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ABSTRACT

Conjugation of Doxorubicin (DOX) to N-(2-hydroxypropyl) methylacrylamide copolymer (HPMA) has signifi-
cantly reduced the DOX-associated cardiotoxicity. However, the reports on the impact of HPMA-DOX con-
jugates on the cardiovascular system such as blood pressure (BP) and heart rate (HR) were in restrained
animals using tail cuff and/or other methods that lacked the resolution and sensitivity. Herein, we
employed radiotelemetric-spectral-echocardiography approach to further understand the in vivo cardiovas-
cular hemodynamics and variability post administration of free DOX and HPMA-DOX. Rats implanted with
radio-telemetry device were administered intravenously with DOX (5mg/kg), HPMA-DOX (5mg DOX
equivalent/kg) and HPMA copolymer and subjected to continuous cardiovascular monitoring and echocar-
diography for 140 days. We found that DOX-treated rats had ruffled fur, reduced body weight (BW) and a
low survival rate. Although BP and HR were normal, spectral analysis indicated that their BP and HR varia-
bilities were reduced. All rats exhibited typical signs of cardiotoxicity at histopathology. In contrast,
HPMA-DOX rats gained weight over time and survived. Although BP, HR and related variabilities were
unaffected, the left ventricular end diastolic volume (EDV) of these rats, as well as of the HPMA copoly-
mer-treated rats, was found increased at the end of observation period. Additionally, HPMA copolymer
caused microscopic injury of the heart tissue. All of these suggest the necessity of caution when employ-
ing HPMA as carrier for prolonged drug delivery. The current study also indicates the potential of radio-
telemetric-spectral-echocardiography approach for improved preclinical cardiovascular risk assessment of
polymer—drug conjugate and other nano-sized-drug constructs.
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Introduction

Doxorubicin (DOX) is an effective anti-neoplastic drug used in the
treatment of solid malignant tumors, leukemia, lymphomas and
breast cancer (Katzung et al., 2004). However, its use is hampered
by narrow therapeutic index, organ toxicity and the development
of cardiomyopathy that may occur several years after termination
of the treatment, preventing prolonged courses of chemotherapy.
The development of cardiomyopathy is unpredictable; it is resist-
ant to treatment and is associated to high mortality rate
(Chatterjee et al., 2010; Octavia et al., 2012).

Many strategies have been developed to overcome the prob-
lem of DOX-induced cardiotoxicity. Clinical biomarkers monitoring
(Cardinale et al., 2004; Dolci et al., 2008), strain echocardiography
(Curigliano et al., 2012; Sawaya et al.,, 2011), heart rate (HR) vari-
ability assessment (Loncar-Turukalo et al., 2015), and radionuclide

ventriculography (Sipola et al., 2012) have been used for the early
diagnosis of subclinical forms of cardiotoxicity, in order to discon-
tinue the treatment before irreversible damage occurs.
Also, preventive treatments were attempted through the use of
dexrazoxane that interferes with iron-mediated free radical gener-
ation and carvedilol, a vasodilating B blocker with antioxidant
activity, but none seems to be effective enough (Mitry & Edwards,
2016).

In the last few decades nanodrug carrier systems have been
developed for targeted delivery of anti-cancer drugs and to
reduce systemic toxicity (Yokoyama, 2014). Nano carriers are bio-
compatible macromolecules, with low immunogenicity, that evade
renal filtration and achieve long blood circulation time. N-(2-
hydroxypropyl) methacrylamide (HPMA) copolymer is one of such
system that delivers its drug payload passively via the enhanced
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permeability and retention (EPR) effect (Kedar et al, 2010;
Kopecek et al., 2000). To reduce the systemic toxicity and enhance
the tumor delivery of DOX, HPMA copolymer has been combined
with DOX via a Gly-Phe-Leu-Gly peptide spacer to form HPMA
copolymer-DOX conjugates. In a few preclinical (Hopewell et al.,
2001; Yeung et al., 1991) and clinical studies (Seymour et al., 2009;
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Figure 1. Body weight changes of Wistar rats treated with different compounds.
Note that only rats treated with DOX had a decrease in body weight over time.
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Vasey et al, 1999) it has been suggested that DOX's in vivo cardio-
toxicity profile has been improved by conjugation to HPMA
copolymer. However, no data are available about cardiovascular
hemodynamic profile of HPMA copolymer bound to DOX and
HPMA copolymer alone in respect to the free drug. Since large
molecules such as HPMA copolymer may affect cardiovascular
hemodynamic which, in turn, may trigger autonomic nervous sys-
tem response we sought to investigate effects of HPMA bound
DOX in respect to free DOX on cardiovascular hemodynamic and
short-term variability in freely moving rats. We used radio-telem-
etry and echocardiography approach for hemodynamic parameter
assessment and spectral analysis of blood pressure (BP) and HR to
evaluate autonomic cardiovascular control.

Methods
Materials

HPMA copolymer Gly-Phe-Leu-Gly-ONp (5mol %;
Mw~20,000-25,000 g/mol and Mw/Mn=1.3-1.5) was obtained from
Polymer Laboratories Ltd, Shropshire, UK. DOX (hydrochloride) was
purchased from Xingcheng Chempharm CO., Ltd., Zhejiang, China.
All the chemicals were purchased from Sigma-Aldrich Chemie,
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Figure 2. Organ toxicity induced by free DOX (HE stain). Upper micrographs show interstitial hemorrhage in the kidney (left) and fibrin amid deposits (right). Middle
micrographs show areas of focal necrosis in the liver. Lower micrographs show pulmonary stasis (left) and hemorrhage (right).
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Figure 3. Histomorphological changes in the hearts of rats treated with DOX (HE stain). Rats treated with DOX had typical signs of cardiotoxicity: interstitial mono-
nuclear infiltration, degeneration and diffuse necrosis of cardiomyocytes (upper left micrograph), loss of striation and interstitial hypercellularity (upper right micro-
graph); interstitial fibrosis (middle left micrograph) and vacuolar degeneration of cardiomyocytes (middle right micrograph). Lower micrographs illustrate expression of

caspase 3 for detection of apoptosis in the heart tissue (insert shows lymphocytes).

Germany. Ketamine, xylazine, acepromazine and tetracaine T61®
injection solution) injections were purchased from MarloFarma
(Belgrade, Republic of Serbia). Carprofen and gentamicin injections
were purchased from Hemofarm (Vrsac, Republic of Serbia).

Synthesis of HPMA copolymer-DOX conjugate

Adapted from previously reported (Vicent et al., 2005). In summary,
one equivalent of the precursor (HPMA copolymer-GFLG-ONp) and
DOX-HCI were dissolved in the minimum amount of dry DMF, under
N, stream and stirring in a round bottomed flask. Triethylamine
(one equivalent) was added drop wise to the copolymer solution in
order to neutralize the hydrochloric acid to give DOX as a free
amine. The reaction was allowed to proceed at room temperature
overnight under N, atmosphere and then quenched by adding 1-
amino-2-propanol. The reaction was monitored by measuring ali-
quots at different time points by UV (release of ONp at 400 nm) and
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Figure 4. Survival of Wistar rats treated with different compounds. Note that
only rats treated with free DOX exhibited low survival. Slightly and statistically
insignificant lower survival of HPMA and HMPA-DOX rats in respect to SALINE
treated rats was unrelated to treatment.
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Figure 5. Histomorphological changes in the hearts of two rats treated with HPMA copolymer-DOX conjugate (HE and Masson’s Trichrome stain). Two rats treated
with HPMA-DOX showed signs of cardiotoxicity: contraction band necrosis (upper left micrograph), diffuse interstitial infiltrate (lymphocytes and fibroblasts), focal
necrosis (upper right micrograph), mild vacuolar degeneration of cardiomyocytes (left middle micrograph), loss of cross striation (middle right micrograph), vacuolar
degeneration of cardyomyocites (lower micrograph on the left) and perivascular and interstitial fibrosis (right bottom micrograph Masson’s Trichrome staining).

by TLC (mobile phase: acetic acid/butanol/water (0.5:6.5:3.0); Rf,
DOX =0.55; Rf, polymer =0) as described by Vicent et al. (2005).

DMF was evaporated under reduced pressure and the resultant
solid was dissolved in HPLC-grade methanol (20 mg/ml). The poly-
mer-drug conjugate was filtered and purified by size exclusion
chromatography using consecutive columns of Sephadex LH-20
(3 x 50cm) with HPLC-grade methanol as the eluent. The purified
compound was then dissolved in a minimal amount of water and
freeze-dried. The overall yield based on polymer weight was
around 75%.

Characterization of HPMA copolymer-DOX

Determination of total DOX loading by UV
Briefly, samples for UV determination were prepared in triplicate
by dissolving the dry solid conjugate in HPLC-grade methanol

(1 mg/mL) and dilutions of 0.1, 0.25 and 0.5mg/mL were meas-
ured at 480 nm. The resulting absorbance was compared with a
calibration curve of DOX (0.005-0.065mg/mL) in HPLC-grade
methanol determined under the same experimental conditions.

Determination of total DOX loading (TDL) by HPLC

RP-HPLC analysis of the final product was analyzed following the
protocol previously described (Vicent et al., 2005). Briefly, samples
were dissolved in buffered milliQ water (Merck Millipore,
Darmstadt, Germany) (1 mg/ml) and DOX aglycone was obtained
by acidic treatment to cleave the acetal bond in DOX. A liquid-li-
quid extraction procedure was then carried out, the supernatant
phase was discarded and the organic phase was dried. For HPLC
sample preparation, the dry residue was re-dissolved in HPLC-grade
methanol and fluorescence was measured by an in-line detector
(Aex =480 NM, Aern =560 nm) and compared with a calibration curve
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Figure 6. Histomorphological changes in the hearts of two rats treated with HPMA copolymer control (HE stain). Two rats treated with HPMA showed interstitial infil-
tration and hemorrhage (right micrograph). Left panel shows healthy myocardium in rats treated with saline.

of DOX in the range between 0.005 and 0.065 mg/ml previously
determined in the same experimental conditions.

Determination of free DOX content by HPLC

The same aqueous solutions prepared for TDL determination was
used. Briefly, fresh solutions of the conjugate were prepared in
buffered milliQ water (1 mg/mL) and the same liquid-liquid extrac-
tion described previously as well as sample treatment was carried
out. The obtained fluorescence by HPLC was compared with a
calibration curve of DOX previously determined in the same
experimental conditions (Vicent et al., 2005).

Size by gel permeation chromatography (GPC)

HPMA copolymer was analyzed using DMF phase GPC.
Polysaccharide standards (pullulan) (Mw from 11,800 to 210,000 g/mol)
were used to generate a calibration curve. All samples were
prepared in DMF containing 1% LiBr in a final concentration of
8mg/mL and 100 pL aliquots were injected using a flow ratio of
0.8 mL/min. Both Rl and viscosity detectors were used.

Experimental animals and study design

All experimental procedures conformed to European Communities
Council Directive of November 24, 1986 (86/609/EEC) and were
approved by the University of Belgrade Ethics review board.

Experiments were performed in 11 weeks old out-bred male
Wistar rats (300g+10) bred in local animal facility of the Faculty
of Medicine University of Belgrade. Rats were randomly allocated
into 4 treatment groups. In HPMA copolymer group rats (n=26)
received HPMA copolymer (65.8 mg HPMA/kg, equivalent to the
amount of HPMA copolymer present in a dose of 5mg DOX
equivalent/kg of HPMA-DOX, i.v.). In SALINE group, rats (n=6)
were treated with 09% NaCl (0.5mL; iv). In HPMA
copolymer-DOX conjugate group, rats (n=6) received HPMA
copolymer-DOX conjugate (5mg DOX equivalent/kg, equivalent
to 65.8mg HPMA-DOX/kg; i.v.) and in DOX group (n=11 rats),
free doxorubicin (5mg DOX/kg, i.v.). During experimentation rats
were maintained under standard laboratory conditions (12:12
light-dark cycle, ambient temperature 22°C+1 and relative
humidity 65% +5) with free access to rodent chow and tap water.
After implantation of radiotelemetric probe for continuous cardio-
vascular recording, rats were observed for 140 days. Rat body
weight (BW), BP, HR, BP short-term variability (BPV), HR short-term
variability (HRV), left ventricular ejection fraction (EF.,) and left
ventricular end-diastolic volume (EDV) were monitored weekly. At
the end of the follow-up period, rats were sacrificed and the
hearts were harvested for histopathology.

Assessment of general toxicity

General toxicity was assessed by observation of rat appearance,
behavior, BW changes and survival rate, as well as necropsy and
histopathology. Single dose of 5mg/kg i.v. of DOX was taken from
literature (Duncan et al., 1998; Yeung et al., 1991) and verified in
pilot experiments.

Surgical implantation of radiotelemetric probes

Rats were anesthetized by combined ketamine (100 mg/kg, i.p.)
and xylazine (10 mg/kg, i.p.) anesthesia. They were placed on a
heating pad in supine position and a small thermistor was
inserted into the rectum to monitor the body temperature
throughout surgery. Upon shaving and disinfecting abdominal
area, a 3cm-long ventral midline incision was made. After retract-
ing intestines, abdominal aorta was exposed. The tip of the cath-
eter from the radiotelemetric probe (TA11PA-C40; Data Science
International (DSI), St. Paul, MN) was inserted into the aorta, fixed
with 3M Vetbond™ and tissue cellulose patch (DSI, St. Paul, MN).
The transmitter was attached to the anterior abdominal wall and
the wound was closed by two layer suturing. To prevent infection,
the skin suture was sprayed by topical bacitracin, neomycin, and
the each rat received gentamicin (25 mg/kg, i.m.) for three days
prior to surgery and on the day of surgery. For pain relief rats
received carprofen (5mg/kg/day, s.c.) on the day of surgery and
for the next two days. During recovery period rats were individu-
ally housed in a Plexiglas cage (30cm x30cm x30cm) under con-
trolled laboratory conditions for 10 days prior to experimentation.

Radiotelemetric monitoring of the cardiovascular parameters

Rats housed in individual cages were positioned on top of the RPC-
1 telemetry receivers (DSI, St. Paul, MN) and monitored weekly
throughout the 140-days-long study. Arterial BP was digitalized at
1000 Hz using Dataquest A.R.T. 4.2 software (DSI, St. Paul, MN).
Systolic (SBP) and diastolic (DBP) BP and HR were derived from the
arterial pulse pressure as maximum, minimum and inverse distance
between successive dP/dt.x of the pulse pressure wave, respect-
ively (Figure S1). Mean blood pressure (MBP) was calculated as inte-
gral of the arterial pulse pressure waveform.

Spectral analysis of SBP, DBP and HR short-term variability

Systolic BP (SBP) and diastolic BP (DBP) and HR signals were
re-sampled at 20 Hz and subjected to nine-point Hanning window
filter and linear trend removal. Spectra were obtained using a fast
Fourier transform (FFT) algorithm on 15 overlapping 2048-point
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time series corresponding to a 410s (~7 min) registration period
of SBP and DBP and HR. The power spectrum of BP (mmHg?) and
HR (bpm?) for 30 FFT segments was calculated for the whole
spectrum (0.0195-3Hz) and in the following three frequency
ranges: very low frequency (VLF, 0.01-0.2Hz), low frequency (LF,
0.2-0.8 Hz) and high frequency (HF, 0.8-3 Hz). The LF oscillation in
SBP and DBP spectra (LF SBP and LF DBP) and LF/HF HR are rec-
ognized clinical markers for sympathetic modulation of vascular
tone and sympatho-vagal balance to the heart, respectively
(Japundzic-Zigon, 1998).

Echocardiography

Conscious rats tranquilized with acepromazine (0.5mg/kg, i.m.)
were examined by echocardiography using a commercial echocar-
diograph ALOKA ProSound 2 with 13 MHz linear probe (Hitachi
Medical Systems Europe, Zurich, CH, Switzerland) before treatment
(day 0) and every week after treatment by different compounds.
All parameters were taken from the right parasternal short axis.
Analysis was carried out in cardiac volume and function analytical
system in M mode. Measured parameters were: interventricular
septum in diastole (IVSd), left ventricular end-diastolic internal
diameter at Q wave (LVIDd), posterior wall thickness at diastole
(PWd), interventricular septum in systole (IVSs), left ventricular
end-systolic internal diameter at T wave (LVIDs) and posterior wall
thickness at systole (PWs). Other parameters were calculated as
follows: end diastolic volume (EDV) (mL) =1.047-(LVIDd)* and left
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ventricular ejection fraction EF (%)= (SV/EDV)-100 where SV is
stroke volume calculated as difference between EDV and end sys-
tolic volume [ESV(mL) = 1.047-(LVIDs)?].

Histopathology

At the end of experiments rats were euthanized with T61™ injec-

tion (150 mg/kg, i.p.). The hearts were harvested to be fixed in 4%
formalin for 48 h and were dissected symmetrically into 3 mm seg-
ments. The cardiac tissues were then dehydrated in graded etha-
nol, embedded in paraffin blocks, cut in 3-um-thick sections and
mounted onto the glass slides. After hematoxylin-eosin (HE) stain-
ing, and Masson’s Trichrome staining for fibrous tissue, the micro-
graphs were observed under Leica DM400 M optical microscope
(Leica Microsystems, Germany).

Immunohistochemical staining for detection of apoptosis

Caspase 3 immunostaining was preformed according to the
supplier’s instructions. Five-micrometer cut sections from tissue
microarray blocks were deparaffinized, rehydrated, placed in 3%
H,O, for 10min to block endogenous peroxidase activity, and
washed with tap water. Sections were then processed with 0.01
citrate buffer (pH 6.0) and treated in a microwave oven for
20min at 600 W and placed in a bath of tap water for 20 min,
then in distilled water and in TBS buffer (pH 7.6) for 5min,
and placed in diluted goat serum for 10min. Afterwards, the
tissue sections were incubated for 1h with the anti-Caspase

Figure 7. Echocardiography in one rat treated with DOX (right) and another with saline (left). B mode is shown at left and M mode at right. OD indicates the day
before treatment. Note that on day 56D and 77D, a rat treated with DOX exhibited increased left ventricular internal diameter in systole (LVIDs) and distole (LVIDd),
enlarged posteror wall thickness (PW) and decreased interventricular septum thickness.
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three mouse monoclonal primary antibody (clone CPP32, 1:50
dilution, Leica Biosystems, Newcastle, UK). Streptavidin-biotin
method using DAKO'’s LSAB+kit (DAKO, Denmark) was applied,
with diaminobenzidine (DAB) as the chromogen solution and
Mayer’'s hematoxylin for the counterstain. Cytoplasmic staining
of cardiomyocytes to apoptosis was evaluated in respect to
lymphocytes that served as a positive control, and pure anti-
body diluent incubation (without the primary antibody) as a
negative control.

Table 1. Effects of different compounds on left ventricular end diastolic volume
and ejection fraction.

Day 0 Days 8-40 Days 48-80 Day 140
EDV (ml)
SALINE 0.4+0.02 0.4+0.04 0.4+0.05 0.4+0.03
HPMA 0.4+0.01 0.4+0.03 0.5+0.05% 0.5+0.07*
HPMA-DOX 0.3+0.04 0.4+0.05 0.4+0.06 0.6 +0.09**
DOX
EFLy (%)
SALINE 88+2 88+2 88+2 90+3
HPMA 901 89+5 92+1 93+0.8*
HPMA-DOX 91+£0.8 91+2 91+9 88+3
DOX 91+1 91+1 - -

Values are mean of atleast six experiments = SEM. EDV: left ventricular end dia-
stolic volume; EF,y: left ventricular ejection fraction; SALINE: 0.9% NaCl; HPMA:
N-(2-Hydroxypropyl) methylacrylamide copolymer; HPMA-DOX: doxorubicin con-
jugated to N-(2-Hydroxypropyl) methylacrylamide copolymer; DOX: doxorubicin.
*p < 0.05; **p < 0.01 vs. Day 0 (before treatment).

Statistical analysis

Parameters are shown as means+SEM, and differences between
the means were compared by two-way ANOVA for repeated meas-
ures followed by Bonferroni post hoc test using the GraphPad
Prism 4.0 software (Graph-Pad Software Inc., San Diego, CA).
Statistical significance level was set at p < 0.05.

Results
Characterization of HPMA copolymer-DOX

The model HPMA copolymer-DOX conjugate was synthesized as
previously reported (Vicent et al, 2005) and fully characterized
showing a total DOX loading (TDL) of 7.6 wt% with a free DOX con-
tent of 0.8 wt% from the total loading. Molecular weight (Mw) was
determined as 28,000 g/mol with a polydispersity index (PDI) of 1.3.

General toxicity of different compounds

All rats treated with free DOX were adynamic with ruffled fur, pro-
gressively losing weight and exhibiting cachexia with chromoda-
criorhea (Figure 1). Necropsy and histopathological examination
revealed organ toxicity: glomerulosclerosis, tubulointerstitial
inflammation and fibrosis in kidneys, focal necrosis in liver, con-
gestion and hemorrhage in lungs (Figure 2), and loss of myofibril-
lar striation and vacuolar degeneration of cardyomyocites (Figure

PN et it
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Figure 8. Echocardiography of one rat treated with HPMA copolymer (left) and another rat treated with HPMA copolymer-DOX conjugate (right). B mode is shown at
left and M mode at right. Note an increase in left ventricular internal diameter in systole and diastole on day 140 (140D) in HPMA copolymer-DOX-treated rat (right

bottom).



Table 2. Effects of different compounds on heart rate and arterial blood
pressure.

Day 0 Days 8-40 Days 48-80 Day 140

HR (bpm)

SALINE 306+8 313+10 288+8 287+10

HPMA 344+33 346+32 330+ 16 336+ 16

HPMA-DOX 313+17 314+ 11 301+9 30710

DOX 328+13 32715 - -
MBP (mmHg)

SALINE 94+3 97+5 94+3 92+4

HPMA 94+4 93+6 92+7 94+6

HPMA-DOX 91+4 93+5 96+ 6 95+9

DOX 96+ 4 104+4 - -
SBP (mmHg)

SALINE 1M7+3 1212 119+3 1M7+3

HPMA 1175 119+8 115+8 120+9

HPMA-DOX 1M12+4 1165 119+6 120+8

DOX 119+2 120+ 4 - -
DBP (mmHg)

SALINE 83+2 85+3 82+2 79+4

HPMA 82+3 80+4 80+6 81+3

HPMA-DOX 81+4 81+5 84+6 83+10

DOX 85+2 96 + 5¢* - -

Values are mean of atleast six experiments+ SEM. MBP: mean blood pressure;
SBP: systolic blood pressure; DBP: diastolic blood pressure. SALINE: 0.9% NaCl;
HPMA: N-(2-Hydroxypropyl) methylacrylamide copolymer; HPMA-DOX: doxorubi-
cin conjugated to N-(2-Hydroxypropyl) methylacrylamide copolymer; DOX: doxo-
rubicin. *p < 0.05 vs. SALINE; $p < 0.05 vs. Day 0 (before treatment).

3). Cytoplasmic immunostaining of cardiomyocytes to caspase 3 in
DOX-treated rats revealed apoptosis (Figure 3, lower micrographs).

The survival rate of DOX-treated rats was low, and rats died
between days 25 and 80 with 49 days median survival (Figure 4).
The cause of death was either hepato-renal toxicity (n=28) or car-
diac toxicity (n=3).

Rats treated with HPMA copolymer-DOX, HPMA copolymer
control and SALINE gained weight over time (Figure 1) and exhib-
ited normal behavior. By the end of the follow-up period, only
rats treated with HPMA copolymer-DOX exhibited unevenly flat-
tened hair and areas of brownish fur coloration while SALINE and
HPMA copolymer treated rats did not. Necropsy and histopath-
ology revealed no organ toxicity in SALINE-treated rats. One rat
treated with HPMA copolymer-DOX had signs of renal inflamma-
tion and hepatic venous dilation and two other rats exhibited car-
diac toxicity (Figure 5). In two rats treated with HPMA copolymer
alone, intra-cardiac hemorrhage and interstitial infiltration were
observed (Figure 6). Also, one rat treated with HPMA copolymer
and another with HPMA copolymer-DOX died before the end of
the study due to peritoneal inflammation at the site of the
implantation of radiotelemetric probe. Although these rats were
excluded from the study, they were considered for the calculation
of the mortality.

Heart function and morphology by echocardiography in rats
treated with different compounds

Three rats treated with DOX showed echocardiographic changes
(Figure 7) while other rats died from non-cardiac causes before
developing overt heart failure (Table 1) (refer to discussion). Rats
treated with HPMA copolymer-DOX displayed an averagely 50%
increase EDV on day 140 (p<0.05 compare to saline control),
while left ventricular ejection fraction (EF,,) remained normal
(Table 1, Figure 8). Interestingly, rats treated with HPMA copoly-
mer had shown a 25% increase EDV between 48 and 80 days after
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Figure 9. Effects of different compounds on the components of HR short-term
varaibility. Empty bars indicate saline-treated rats, light gray bars and dark gray
bars indicate HPMA- and HPMA-DOX-treated rats, respectively. Black bars repre-
sent rats treated with DOX. NU on Y-axis stands for normalized units. Note a
decrease in VLF and LF/HF in DOX-treated rats. Experiments are mean of atleast
six experiments +SEM. #p < 0.05 vs. day 0; *p <0.05 vs. saline; tp <0.05 vs.
HPMA; 9p < 0.05 vs. DOX.

treatment, while EF,y increased by 3% on day 140 after treatment
(Table 1).

Heart histopathology in rats treated with different compounds

In all the rats treated with DOX (Figure 3) and two rats treated
with HPMA copolymer-DOX (Figure 5), typical signs of DOX
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cardiotoxicity were observed: apoptosis, vacuolar degeneration of
myocardiocytes, interstitial mononuclear infiltration of cardiac tis-
sue, myofibrilar contraction band necrosis and interstitial hypercel-
lularity and fibrosis. Two rats treated with HPMA copolymer
control showed interstitial infiltration and hemorrhage (Figure 6).

Hemodynamic and spectral changes in rats treated with
different compounds

Table 2 shows that mean values of HR, SBP, MBP and DBP do not
differ between experimental groups except for the slight increase
in DBP in DOX-treated rats. Decreased HRV in VLF and LF domain
as well as of the LF/HF ratio (Figures 9 and 10) predicted bad out-
come in DOX-treated rats. BPV was also reduced in DOX-treated
rats in VLF and LF domains and the spectral power of SBP was
redistributed towards HF spectral range (Figures 11 and 12).

Discussion

This is the first comprehensive hemodynamic cardiovascular study
in conscious rats that shows improved cardiovascular tolerability
of HPMA copolymer-DOX conjugate in respect to the free drug.
HPMA copolymer-DOX conjugate treated rats had better survival,
lower organ toxicity and exhibited no changes in BPV and HRV. In
contrast, DOX-treated rats exhibited reduction in BPV and HRV
which predicted exitus letalis. In few, not all rats treated with
HPMA copolymer alone, echocardiography finding and histopath-
ology examination noted cardiac injury, recommending caution
with the use of HPMA copolymer drug carrier system.

Observation of the general condition of rats treated with free
DOX revealed they were progressively losing weight until develop-
ing cachexia, that they were adynamic, and that the survival rate
was significantly lower in respect to rats treated with HPMA
copolymer-DOX conjugate. HPMA copolymer-DOX conjugate-,
HPMA copolymer control- and SALINE-treated rats gained weight

over time and survived throughout the follow-up period suggest-
ing improved tolerability upon DOX conjugation. The cause of
death in rats treated with free DOX was due to multiple organ
toxicity. Necropsy revealed toxic nephropathy and focal liver
necrosis in all rats treated with free DOX. As expected, free DOX
induced cardiomyopathy, and associated changes in lungs and
liver such as pulmonary and hepatic stasis. The heart tissue of all
rats treated with free DOX showed typical signs of cardiotoxicity:
apoptosis and vacuolization of cardiomyocytes, inflammation,
focal necrosis and loss of cross striation. However, only two rats
treated with polymer bound drug exhibited cardiotoxic changes,
and, along with vacuolar degeneration of cardiomyocytes, loss of
cross striation, focal necrosis and inflammation, they also showed
signs of reparation such as perivascular fibrosis. HPMA
copolymer-DOX conjugate-treated rats had no toxic changes in
liver, and only one rat had affected kidneys. Present findings con-
firm previous reports on DOX-induced general toxicity
(Bertinchant et al., 2003; Lee & Harris, 2011; Mitry & Edwards,
2016; Octavia et al, 2012) and also confirm improved cardiac
tolerability of HPMA copolymer-DOX conjugate in respect
to free DOX (Duncan et al, 1998, Hopewell et al., 2001;
Yeung et al., 1991). The plausible explanation for better tolerability
of HPMA copolymer-DOX conjugate in respect to the free drug is
possibly due to the high molecular weight of the drug carrier
HPMA copolymer and lower permeability of end-organs’ vascula-
ture to macromolecules (Kedar et al., 2010; Kopecek et al., 2000).
It is important to note that HPMA copolymer-DOX conjugate has
a longer half-life than free DOX (Tomalova et al., 2016) and
together with time needed for the release of the drug from the
drug carrier to become active, it is reasonable to expect that
pharmacological and toxicological effects may be modified and
delayed. That is why the follow up period in this study was dou-
ble the time of survival of rats treated with free DOX. Additionally,
DOX conjugated to HPMA is not pharmacologically active
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Figure 10. A typical HR spectrum of one rat before and after treatment with DOX. Note a decrease of spectral power in lower frequencies (VLF and LF) 16 days after

treatment by DOX.



(Malugin et al., 2007), and, unlike free DOX that enters cells by dif-
fusion, HPMA copolymer-DOX conjugate is up-taken into cells by
endocytosis. Only when endocytotic vesicle fuses with lysosomes,
DOX is enzymatically released in the cell by cleavage of peptide
spacers as cathepsin B substrates, and then exerts pharmaco-
logical effects (Duncan & Vicent, 2010; Kedar et al., 2010).
Subsequently, HPMA copolymer is trafficked to late endosomes
and lysosomes for degradation. In most of the circumstances,
many of them may accumulate in vesicle within the cell instead
of being degraded by the lysosomal environment (Fox et al,
2009). This accumulation could result in toxicity over the time.
Our study revealed that two rats treated with HPMA copolymer
alone, showed interstitial infiltration and hemorrhage in the heart
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accumulation may lead to heart damage. Altogether the present
observations  suggest improved tolerability of HPMA
copolymer-DOX conjugate in respect to free drug but also pru-
dence with the use of HPMA copolymer for drug delivery.

In this study, identification of the onset of heart failure and its
progression was assessed non-invasively using echocardiography
because it could be repeated as often as needed and because it
has been approved for preclinical drug safety and toxicological
assessment (Hanton et al., 2008). EDV and left ventricular EF,, were
taken as markers of overt heart failure. Only three rats, out of
eleven rats treated with DOX, developed overt heart failure (Figure
4). Other rats died from other causes before developing signs of
heart failure. In another study in rats treated with free DOX, a

tissue, suggesting the possibility of HPMA copolymer greater incidence of heart failure was reported using
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Figure 11. Effects of different compounds on the components of BP short-term variability. Empty bars indicate saline-treated rats, light gray bars and dark gray bars
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Figure 12. A typical SBP spectrum of one rat before and after treatment with DOX. Note a decrease of spectral power in lower frequencies (VLF and LF) in rats 16

days after treatment by DOX.

echocardiography (Teraoka et al., 2000). The discrepancy with the
present study could be explained by the fact that Teraoka and col-
laborators (2000) carried out echocardiography in anesthetized rat
while we performed echocardiography in conscious sedated rats.
The inhibitory effect of anesthesia on autonomic cardiac perform-
ance is well established as well as the potentiating effect of anes-
thesia on negative inotropism (Stein et al., 2007). Acepromzine
used to sedate the rats in the present study, is a phenothiazine
that does not exert negative inotropic effects, but reduces periph-
eral resistance due to a4 blocking properties (Algren & Ashworth,
2015) improve heart performance. However, concomitant adminis-
tration with DOX is not recommended in veterinary practice (not
the case here) to avoid excessive perivascular leak of DOX and
DOX-induced vascular injury and sclerosis. Another intriguing find-
ing is that, by the end of follow-up period, rats treated with HPMA
copolymer-DOX conjugate exhibited about 50% increase in EDV
without changes in left ventricular EF,y. This finding could be an
early manifestation of postponed heart failure, as EDV is a more
sensitive indicator of heart failure than left ventricular EFy.
Additionally, EDV increased by about 25% in rats treated with
HPMA copolymer alone and this was accompanied by small (3%)
but statistically significant (Table 1) increase of left ventricular EF,.
The increase in EDV and EF,y could be attributed to HPMA's plasma
expander properties (Kopecek et al.,, 1973) and the increase in cir-
culating volume and heart filling. Alternatively, EDV increase could
be induced by the weakening and dilatation of the left ventricular
wall due to intra-mural hemorrhage.

HPMA copolymer-DOX conjugate and DOX did not affect
mean values of mean BP and HR. However, in DOX-treated rats
spectral analysis of HR indicates a decrease in HRV in lower spec-
tral frequencies and a decrease of the LF to HF HR ratio. The
decrease in HRV has been shown to be a bad prognostic sign in
heart failure patients (Ponikowski et al., 1997) but also in patients

suffering from hepatic failure (Haddadian et al.,, 2013; Mani et al,,
2009) and renal failure (Drawz et al., 2013), all of which have been
detected in DOX-treated rats. HR variability is created by the activ-
ity of the autonomic nervous system and to a much lesser extent
by the intrinsic heart mechanisms (Japundzic et al., 1990). Under
baseline physiological conditions, HRV is under dominant vagal
control depicted in the high frequency (HF) spectral range. During
stressful challenges, sympathetic nervous system impinges on HR
variability and increases low frequency (LF) spectral band (Sarenac
et al, 2011; Stojici¢ et al., 2008). Thus, LF/HF HR ratio increase
indicates a shift of sympatho-vagal balance in favor of the sympa-
thicus during stress. Conversely, a decrease in HR variability
denotes impaired autonomic control of the heart (Ponikowski
et al,, 1997) and this was found to occur in autonomic neuropathy
accompanying diverse diseases (Ranpuria et al, 2008; Stuckey &
Petrella, 2013). In present experiments, it is unlikely that a
decrease in HRV was induced by DOX-induced autonomic neur-
opathy as it is uncommon with DOX (Miltenburg & Boogerd,
2014). The possibility is that down-regulation of adrenergic
B-receptors reported to occur in the hearts of rats treated with
DOX (Tong et al., 1991) reduced the responsiveness of the heart
to normal sympathetic stimulation. Hence, reduction of HRV in
lower frequency range and reduction of the LF/HF ratio in present
experiments probably denotes reduced sensitivity of the heart in
DOX treated rats to sympathetic nervous system stimulation.

In present experiments, DOX treated rats, but not HPMA
copolymer DOX conjugate treated rats, exhibited a decrease in
BPV in VLF and LF frequency ranges and redistribution of spectral
power towards respiration-induced, HF range. The changes of BP
variability were observed in rats exhibiting hepato-renal toxicity as
well as in rats exhibiting heart failure. The spectral power of BP
low frequencies is set by an interplay of the sympathetic nervous
system, renin-angiotensin system (RAS) and locally produced



vasoactive molecules such as NO, bradykinin etc. (Japundzic-
Zigon, 1998). In present experiments reduction of VLF and LF BP
variability denotes reduction in peripheral resistance. This could
be either due to reduce sympathetic tone and RAS activity or
increased production of vasodilator molecules. For instance, in
hepatic failure increased production of nitric oxide, carbon mon-
oxide, endogenous cannabinoids and other molecules that
decrease vascular reactivity to vasoconstrictors, especially in
splanchnic vascular bed, is well documented (Fede et al., 2014).
Also increased expression of angiotensin converting enzyme type
2 has been reported to occurs in heart failure, as well as in hep-
atic and renal failures (Cohen-Segev et al., 2014; Patel et al,, 2016).
Increased level of ACE 2 and increased production of angiotensin
1-7 activates Mas receptors in arterial blood vessels that causes
vascular hypocontractility and vasodilatation (Dharmani et al.,
2007; Grace et al., 2013) that could contribute to the decrease of
lower frequencies in BP spectra. There is also a possibility that
DOX - induced damage of vascular endothelium contributed to
changes in BPV (Lopez-Miranda et al., 2010).

In present experiments, changes in BPV and HRV induced by
DOX were associated to multiple organ damage and predicted
bad outcome. These changes were not observed in HPMA
copolymer-DOX conjugate-treated rats who exhibited lower organ
toxicity and better survival. These findings support the use of
spectral analysis of BPV and HRV as tools for preclinical risk
assessment.

Conclusions

Altogether present findings show that HPMA copolymer-DOX con-
jugate-treated rats do not affect cardiovascular short-term variabil-
ity which predicted improved overall and cardiovascular
tolerability in respect to free DOX-treated rats who exhibited
reduced cardiovascular variability and low survival. HPMA
copolymer-DOX conjugate-treated rats and rats treated with
HPMA copolymer alone had increased EDV and some of them
showed microscopic injury of the heart tissue. Therefore, prudence
is suggested with the use of HPMA copolymer system for drug
delivery. Finally, our observations validate the use of echocardiog-
raphy and radio-telemetry along with spectral analysis of
cardiovascular short-term variability for preclinical risk assessment
of polymer drug conjugates in toxicology and safety
pharmacology.
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