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Abstract

Background: The increasing spectrum of multidrug-resistant bacteria is a major global public health concern,
necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as
a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We
specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains
isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions.

Results: We report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis
Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from
Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis
Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis,
revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We
further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/
polyketide synthase (PKS/ NRPS) cluster in strains of this species.

Conclusions: B. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive
compounds than other previously characterized species of B. licheniformis, which suggests that these species are better
potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more
enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be
linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline
ecosystems.
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Background

Bacillus licheniformis is a Gram-positive facultative
anaerobe, dubbed an industrial workhorse due to its use
in several fields of biotechnology and its ability to se-
crete large amounts of commercially-used biomolecules
and enzymes [1, 2]. These include specialty chemicals
(e.g., citric acid and poly-y-glutamic acids) and enzymes
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(e.g., proteases and a-amylases used in the food, deter-
gent, textile and paper industries) [3—6]. Most import-
antly, the antimicrobial capabilities of B. licheniformis
have been widely reported [7-11] and several B. liche-
niformis strains have been used as biocontrol agents
[12-15] (e.g., EcoGuard). Moreover, B. licheniformis
strains are used in the petroleum industry for micro-
bially enhanced oil recovery [7, 16] due to their abil-
ity to produce lipopeptide biosurfactants.
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B. paralicheniformis is a recently described new spe-
cies within the Bacillus genus [17]. Despite the phylo-
genetic proximity to B. licheniformis that suggests
biotechnological relevance, this species remains largely
unexplored. The first description of B. paralichenifor-
mis showed that it displayed a wider range of anti-
microbial capabilities than B. licheniformis, despite
being unable to produce lichenicidin or bacteriocins
as does B. licheniformis [18].

A genomic-scale comparison of strains in both species
can provide insights into their potential metabolic pro-
cesses, their biosynthetic capabilities, and their stress ad-
aptations. The evaluation of these properties helps to
identify potential industrially relevant strains with novel
and/or improved production capabilities of desired com-
pounds [19-22]. One way of assessing the production
capabilities of these strains is through the identification
of gene clusters that are co-localized in the genome [23].
These biosynthetic gene clusters (BGCs) include nonri-
bosomal peptide synthetases (NRPSs), polyketide
synthases (PKSs), and ribosomally synthesized and
post-translationally modified peptides (RiPPs) [24].

Ecologically, strains of B. licheniformis and B. paraliche-
niformis inhabit diverse environments including marine,
freshwater, and food-related niches. This diversification in
ecological, and phenotypic properties has led B. lichenifor-
mis to become one of the most studied Bacillus species.
Reason being, Bacillus strains such as these that are
adapted to survive in high osmolarity environments, and
have metabolic capacities similar to industrial strains are
highly desirable. As in industrial settings, strains are often
challenged with increased external osmolarity due to the
high-level secretion of metabolites into the growth
medium, threatening their productivity, and/or viability
[25-27].

An environment that should be explored for such
resilient, productive Bacillus strains is the Red Sea
that exhibits relatively high salinity (36-41 p.s.u), and
temperature (24 °C in spring, and up to 35 °C in
summer) [28]. It is expected that strains from this en-
vironment are able to produce a number of
thermo-tolerant enzymes, as well as provide robust
microbial cell factories that are able to survive fre-
quent exposure to high salinity and high temperature,
and produce sturdier enzymes that might be better
suited for industrial applications [29].

In this study, we sequenced and assembled genomes of
two Bacillus strains, B. paralicheniformis Bac48 and B.
paralicheniformis Bac84, both isolated from the Rabigh
Harbor Lagoon of the Red Sea in Saudi Arabia. The rea-
son for this selection has been that we previously re-
ported that antimicrobial activity exhibited by B.
paralicheniformis Bac84 is more pronounced than B. para-
licheniformis Bac48, against three-indicator pathogens:
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Staphylococcus aureus, Salmonella typhimurium, and
Pseudomonas syringae [30]. In the current study we aimed
at studying the relevant differences between these two spe-
cies in more details. Specifically, we estimated the biosyn-
thetic potential of the two Red Sea strains, along with nine
B. licheniformis and three B. paralicheniformis strains. By
grouping identified BGCs into families of gene clusters
using genomic similarity, we highlighted the overall unex-
plored biosynthetic potential of strains from both groups.
We further showed the unique presence of putative anti-
microbial clusters in the Red Sea strains, focusing on one
uniquely structured hybrid PKS/NRPS cluster that was
identified in the genome of the B. paralicheniformis Bac48.

Results

Features of the genomes of the Red Sea Bacillus strains
Sequencing the genomes of the Red Sea strains using
the SMRT (single molecule real-time) sequencing plat-
form produced 138,867 subreads with a mean length of
9586 bp (298x genome coverage) for B. paralichenifor-
mis Bac48 and 108,978 subreads with a mean length of
10,964 bp (273x genome coverage) for B. paralichenifor-
mis Bac84 (Additional file 1: Table S1 and Table S2).
The assembly produced a single circular chromosome
without plasmids for both strains. B. paralicheniformis
Bac48’s circular chromosome is 4,464,381 bp in length
containing 4366 predicted open reading frames (ORFs);
51.5% of the genes are on the positive strand, and 48.5%
are on the negative one. B. paralicheniformis Bac84’s cir-
cular chromosome is 4376,831 bp in length containing
4306 predicted ORFs; 47.8% of genes are on the positive
strand and 52.2% are on the negative one. Both genomes
have 24 rRNAs and 81 tRNAs genes (Table 1).

Genomic island (GI) prediction identified five Gls in
B. paralicheniformis Bac48 that include three unique re-
gions (totaling 64.3 Kb and representing 1.4% of the gen-
ome) and 14 Gls in B. paralicheniformis Bac84 (totaling
142.8 Kb and representing 3.3% of the genome) (Fig. 1,
Additional file 1: Table S3). Analysis of prophage se-
quences in the genome revealed three prophage regions
in B. paralicheniformis Bac48 (124 genes), with one of
them partially overlapping with a GI. Similar analysis in
B. paralicheniformis Bac84 also identified three pro-
phage regions (121 genes), with two of them partially
overlapping with GIs as well (Fig. 1, Additional file 1:
Table S4). When compared with the complete genome,
the percentage of the genome that constitutes prophages
is 2.4% for B. paralicheniformis Bac48 and 2.6% for B.
paralicheniformis Bac84.

These values suggest a reduced number of horizontally
transferred elements, and are comparably lower than
values in genomes of other industrially important strains
such as B. licheniformis DSM 13 (where GIs represent
4.8% and prophages represent 6.2% of the genome). This
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Table 1 Summary of the genomes and annotation of nine B. licheniformis and five B. paralicheniformis strains

Strain GenBank Genome N’ N’ N’ rRNA genes N'tRNA GC Genomic  Prophage% Environment Ref.
accession size (Mb) contigs ORFs (55, 16S, 235) genes content% islands%
number
B. CP023666 4.46 1 4366 24 81 45.87 14 24 Mangrove mud -
paralicheniformis
Bac48
B. CP023665 438 1 4306 24 81 45.84 33 22 Microbial mat -
paralicheniformis
Bac84
B. licheniformis AE017333.1 422 1 4256 21 72 46.19 48 6.2 N/A [2]
DSM13
B. licheniformis ~ CP014781.1 425 1 4293 24 81 4592 58 36 Fermented food -
HRBL-15TD
B. licheniformis CPO12110.1 429 1 4343 24 79 46.1 6.6 44 Soil from Salt [74]
WX-02 Mine
B. licheniformis ~ CP017247.1 442 1 4533 24 81 46 9 76 Soybean paste -
BL1202
B. licheniformis ~ CP014795.1 43 1 4372 24 81 4593 6.2 6 Korean soybean -
SCKB11 paste
B. Licheniformis ~ CP014842.1 ¢ 434 2 4369 24 83 46.27 35 29 Korean soybean -
SCDB 14 CP014843.1 © paste
B. licheniformis ~ CP014793.1 448 1 4612 24 81 4569 12.2 79 Korean soybean -
SCDB 34 paste
B. licheniformis CP014794.1 44 1 4496 24 81 45.96 10 8 Korean soybean -
SCCB 37 paste
B. licheniformis CM007615.1  4.28 10 4376 6 65 45.87 57 4.8 Hot spring [75]
YNP1-TSU
B. CP005965.1 4.38 1 4392 21 72 459 4.8 1.9 Soil [76]
paralicheniformis
ATCC 9945a
B. CP010524.1 439 1 4421 21 72 459 23 3 Natural -
paralicheniformis fermented sour
BL-09 congee
B. CP020352.1 435 1 4363 24 81 459 2.1 16 Rhizosphere -
paralicheniformis
MDJK30
“Chromosome
bPlasmid

paucity of horizontal gene transfer in B. paralichenifor-
mis Bac48 and B. paralicheniformis Bac84 genomes is an
advantage, as removing GIs and prophages is a necessary
step for stabilizing minimized genomes and for stream-
lining metabolism in biotechnological hosts [31].

Phylogenetic positioning of the Red Sea Bacillus strains
For a comprehensive comparative analysis of the
genomes and to ascertain the phylogenetic position of
Bac48 and Bac84 within the Bacillus genus, a phylogen-
etic tree was generated using 494 orthogroups (Fig. 2).
According to Wang and Ash [32], phylogenetic trees of
Bacillus that use this approach are more in line with re-
sults from the whole genome feature frequency profiling
and are more accurate than phylogenetic trees based on
single marker genes such 16S rRNA, gryB (gyrase sub-
unit B) or aroE (shikimate-5-dehydrogenase) genes.

Other than the two Red Sea strains, our phylogenetic
analysis included ten B. licheniformis strains, three B.
paralicheniformis strains and 22 genomes from other
representative Bacilli [33]. The resulting tree (Fig. 2)
shows the phylogenetic proximity of Bac48 and Bac84 to
B. paralicheniformis strains and reveals them to be more
distantly related to B. licheniformis than previously re-
ported [30].

Exploring the biosynthetic potential of B.
paralicheniformis Bac48 and B. paralicheniformis Bac84

To evaluate the biosynthetic potential of the two species
(B. licheniformis and B. paralicheniformis), nine
complete B. licheniformis and five complete B. paraliche-
niformis genomes, including the two Red Sea strains,
were used (Table 1).
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Fig. 1 Circular plots of (a) B. paralicheniformis Bac48 and (b) B. paralicheniformis Bac84 genomes, showing the distribution of genomic islands,
prophages and biosynthetic genes in the genomes. The tracks show the following features starting from the outermost track; 1st track (pink):
genes on the positive strand; 2nd track (blue): genes on the negative strand; 3rd track (yellow): biosynthetic gene clusters; 4th track (red): horizontally
transferred genes; 5th track (green): genes in prophage regions; 6th track: GC-plot where purple and green correspond to below and above average
GC content, respectively; 7th track: GC-skew where purple and green correspond to below and above average GC-skew, respectively

On average, each of the analyzed genomes comprised
34 putative biosynthetic gene clusters that were pre-
dicted by antiSMASH [24]. These clusters encode pep-
tides/proteins associated with the biosynthesis of one of
the following types of secondary metabolites: bacterio-
cins, lanthipeptides, NRPS, type III PKSs, hybrid PKS/
NRPS clusters and unclassified clusters (Fig. 3). This
analysis showed that B. paralicheniformis strains have
more biosynthetic genes (~ 8.5% of total predicted ORFs)
compared to B. licheniformis (~6.3% of total predicted
OREFs). In this study, we focus on two types of com-
pounds that are often associated with high antimicrobial

activity: 1/ modular clusters (NRPS and modular PKS),
and 2/ ribosomally synthesized peptides, namely modi-
fied and unmodified bacteriocins.

A total of 480 BGCs were classified into 54 groups
(also referred to as gene cluster families GCFs) using
scoring similarity networks as implemented in
BiG-SCAPE (Fig. 4) [34]. Interestingly, only 6 GCFs
(ca. 11% of the total) were assigned to clusters that
produce known products or have a similar pathway
using threshold similarity of 60% (Additional file 1:
Figure S2). This highlights the limited knowledge
available for the analyzed strains. Furthermore, these

Clostridioides difficile CD196

Tree scale: 0.1 »—14:

Fig. 2 Maximum-likelihood phylogenetic tree of 35 genomes constructed using 494 orthologous groups. Clostridioides difficile CD196 was used as
the outgroup. Bac48 and Bac84 are placed with the B. paralicheniformis subgroup
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Fig. 3 Distribution of genes in biosynthetic gene clusters in nine B. licheniformis and five B. paralicheniformis genomes. Clusters with modular
genes are marked with a star and clusters encoding for ribosomally synthesized peptides are marked with a triangle
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unexplored secondary metabolites can potentially pro-
vide new antimicrobial agents and compounds of in-
dustrial importance, thus warranting future studies of
these BGCs to identify their functions.

Nonribosomal peptides and modular polyketides
Modular genes in NRPS and PKS clusters are of critical
importance when assessing the biotechnological value of
strains. Understanding the organization of domains in
modules could help advance efforts for the synthesis of
products with amended physiochemical properties and
enhanced bioactivity [35].

The identified NRPS clusters were grouped into four
GCFs with predicted products (Fig. 4). The first group,
we found to be conserved across all B. licheniformis and
B. paralicheniformis strains, has 46 genes on average per
genome, and shares 46% of its genes with the bacillibac-
tin cluster, a siderophore commonly produced in the Ba-
cillus genus [36]. The second GCF of NRPS clusters has
43 genes that include the lichenysin operon (licABC), an
efficient biosurfactant from the surfactin family [37-39].
The third and fourth NRPS clusters were only detected
in the B. paralicheniformis strains, including B. parali-
cheniformis Bac48 and B. paralicheniformis Bac84, with
50 and 45 genes and with 86 and 100% similarity to the
BGC of the antifungal fengycin [40-42] and the
narrow-spectrum antibiotic bacitracin [43-46], respect-
ively. In fact, hierarchical clustering shows distinctive
presence/absence patterns of BGCs in the two different
groups (Fig. 4).

A hybrid PKS/NRPS cluster was identified in the
genome of B. paralicheniformis Bac48 (Fig. 5). To the
best of our knowledge, this is the first trans-acyltransferase
(trans-AT) PKS/NRPS cluster reported in strains of
this species. Trans-AT PKS biosynthetic clusters are
an emerging class of modular PKSs that are becoming
more commonly found in microbial genomes [47].
Structurally, a trans-AT PKS cluster is different from
a typical cis-AT PKS in that the AT domain, which
loads the substrate onto acyl carrier protein domains
(ACPs), is encoded in a separate ORF as independent
polypeptide and not integrated into the assembly line
[47]. Other trans-AT PKS/NRPS clusters reported
within the genus Bacillus is the antibiotic bacillaene
pksX cluster found in B. subtilis [48] and the bae op-
eron in B. amyloliquefaciens [48]. The hybrid
trans-AT PKS/NRPS cluster is located 14.6 Kb down-
stream of a lichenysin synthase operon (licABC). The
cluster was predicted as a single BGC along with the
lichenysin operon; however, due to the large
non-biosynthetic gap between the two clusters, the
predicted cluster was split into two. The resultant
BGC is composed of 29 genes. The cluster extends
over 82.8 Kb, which is close in size to the bacillaene
and pksX cluster (~80 Kb) [49]. One of the architec-
tural differences between this cluster and the other
trans-AT PKS clusters in Bacillus is that there is one
NRPS module with its domains (adenylation, conden-
sation and peptidyl carrier domains) extended over
two ORFs, while on the other hand, the bae cluster
has two NRPS modules in two ORFs [49].
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Fig. 4 Heat map visualization of the number of genes in BGC groups. There are 54 GCFs with BGCs shared by at least two genomes and 20 BGCs
identified to be unique (present in one genome). The number of genes in each GCF is normalized based on the maximum number of genes. Putative
clusters are predicted using the ClusterFinder algorithm as implemented in antiSMASH [24]
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Fig. 5 Structure of the hybrid PKS/NRPS cluster present in B. paralicheniformis Bac48. Biosynthetic genes are identified with red arrows
while non-biosynthetic genes are identified with blue ones. Domains are abbreviated as follows: adenylation (A), ketosynthase (KS), ketoreductase (KR),
condensation domain (C), acy! carrier protein (ACP), peptidyl carrier domains (PCP), c-methyltransferase (cMTA), o-methyltransferase (oMT), enoyl-CoA
hydratases (ECH), dehydratase (DH), acyltransferase docking site (Trans-AT docking) and acyltransferase (AT)
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The cluster encodes nine multi-domain ORFs, consist-
ing of one adenylation domain (A), 16 ketosynthase do-
mains (KS), ten ketoreductase domains (KR), two peptidyl
carrier domains (PCP), 18 acyl carrier protein domains
(ACP), nine dehydratase domains (DH), two enoyl-CoA
hydratases domains (ECH), two c-methyltransferase do-
mains (cMT), two o-methyltransferase domains (oMT),
and one condensation (C) domain. We also identified
truncated AT domains that could be used as binding sites
for trans-acting AT. The order of the PKS domains and
the absence of integrated AT domains in all of the nine
PKS/NRPS ORFs in this gene cluster suggest that this is
indeed a trans-AT PKS cluster, with two trans-acting AT
domains encoded by ORFs that are independent from the
polypeptide assembly line. Moreover, the cluster showed
similarity to known trans-AT PKSs (71% to elansolid and
57% to thiomarinol) (Additional file 1: Figure S3). Com-
paring this cluster to known clusters in Bacillus revealed a
57% similarity to the bacillaene cluster in Bacillus amyloli-
quefaciens FZB 42. The incomplete homology between
the modular genes in this cluster and known clusters in
the MIBiG database indicates that the potential active
compound synthesized by the trans-AT PKS/NRPS cluster
might be a completely novel compound or a compound
with similarity in activity to these known compounds. We
further identified a putative promoter sequence in the
intergenic region upstream of this cluster (Additional file),
which strengthens the possible functionality associated
with the trans-AT PKS/NRPS cluster.

Ribosomally synthesized peptides and post-translationally
modified peptides (RiPPs): Bacteriocins and lanthipeptide
There is at least one bacteriocin cluster family in each of
the analyzed genomes. One of the families was con-
served across all the B. licheniformis and B. paralicheni-
formis strains, with an average of nine genes. The
clusters in this group had three biosynthetic genes (ribo-
somal mythelotransferace accessory protein, carbohy-
drate esterase and an uncharacterized protein) and
showed no similarity to any known bacteriocin. Another
head-to-tail bacteriocin cluster family was detected in
the genomes of B. paralicheniformis strains ATCC
9945a, BL-09 and Bac84. Clusters in this family had
mostly uncharacterized genes and showed no evident
similarity to any known bacteriocin.

Lanthipeptides are a type of bacteriocins that often
contain unusual amino acids such as lanthionine and
undergo post-translational modification. The fact that
these post-translational modification genes are highly
conserved assists in the in silico prediction of lanthipep-
tide clusters [50]. Other features common to lanthipep-
tide clusters include immunity genes and ABC
transporters for bacteriocin export [51].
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We found that two-component class II lanthipeptides,
in which two peptides processed by a modifying enzyme
(lanM) [52], are the most common lanthipeptides in the
analyzed genomes. B. licheniformis strains have three
genes mapping to IchAl, IchA2 and IchM1 in the class II
lanthipeptide lichenicidin VK21 cluster. The absence of
lichenicidin post-translational modification genes in B.
paralicheniformis is a distinguishing feature between the
two species. A lanthipeptide cluster was detected in the
B. paralicheniformis genomes (MDJK30, BL-09 and
ATCC 9945a), and in B. licheniformis SCDB 34 with a
mersacidin-like structural gene. The cluster is predicted
to be of class II lanthipeptides as it has the lanM
post-translational modification enzyme. However, other
mersacidin genes (mrsK2, mrsR2, mrsF, mrsG and mrsE)
were not detected, indicating that the cluster might be
involved in the synthesis of a new product with partial
genomic similarity to the genes encoding for the anti-
biotic mersacidin. No lanthipeptide clusters were pre-
dicted in the Red Sea strains; however, the genomes of
B. paralicheniformis Bac84 harbored a lantibiotic-like
cluster, with the subtilin biosynthesis post-translational
modification gene spaB that encodes the dehydratase of
the lanthionine in the subtilin gene cluster (PFAM:
PF04738) and subtilin ABC transporter permease
(spaG). The cluster was not predicted as a lanthipeptide
as it lacked other genomic features including the
post-translational modification enzyme necessary for the
cyclization of lanthionine (spaC in the subtilin cluster)
and other immunity genes. Additionally, seven genes in
the cluster were similar to genes in the rhizocticin bio-
synthetic cluster, an unusual peptide with antimicrobial
activity.

Discussion

Alignment of the B. paralicheniformis Bac48 and B.
paralicheniformis Bac84 genomes, showed the two ge-
nomes to be highly syntenic, except for three large re-
gions present in the B. paralicheniformis Bac48 genome
that are absent from the B. paralicheniformis Bac84 gen-
ome (Additional file 1: Figure S1 A and B). The largest
non-syntenic block is a ~ 83 Kb region in which the pre-
viously described trans-AT PKS/NRPS cluster resides.
More specifically, it is worth noting that the trans-AT
PKS/NRPS cluster in B. paralicheniformis Bac48 has a
27.59% overlap (8 horizontally transferred genes) with a
genomic island. Moreover, a bacteriocin cluster com-
posed of 16 genes, has 62.5% overlap with a genomic is-
land in B. paralicheniformis Bac84 (10 horizontally
transferred genes) (Fig. 1). Obtaining such foreign genes
can alter the genotype of a strain through the acquisition
of novel metabolic capabilities or altering the existing
ones. Herewith allowing strains to adapt/survive in dif-
ferent ecosystems (in this instance, mangrove mud as
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opposed to microbial mat) [53-55]. This makes the dis-
covery interesting as we previously reported [30] that
these strains exhibit different antimicrobial activity; spe-
cifically, B. paralicheniformis Bac84 has stronger anti-
microbial potential against three-indicator pathogens:
Staphylococcus aureus, Salmonella typhimurium, and
Pseudomonas syringae. Thus, the disparity associated
with the antimicrobial activity could be a consequence
of the foreign genes providing a novel product with anti-
microbial activity.

Also, our analysis showed that the number of NRPS
clusters (e.g., lipopeptides) with known predicted prod-
ucts significantly outnumber RiPP clusters with known
predicted products, as only lichenicidinVK21 was identi-
fied in these clusters. This difference is expected as Fir-
micutes have been one of the most important sources
for the discovery of new lipopeptides, especially as lipo-
peptides are highlighted to be attractive pharmaceutical
or/and industrial products. Investigating the functions of
genes in RiPPs showed that, although some of their
genes are similar to the ones in known clusters, they are
incomplete, with genes absent from the clusters in most
of the cases, prevents the use of assigned databases such
as MIBiIG to determine their final products. Genes in
RiPPs from other partially sequenced genomes encode
known products such as the recently discovered novel
lanthipeptide formicin, produced by B. paralicheniformis
APC 1576 [56], the bacteriocin bacillocin 490 produced
by B. licheniformis 490/5 [57] and the bacteriocin-like li-
chen produced by B. licheniformis 26 L-10/3RA [58].
However, B. paralicheniformis RiPPs are understudied
and the data presented in this in silico analysis highlights
the potential for these organisms and the need for fur-
ther work to validate these findings.

Conclusion

Several proteins synthesized by B. licheniformis strains
have high industrial value and are exploited in many
applications. However, the bioactive potential of B.
paralicheniformis species is not completely explored.
Here, we report B. paralicheniformis strains are more
enriched with lipopeptide encoding genes compared
to B. licheniformis strains. Moreover, the two Red Sea
strains, B. paralicheniformis Bac48 and B. paralicheni-
formis Bac84, were shown to be more enriched with
gene clusters that biosynthesizes bioactive com-
pounds. In spite of the high synteny between the two
genomes, we show that B. paralicheniformis Bac48 is
more enriched in structurally unique modular PKS
clusters compared to B. paralicheniformis and B.
licheniformis strains. In future work, more experimen-
tal testing is needed in order to exhaustively examine
all potential bioactive compounds and the cause of
antimicrobial discrepancy between the two strains.
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Method

Sampling, isolation and purification of bacterial strains
The sampling, isolation and purification of strains Bac48
and Bac84 were previously described by Al-Amoudi et
al. (2016) [30]. Both strains were isolated from samples
collected from the Rabigh Harbor Lagoon by the Red
Sea in Saudi Arabia (39°0'35.762°'E, 22°45'5.582"" N).
Bac48 was isolated from samples that were taken from
mangrove mud; while Bac84 was isolated from a microbial
mat located 7.5 m away from the lagoon. Eight grams of
each sample were homogenized using 10 mL of sterilized
Red Sea water at low speed. The supernatant was diluted 5
and 25 folds and plated on media prepared with artificial
seawater. Microbial culture containing Bac48 was grown
on actinomycetes isolation agar; while culture containing
Bac84 was grown on Difco Marine broth 2216 gellan gum
media. Inoculated plates were incubated at 28 °C for up to
28 days. Pure colonies were obtained after multiple success-
ful transfers based on morphology then frozen at — 80 °C in
ddH,O for DNA extraction and 30% glycerol solution for
long-term storage.

DNA extraction and sequencing

Biomass of B. paralicheniformis Bac48 and B. paraliche-
niformis Bac84 was obtained after growth under optimal
conditions [30]. Genomic DNA was extracted using the
Sigma’s GenElute Bacterial Genomic DNA Kit (USA) fol-
lowing the manufacturer’s protocol followed by a second
purification step using MO BIO PowerClean Pro
Clean-Up Kit (USA). As quality control measures, over-
night gel electrophoresis and NanoDrop (Thermo Fisher
Scientific, USA) were used to assess purity of DNA,
while Qubit 2.0 (Life Technologies, Germany) was used
to quantify the DNA. Whole genome sequencing was
performed at the Core Lab sequencing facility at KAUST
using the PacBio RS II sequencing platform (Pacific Bio-
sciences, USA). The large-insert libraries were se-
quenced in  single-molecule real-time (SMRT)
sequencing cells using P6-C4 chemistry.

Genome assembly

Raw data from PacBio’s RS II were assembled using Pac-
Bio’s SMRT Analysis pipeline v2.3.0. using default pa-
rameters and genomeSize of 6,000,000 bp, which
produced a single contig per library. We visually
checked for overlapping ends using Gepard v1.40 [59]
which would indicate circular genomes. To circularize
both genomes, one end of each contig was trimmed to
reduce the amount of overlap, then each contig was split
into two halves which were then rejoined using mini-
mus2 [60]. After circularization, multiple rounds of as-
sembly polishing were performed using the SMRT
Analysis Resequencing protocol until convergence
(Additional file). To assess the quality of the genomes
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and estimate their completeness and contamination,
checkM v1.0.6 [61] taxonomic workflow was used,
utilizing single copy genes in the genus Bacillus.

Genome functional annotation and analysis

The complete genome sequences for B. paralicheniformis
Bac48 and B. paralicheniformis Bac84 were annotated
using the Automatic Annotation of Microbial Genomes
pipeline (AAMG) [62] with default parameters (BLAST
bit score of 30) and Prodigal [63] as the chosen gene pre-
dictor. For details about the annotation pipeline, tools and
databases used, refer to [62].

The overall genome similarities between B. paraliche-
niformis Bac48 and B. paralicheniformis Bac84 were
inspected using a dot plot that was generated with
Gepard v1.40 [59]. Genome variation and synteny were
inspected between the two strains using Sibelia v3.0.6
[64]. Prediction of genomic islands was done using
IslandViewer v3 [65] and the identification of phage in-
serts was performed using PHASTER [66]. Finally, circu-
lar visualization of the genomes and annotated features
were plotted using DNAPIotter [67].

Strain identification and phylogeny

To build the phylogeny tree, orthologous protein groups
(orthogroups) were obtained using OrthoFinder v2.2.1
[68] with default settings. Briefly, an all-vs-all BLASTp
analysis [69] was initially performed for the preliminary
assignment of gene pairs. Gene pairs were then filtered
based on the length-normalized BLAST bitscores to
generate a gene pair graph for all-vs-all species. Next,
orthogroups were inferred from the graph using the
MCL tool v14.137 [70]. After establishing orthology,
gene trees were constructed for all orthogroups in the
core genomes (all species present) using the
alignment-free tool DendroBlast [71] and FastMe v2.1.10
[72]. The Species tree was then reconstructed with sup-
port values from the consensus of all gene trees using
STAG v1.0.0 (https://github.com/davidemms/STAG) and
rooted based on duplication events using STRIDE v1.0.0
[https://doi.org/10.1093/molbev/msx259]. We visualized
the tree using iTOL (https://itol.embl.de/) [68].

Biosynthetic gene cluster prediction

Only published strains with complete genomes were in-
cluded in the analysis to ensure that the identified varia-
tions were indeed due to functional differences and not
due to the quality of assembly. At the time of our study
(May 2017) 12 strains satisfied these requirements, nine
B. licheniformis and three B. paralicheniformis. To avoid
potential bias resulting from using different annotation
pipelines, all strains were reannotated using the same set
of tools and databases.
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Biosynthetic and secondary metabolic gene clusters
were predicted using antiSMASH v3.0 [24] with the
ClusterFinder option [23]. Additionally, the KnownClus-
terBlast option was used to identify potential products
for the clusters from the MIBiG database. Each BLAST
hit for the 54 GCFs were manually checked to ensure
the similarity accounts for the core biosynthetic genes in
the cluster. The promoter prediction tool provided by
Softberry [73] was used to predict promoter sequences
in the intergenic region upstream of predicted BGCs in
the genomes of B. paralicheniformis Bac48 and B. para-
licheniformis Bac84.

Additional file

Additional file 1: Table S1. Basic statistics relating to the PacBio SMRT
sequencing that was done for B. paralicheniformis B48 and B84. A single
SMRT cell was sequenced for each strain. Table S2. Levels of completeness
and contamination in Bac48 and Bac84 as determined in CheckM.
Figure S1. Similarity between the genomes of B. paralicheniformis
Bac48 and B. paralicheniformis Bac84. A) Circos figure showing synteny
blocks between B. paralicheniformis Bac48 and B. paralicheniformis Bac84.
Table S3. List of genomic island regions in the genomes of B.
paralicheniformis Bac48 and B. paralicheniformis Bac84, predicted using
IslandViewer [4]. Table S4. Predicted prophage regions in B.
paralicheniformis Bac48 and B. paralicheniformis Bac84 and their overlap with
Gls. Scores were obtained using PHASTER [5] scoring scheme. Most
Common Phage shows the phage ID(s) with the highest number of
proteins most similar to proteins in the region. Overlap percentage
show the length of overlap region with respect to the length of
prophage. Figure S2. Similarity network showing 54 groups of similar
BGCs. Strains are color coded as per the legend. A product is
assigned - shown on top of each group of nodes- if the clusters in
the group share more than 60% similarity to the product. Similar
gene clusters from different genomes were classified into groups
based on homology using BiG-SCAPE [33] and visualized using Cytos-
cape [6]. (DOCX 4336 kb)
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