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Abstract

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental
condition with no current treatment available. Although advances in genetics
and genomics have identified hundreds of genes associated with ASD, very
little is known about the pathophysiology of ASD and the functional contribution
of specific genes to ASD phenotypes. Improved understanding of the biological
function of ASD-associated genes and how this heterogeneous group of
genetic variants leads to the disease is needed in order to develop therapeutic
strategies. Here, we review the current state of ASD research related to gene
discovery and examples of emerging molecular mechanisms (protein
translation and alternative splicing). In addition, we discuss how patient-derived
three-dimensional brain organoids might provide an opportunity to model
specific genetic variants in order to define molecular and cellular defects that
could be amenable for developing and screening personalized therapies
related to ASD.
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Introduction

Autism spectrum disorder (ASD) is a phenotypically and geneti-
cally heterogeneous neurodevelopmental condition that mani-
fests as deficits in reciprocal social interaction, repetitive
behavior patterns, and restricted interests'. The prevalence of
ASD is as high as 1 in 68 children’ in the US, and ASD has a
profound impact at the individual, family, and societal levels.
Although environmental factors likely play some role in the
etiology of ASD’, family and twin studies show that genet-
ics contribute to the majority of the risk associated with ASD*.
Genome-wide studies using genotyping microarrays, whole
exome sequencing (WES), and whole genome sequencing have
identified a rapidly growing number of genes linked to ASD'*!,
providing a window into the molecular underpinnings of the
disorder. However, our understanding of molecular mecha-
nisms anchored to this heterogeneous group of genetic vari-
ants is not entirely clear. The paucity of disease-modifying
therapies or molecular diagnostic tools for ASD makes identi-
fying molecular disease mechanisms critical to assist develop-
ing rationally designed therapies. Additionally, details regarding
the time course of molecular alterations in ASD can inform
diagnostic biomarkers and quantitative measures to indicate
disease severity and evaluate the efficacy of future therapeutic
approaches.

Here, we review the recent progress in understanding the under-
lying genetics of ASD, including the identification of inher-
ited, de novo, and somatic mutations linked to the disease.
We then discuss how convergent disease mechanisms in ASD
can potentially translate into the most appropriate biomarker
development and treatment strategies for individuals or subtypes
(or both) with ASD. Finally, we consider the unprecedented
premise of patient-derived three-dimensional (3D) brain orga-
noids as appropriate models to test and validate the functional
impact of identified genetic variants as accessible and flexible
platforms to screen and test for therapeutic agents.

The complex genetic makeup of autism spectrum
disorder

The importance of heritable genetic variability in ASD
pathogenesis has been highlighted in twin and family studies.
The increased prevalence of the disease in siblings of ASD
patients and greater ASD concordance rates in monozygotic
twins compared with dizygotic twins has prompted significant
efforts toward understanding the genetic architecture of ASD
pathophysiology. Although the identification of mutations linked
to monogenic syndromic forms of ASD, including Fragile X*,
Rett*, MECP2 duplication’, tuberous sclerosis complex”, PTEN
macrocephaly”®, and Timothy”’ syndromes, provided key insights
into the genetic basis of ASD, these rare syndromes collectively
account for only about 5% of ASD cases”, leaving the etiology
of non-syndromic ASD cases mostly unknown. The highly
heterogeneous disease presentation of non-syndromic ASD
initially posed serious impediments for identifying reproduc-
ible ASD-associated mutations. Despite these challenges,
the assembly of large patient cohorts along with advances in
genomic technologies within the last decade has facilitated the
identification of ASD-associated variants in hundreds of genes,
including single-nucleotide variant (SNVs) and copy number
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variants (CNVs)”. The use of WES and whole genome sequenc-
ing in family cohorts with sporadic ASD (simplex) and with more
than one affected individual (multiplex) led to the discovery of
both rare inherited and de novo ASD risk variants. Rare reces-
sive mutations have been reported in genes such as CNTNAP2",
SLC9AY*', AMT?, PEX7", CC2DI1A*, and BCKDK*' in consan-
guineous families with ASD and epilepsy, highlighting the role
of recessive inheritance of deleterious mutations associated with
ASD. The role of inherited variants in ASD was further sup-
ported through WES in larger cohorts of unrelated families™*.
WES in large cohorts of simplex families (one affected child
sequenced together with unaffected parents) provided substantial
insight into the role of de novo (or spontaneous) genetic variants
in ASD. Numerous studies have reported increased rates of
rare de novo CNVs and SNVs in individuals with ASD!®0-18:3¢6
and have identified high-confidlence ASD genes, includ-
ing CHDS'®'*¥=  SYNGAPI*'<**!, DYRKIA", and SCN2A'.
Moreover, targeted sequencing approaches confirmed the recur-
rence of some of these de novo mutations in independent cohorts,
substantiating their role in ASD pathogenesis'****. Finally, one
very interesting group of genetic variants that has recently been
implicated in ASD is somatic mutations”~. Somatic muta-
tions can occur during development and yield mosaic individuals
with distinct cellular genomes in subsets of their somatic cells*.
Whereas routine genetic sampling from blood misses the
disease-associated somatic variants in the brain, targeted sequenc-
ing on ASD post-mortem tissue has detected increased rates of
deleterious somatic mutations in cases compared with controls®.
Interestingly, there may be some overlap of genes at risk for both
germline and de novo somatic mutations (for example, SCN2A)*.
Future single-cell sequencing approaches*’ will be informative to
identify and characterize cells that carry disease-related somatic
mutations**.

Taken together, recent advances in ASD gene discovery
highlight the complexity of the genetic landscape of the dis-
ease while beginning to shed light on some of the biological
pathways at risk in ASD. This complexity is underscored by the
potential for certain combinations of common genetic variants
contributing to ASD by increasing an individual’s susceptibil-
ity to pathogenic effects of rare inherited, de novo, or somatic
mutations. Given the progress in identifying high-confidence
risk genes for ASD, investigators can now direct their attention
to understanding the pathogenicity of this genetic variance and
identifying potential common convergent disease mechanisms
as molecular targets for future treatment strategies.

Convergent molecular mechanisms

One approach to understand pathogenesis and identify therapeu-
tic targets amid a complex genetic architecture is to elucidate
downstream pathways commonly affected across ASD cases
with distinct genetic etiologies. One example of a convergent
molecular mechanism includes defects in the regulation of
protein synthesis and alternative splicing (AS) as potential unifying
pathways for ASD™.

Precise regulation of translation at synapses during the tight
window of a learning experience has been shown to be extremely
critical for the formation and maintenance of long-term
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memory”’. Several mutations in translation factors and regula-
tors such as elF4E°°, TSC1/2*, and PTEN>' are associated
with ASD, underscoring the involvement of translational defects
in ASD pathogenesis. Furthermore, there is emerging evidence
showing dysregulated translational activity in cells derived
from non-syndromic ASD patients, including aberrant activity
of mammalian target of rapamycin (mTOR), a key regulator of
translation, suggesting translational dysregulation as a shared
pathogenic mechanism in genetically distinct ASD cases™°.
The inhibition of aberrant translation directly via compounds
targeting translation factors (for example, 4EGI-177) or by
modulating the mTOR pathway™ has been shown to prevent
autism-relevant phenotypes in mice and has been proposed as a
therapeutic strategy to correct dysregulated protein synthesis in
ASD*.

AS is co- or post-transcriptionally regulated by RNA-binding
proteins (RBPs) and tightly controlled during developmental
stages in a tissue-specific manner”. Given the limited number
of protein-coding genes in the human genome, AS is recog-
nized as an essential source of transcriptomic and proteomic
diversity driving the species-specific features of the human
brain®-*”. Dysregulation of AS in post-mortem brain tissue from
ASD patients with distinct etiologies has been increasingly
apparent as a convergent mechanism in ASD*-*. The transcripts
that are misspliced in ASD are enriched for neuronal RBP
targets, including those of RBFOX1%%, SRRM4, and PTBP1%,
suggesting that defective RBP function is a common feature of
ASD. Genetic evidence showing ASD-linked chromosomal trans-
locations and copy number variations in RBFOX1 also supports
a prominent role for loss or dysregulation (or both) of RBFOX1
activity in ASD pathogenesis'**“*. Loss of RBFOX1 in mice
causes deficits in synaptic transmission® and corticogenesis’’.
Neuronal-specific, activity-dependent, 3- to 27-nucleotide micro-
exons are frequently misspliced in ASD®"!. This group of genes
that are subject to microexon splicing is enriched for synaptic
functions and ASD genes*’'. These microexons are regulated
primarily by the neuronal RBP, SRRM4, which is downregulated
in ASD brains®. Haploinsufficiency of SRRM4 in mice resulted
in microexon misregulation and ASD-like features, including
altered social behaviors’'. These data highlight the function of
RBPs, including RBFOX1 and SRRM4, as essential for cortical
development and function and at risk in ASD. Taken together,
global dysregulation of RNA processing and protein transla-
tion is likely to be a common feature of genetically diverse ASD
cases, and the regulation of these processes might be a viable
target for therapeutic approaches.

Patient-specific disease models

The high degree of genetic heterogeneity in ASD requires
personalized approaches to understand the underlying individ-
ual pathogenic mechanisms and develop efficient treatments. In
addition, there is a need for improved model systems with
appropriate genetic backgrounds to test identified convergent
biological mechanisms such as the ones discussed above. Advances
in stem cell biology in the last decade have yielded protocols for
the generation of human neurons from accessible somatic tissue
(for example, skin), overcoming the unavailability of human
neurons from specific developmental stages or disease states.
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Briefly, human induced pluripotent stem cells (hiPSCs) are
generated by the ectopic expression of specific transcription
factors in somatic cells that then can be differentiated into
neurons or glia harboring the genetic features of the human
individual from whom the cells are derived, either the patients
or matched unaffected controls”. In addition, isogenic neurons
generated by introducing mutations in control iPSCs via gene
editing technologies—that is, CRISPR-Cas9”** and TALENs—
can be used to study the functional impact of disease-related
mutations on a non-disease genetic background.

Research adopting iPSC-based models has begun to impact
the understanding of the biological underpinnings of several
ASD-related genetic variants’*’’. In several instances, syndromic
forms of ASD, including Fragile X", Rett*, Timothy®*’, and
Phelan-McDermid* syndromes, have been modeled by using
iPSCs. These studies have defined disease-related defects in
patient-derived neurons, including reduced synaptic density,
impaired excitatory transmission, and aberrant signaling. Addi-
tionally, a recent study of iPSCs from an ASD patient with a
de novo mutation in TRPC6 confirmed the potential for patient-
specific disease modeling of rare ASD variants™.

Breakthroughs in iPSC culture systems have facilitated the
generation of more complex differentiation programs that yield
organ-like structures. These 3D brain organoids have been estab-
lished with the goal of improved recapitulation of brain devel-
opment and connectivity in vitro, providing an unprecedented
opportunity to study human brain features in a dish®*=*". A major
goal of using patient-derived 3D organoids is to perform high-
throughput drug screens to correct ASD-relevant cellular defects
and reliably predict drug responses specific to each individual.
In the future, standardization of 3D human brain organoid gen-
eration is needed for reliable and reproducible disease modeling.
Defining the functional properties and molecular signatures of brain
organoids derived from unaffected iPSCs at several time points
will provide insights into how this model system follows in vivo
human brain development and baseline information for disease
modeling. It will be important to address how the differentiation
process of 3D brain organoids corresponds to stages of human
brain development. This will be essential to identify and translate
the critical time window for successful therapeutic intervention.
Recent advances in single-cell RNA sequencing facilitate the
identification of cell types and differentiation states of diverse
human neuronal populations in fetal brain in vivo™ and have also
proven to be very useful for characterizing brain organoids®.
Integration of cell-specific gene expression profiles with regional
and developmental timing mechanisms has been elegantly carried
out from human fetal tissue®, and these data can be superim-
posed on the data derived from patient organoids to identify
aberrant profiles. Inherent limitations of 3D brain organoids
such as lack of behavioral output and circuit-based studies
should be addressed with complementary studies using animal

models'’.

In terms of cell-specific profiling, most research has gone into
characterizing the neuronal defects in ASD; however, the
involvement of glia has recently been implicated in many
neuropsychiatric diseases”. For example, a recent iPSC model
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provided evidence that defects in astrocytes can contribute to
non-syndromic ASD”" with unknown genetic cause. Therefore,
future strategies to develop therapies for ASD should not only
focus on neurons but also include all cell types in the brain. In
addition, these data support the promise of using iPSC models
from individuals with genetically complex etiologies to narrow
the therapeutic search window to common pathogenic mecha-
nisms. Improvements to brain organoid models that include many
cell types such as glia and endothelial cells from non-syndromic
ASD patients should further facilitate the identification of
patient-specific cellular deficits.

Conclusions

Technological and conceptual advances in genomics, stem cell
biology, and gene editing together with large cohorts of patients
are providing opportunities to identify genetic causes of ASD
and develop functionally relevant disease models. Integrative
studies that include post-mortem tissue, genomics, and single-
cell transcriptomics will continue to provide insights into human
brain development and how this process is disrupted in ASD.
By improved modeling of the disease using patient tissues and
incorporating data from genomic and gene expression studies
into these models, the field should move closer to developing
personalized therapeutic approaches as well as identifying com-
mon druggable molecular pathways. Thus, persistent pursuit of all
of the strategies discussed above will be needed to define
optimal personalized treatments that potentially could involve
several drugs in combination for additive or synergistic effects.
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