portion of normal tissue
regions in the ground truth that are also predicted as normal
tissue regions by the automatic segmentation method.

We trained and evaluated our network on all the 274
subjects via 5-fold cross-validation and achieved a Dice

score of 0.89, a sensitivity of 0.89, and a specificity of 0.90.
Four examples of the automatic segmentations on testing
data are shown in Figure 4. The first two rows depict the
segmentations from HGG subjects, and the next two rows
depict the segmentations from LGG subjects. Compared
with the ground truth, satisfying segmentations of the whole
tumor regions are obtained.

3.4. Radiomic Features Extraction and Selection. Awide range
of radiomic features was extracted from the whole tumor
regions.This step was performed by Pyradiomics [26], which
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Table 3: The feature subset based on automated segmentation.

Selected feature Group Modality
Cluster Shade GLCM T1
90 Percentile First-order T1c
Energy First-order T1c
Mean Absolute Deviation First-order T1c
Minimum First-order T1c
Root Mean Squared First-order T1c
Total Energy First-order T1c
Small Dependence Emphasis (SDE) GLDM T1c
Small Dependence Low Gray Level Emphasis (SDLGLE) GLDM T1c
High Gray Level Run Emphasis (HGLRE) GLRLM T1c
Low Gray Level Run Emphasis (LGLRE) GLRLM T1c
Gray Level Variance (GLV) GLSZM T1c
Large Area Emphasis (LAE) GLSZM T1c
Maximum First-order T2
Correlation GLCM T2
Informal Measure of Correlation 1 (Imc1) GLCM T2
Informal Measure of Correlation 2 (Imc2) GLCM T2
Maximum First-order FLAIR
Informal Measure of Correlation 1 (Imc1) GLCM FLAIR
Large Area Emphasis (LAE) GLSZM FLAIR

can extract a wide range of radiomic features from brain
tumor MRI. For each modality, 105 3D-Radiomic features
were extracted, including 18 first-order features, 13 shape
features, and 74 texture features.Thus, a total of 420 radiomic
features were extracted from each subject.

Because of too many features, a feature selection step
should be required prior to establishing a classification
model. This step not only reduces overfitting but also
improves generalization of the classification model. In order
to select the most discriminating feature subset, we used 5-
fold cross-validation. For each fold, SVM-RFE with leave-
one-out cross-validation algorithm was used to find the
optimal features that best predict the malignancy of gliomas.
Finally, 20 features were commonly selected for all folds,
as shown in Table 3. A detailed description of these fea-
tures can be found in Pyradiomics documentation website
(http://pyradiomics.readthedocs.io).

As we can see fromTable 3, 1 feature from the T1 image, 12
features from theT1c image, 4 features from theT2 image, and
3 features from the FLAIR image were selected. The features
from T1 image make up the majority, suggesting that the T1c
image best reflects the difference between HGG and LGG.
In terms of feature groups, none of the shape features were
selected.These results are consistent with the research in [27].

3.5. Classification. Implementation of XGBoost was per-
formed in python using the open-source code provided in
[21]. In addition to XGBoost, two other pattern classifica-
tion methods were investigated for comparison: Extremely
Randomized Trees (ERT) [28] and support vector machine
(SVM) [20]. Extremely Randomized Trees are similar to

random forest but differ in two ways. Extremely Randomized
Trees do not use the bagging procedure when building a
tree. Like random forest, a random set of attributes were
selected at every node. Extremely Randomized Trees go one
step further and select the splitting attribute randomly, rather
than finding the best split among random subset of variables.
A SVM is a discriminative classifier based on the idea of
finding a separating hyperplane that best divides a dataset
into two classes. SVM is widely used for different tasks due
to its effectiveness in high dimensional spaces.

In order to assess the robustness and effectiveness of
the proposed CAD system, we also carried out our method
based on the ground truth segmentation. The classification
results are presented in Table 4.The first row in Table 4 shows
four performance indices: accuracy, weighted macropreci-
sion, weighted macrorecall, and weighted macro-𝐹1 score.
It is worth noting that “weighted” means that it takes class
imbalance into account and can result in an𝐹-score that is not
between precision and recall.The values in bold show the best
classification rank. The results show that the classification
performance is better when using XGBoost, as expected.
We also use the receiver operation characteristic (ROC)
curve as another method to evaluate the overall performance
(Figure 5). For XGBoost, the area under the ROC curve
based on automated segmentation is 0.95, while that based on
ground truth segmentation is 0.96. From the results above,
it can be seen that classification results based on different
segmentations have no significant differences.

We further investigate the selected feature subset based on
ground truth segmentation, as shown in Table 5. A detailed
description of these features can be found in Pyradiomics
documentation website (http://pyradiomics.readthedocs.io).

http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io
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Table 4: Average performance via 5-fold cross-validation.

Accuracy Precision Recall 𝐹1 score
XGBoost + automatic 91.27% 91.27% 91.27% 90.64%
XGBoost + Ground truth 91.25% 91.63% 91.25% 91.06%
ERT + automatic 90.98% 90.94% 90.89% 90.21%
ERT + Ground truth 90.52% 90.50% 90.52% 89.67%
SVM + automatic 90.16% 90.12% 90.16% 89.24%
SVM + Ground truth 90.16% 90.20% 90.16% 89.12%

Table 5: The feature subset based on ground truth segmentation.

Selected feature Group Modality
90 Percentile First-order T1
Cluster Shade∗ GLCM T1
Maximum Probability (MP) GLCM T1
90 Percentile∗ First-order T1c
Kurtosis First-order T1c
Mean First-order T1c
Mean Absolute Deviation∗ First-order T1c
Root Mean Squared∗ First-order T1c
Skewness First-order T1c
Dependence Nonuniformity (DN) GLDM T1c
Small Dependence Emphasis (SDE)∗ GLDM T1c
Small Dependence Low Gray Level Emphasis (SDLGLE)∗ GLDM T1c
High Gray Level Run Emphasis (HGLRE)∗ GLRLM T1c
Low Gray Level Run Emphasis (LGLRE)∗ GLRLM T1c
Run Length Nonuniformity (RLN) GLRLM T1c
Large Area High Gray Level Emphasis (LAHGLE) GLSZM T1c
Small Area High Gray Level Emphasis (SAHGLE) GLSZM T1c
Maximum∗ First-order T2
Correlation∗ GLCM T2
Informal Measure of Correlation 1 (Imc1)∗ GLCM T2
Informal Measure of Correlation 2 (Imc2)∗ GLCM T2
Dependence Nonuniformity Normalized (DNN) GLDM T2
Low Gray Level Zone Emphasis (LGLZE) GLSZM T2
Cluster Shade GLCM FLAIR
Large Area High Gray Level Emphasis (LAHGLE) GLSZM FLAIR

As we can see, 3 features from the T1 image and 14 features
from the T1c image and 6 features from the T2 image and
2 features from the FLAIR image were selected. Consistent
with the selected features based on automatic segmentation,
the features of T1c image best reflect the difference between
HGG and LGG, and none of the shape features were selected.
The features with “∗” are also selected in the radiomic
signature based on automatic segmentation. There are 12
such features in total, including 1 feature from the T1 image,
7 features from the T1c image, and 4 features from the
FLAIR image. This demonstrates that CAD system based
on automatic segmentation achieved consistent results with
the system based on ground truth segmentation. This is
probably because most of the features are based on spatial
averaging and highly accurate segmentation results may not
be necessary.

4. Conclusion

This paper presents an automated scheme using multipara-
metric MRI scans for differentiating the malignancy of
gliomas. A deep learning-based method, called DeepMedic,
is used to automatically detect tumor regions. A wide range
of radiomic features is extracted from segmentation regions.
Using SVM-RFE for feature selection, we construct a 20-
feature radiomic signature and train a XGBoost classifier.
The results demonstrate that XGBoost-based classification
is an objective and promising approach for evaluating the
malignancy of gliomas.

Radiomics has been greatly developed in recent years, and
its goal is to extract quantitative features as a clinical decision
support tool. However, most of these studies are based on
manually segmented ROIs, which limit the development
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ROC curve of XGBoost + Automatic (；Ｌ？； = 0.95)
ROC curve of ERT + Automatic (；Ｌ？； = 0.94)
ROC curve of SVM + Automatic (；Ｌ？； = 0.93)
ROC curve of XGBoost + Ground Truth(；Ｌ？； = 0.96)
ROC curve of ERT + Ground Truth(；Ｌ？； = 0.94)
ROC curve of SVM + Ground Truth(；Ｌ？； = 0.93)
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Figure 5: Receiver operating characteristic curve.

of radiomics. Recently, CNN-based approaches, such as
DeepMedic, U-net [29], and V-net [30], have achieved great
success in the field of medical image segmentation. All
of these motivate us to develop a fully automatic method
of combining automated brain tumor segmentation with
radiomics to develop a fully automated CAD system.

The features that make up the signature contain all MRI
modalities. This means all MRI modalities play important
roles in our classification task. However, only first-order
and texture features are contained in the signature, probably
because the shape features of the whole tumor have poor
discrimination ability of MR images. In the future work,
we will explore the discrimination ability of brain tumor
subregions, such as necrosis, edema, active-enhanced tumor,
and nonenhanced tumor.

Our work demonstrates that the automatic segmentation
of brain tumors can be integrated into computer-aided
diagnosis. The classification results based on automated seg-
mentation and ground truth segmentation have no significant
differences. This is probably because most of the features
are based on spatial averaging; highly accurate segmenta-
tion results may not be necessary. Our work provides an
alternative idea that we can use automatic segmentation for
radiomic features extraction. This will reduce the difficulty
of radiomics research since manual segmentation is a time-
consuming task.
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