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Abstract
Purpose of review: Leukodystrophies are genetic dis-
orders primarily and predominantly affecting CNS

white matter. They are associated with connotations Cell

such as “much unknown,” “progressive myelin loss,” [SplaEemet

and “nothing can be done.” Recent technological Multimodel
progress is reversing this picture. Recent findings: therapy

Next-generation sequencing has created the revolu-
tion of whole-exome/genome sequencing, allowing
disease definition and gene identification for numer-
ous ultra-rare disorders by focusing on very small enzyme replacement,
groups and individual patients. Knowledge of many substrate reduction,
new “white matter proteins” is transforming our un- modulation ECM, etc.
derstanding of white matter physiology and patho-

physiology. Regarding therapy, especially stem cell

and gene therapy are evolving rapidly, aiming at personalized therapy for a specific patient
with a specific disease. Multimodal approaches targeting multiple aspects of the disease
hold the highest promise. Summary: Technological developments are revolutionizing the
leukodystrophy field. Unknown becomes known and untreatable becomes treatable. New in-
sight is that not all leukodystrophies are irreversible and that some improve spontaneously.
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eukodystrophies can be defined as genetic disorders primarily and predominantly
affecting the white matter of the CNS. There are many different leukodystro-
phies, most of which are rare or exceedingly rare, hampering diagnosis and ther-
apy development.

Patients with the same leukodystrophy share distinct patterns of abnormalities on MRI, dif-
ferent from the patterns seen in other leukodystrophies. This is the basis of MRI pattern rec-
ognition, which greatly facilitates the diagnostic process and has allowed definition of “novel”
disorders among the numerous patients with an unclassified leukodystrophy. The genes
mutated in these newly defined disorders were initially mainly found through genetic linkage
studies. These strategies require numbers, both at disease definition and gene hunting stages.
They worked well for more common leukodystrophies, but not for very rare disorders. The
required new technology came with next-generation sequencing, which allowed whole-exome
sequencing and whole-genome sequencing in small groups of patients, single families, or even
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single patients. Using this technology, a rapidly increasing number of new leukodystrophies
and their underlying genetic defects has been and is being defined.

Definition of new diseases and identification of the related genes have provided important
information to patients and families particularly regarding family planning, but advances in
treatment have been elusive. Very few leukodystrophies are treatable in the earliest disease
stages by IV “hematopoietic stem cell (HSC) transplantation” (HSCT), with considerable
morbidity and mortality and uncertain outcome. Gene therapy strategies were a failure in the
1990s and neural stem cell transplantation was hampered by issues of immune rejection and
ethical debates about the source of the stem cells. New technologies were also needed to
address treatment.

New genes, pathomechanisms, and leukodystrophy concepts

The traditional view on leukodystrophies is that they are diseases in which not enough myelin is
formed (hypomyelinating disorders) or in which myelin is lost (demyelinating disorders) on the
basis of a genetic defect.' Myelin vacuolization never entered the official leukodystrophy
definition, although it was already clear in 1996 that the pathologic basis of megalencephalic
leukoencephalopathy with subcortical cysts (MLC), well accepted as a leukodystrophy,” is
myelin vacuolization and not myelin loss.?

Only recently has molecular insight shed light on mechanisms underlying intramyelinic
edema. MLC is caused by mutations in 2 genes: MLCI and GLIALCAM.?> Defects in both
genes lead to loss of MLC1 function, which concerns volume regulation by astrocytes.?
Whole-exome sequencing revealed that defects in chloride channel 2 (CIC-2), encoded by
CLCN2, and connexin32, encoded by G/BI, may also lead to brain myelin vacuolization.*
Important additional information is that mutant mice with loss of CIC-2 function are blind
due to a severe retinopathy and have myelin vacuolization throughout the CNS, except the
optic nerve, where no action potentials occur because of the blindness. Together, these pieces
of information indicate that the process disrupted in MLC and CIC2-related disease concerns
compensation of intramyelinic water generated by action potentials (cartoon in reference 4)
and that MLC1, CIC2, and connexins are important proteins in this process.

The MRI features of myelin vacuolization are not uniform. Diffusion parameters are deter-
mined by the size of vacuoles and extracellular spaces. In most cases of acute myelin vacuoliza-
tion, intramyelinic vacuoles are small and extracellular spaces are compressed by swollen myelin
sheaths (myelin microvacuolization), resulting in restricted diffusion.* By contrast, intramye-
linic vacuoles and extracellular spaces are large in MLC (myelin macrovacuolization), resulting
in increased diffusion (figure 1).?

The word “leukodystrophy” is associated with the connotation of progression." Myelin
vacuolization may, however, be reversible. First, defects in G/BI cause peripheral neuropathy,
but may be complicated by transient episodes of encephalopathy with acute intramyelinic
edema.’ Second, MLC caused by dominant GLIALCAM mutations starts as classic MLC, but
from the second year, improvement occurs and the leukoencephalopathy disappears.” Third,
the classic form of LTBL (“leukoencephalopathy with thalamus and brainstem abnormalities
and lactate elevation”) is characterized by neurologic deterioration in infancy with, on MRI,
a severe leukoencephalopathy and diffusion restriction, suggesting myelin microvacuoliza-
tion.® This dramatic onset is followed by clinical and MRI improvement, with disappearance
of most abnormalities (figure 1).® Reversibility in the context of leukodystrophies seems like
a new concept, but in fact it is not. It is known that neonatal maple syrup urine disease is
characterized by acute myelin microvacuolization of areas that contain myelin in a neonate
and that the abnormalities are reversible with adequate treatment.”

Hidden mutations, a new phenotype, and novel pathomechanism

PLP1, encoded by PLPI, is the major myelin protein. Together with its smaller isoform
DM20, they constitute more than half of the CNS myelin protein mass. Expression of both
isoforms is tightly regulated in space and time. PLPI alterations, mostly duplications, cause
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[ Figure 1  Myelin vacuolization: MRI features and reversibility ]

In megalencephalic leukoencephalopathy with subcortical cysts (A-C), T2-weighted images (A) show diffuse cerebral
white matter abnormalities, which have increased diffusion leading to low signal on diffusion-weighted images (B)
and high signal on apparent diffusion coefficient maps (C), indicating large water spaces. In the early stages of
leukoencephalopathy with thalamus and brainstem abnormalities and lactate elevation (D-F), MRI shows extensive
cerebral white matter abnormalities and involvement of the thalamus (D). Diffusion is markedly decreased in the
abnormal areas with high signal on diffusion-weighted images (E) and low signal on apparent diffusion coefficient
maps (F), indicating compressed water spaces. Two years later (G-1), most signal abnormalities have disappeared (G)
and the diffusion has normalized (H and ).

Pelizacus-Merzbacher disease (PMD). Milder mutations are associated with X-linked spastic
paraplegia.

Recently, a new hypomyelinating disorder was defined on the basis of an unusual pattern
of myelin deficit that is more prominent in early myelinating structures than in later myeli-
nating ones, in contrast to other hypomyelinating entities (figure 2). The disease, called
“hypomyelination of early myelinating structures” (HEMS) has an X-linked inheritance.?
It defied all efforts to find the mutated gene for quite some time, even using whole-exome
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[ Figure 2 Abnormal sequence of myelination in HEMS ]

Silver staining of a sagittal neonatal brain slice demonstrates presence of myelin in the brainstem and also already in the subcortical white matter of the
precentral gyrus (A). Silver staining of an axial slice of a 4-month-old infant shows myelin in the external optic radiation (red arrow, D). Axial T2-weighted
images of 2 patients with HEMS (B and E) demonstrate lack of normal myelin signal in the brainstem (B) and the optic radiation (red arrow, E). The corre-
sponding images from a child with typical Pelizaeus-Merzbacher disease (C and F) show a much better myelinated brainstem (C) and optic radiation (red
arrow, F). HEMS = hypomyelination of early myelinating structures. Panels A and D are used with permission from Thieme Publishers, Georg Thieme
Verlag KG. Flechsig P. Anatomie des menschlichen Gehirns und Riickenmarks auf myelogenetischer Grundlage. Leipzig: Thieme; 1920.

sequencing. Eventually, well-hidden noncoding mutations deep in intron 3 of PLPI were
discovered in several patients.” In the other patients, synonymous exonic mutations, mis-
sense mutations, a small deletion, and a mutation near a splice-donor site were found. All
variants are located either in intron 3 or in exon 3B, the latter spliced out in isoform
DM?20. Besides the deletion, which leads to truncation of PLP1 but not of DM20, all
other mutations affect correct splicing of PLP1, including the deep intronic changes, which
are clustered within 2 long-distance interacting sites. Computational tools showed that
HEMS mutations cause a disturbed secondary messenger RNA structure. In vitro, PLPI
expression was demonstrated to be much reduced compared to DM20."° DM20 is pref-
erably expressed in the developing CNS, but PLPI during and after the period of myeli-
nation. A disturbed PLP1/DM20 ratio is therefore likely to influence the normal sequence
of myelination.

These findings illustrate several points. First, MRI pattern recognition remains a powerful
tool, even presently when many diagnoses are made using nonselective genetic approaches such
as gene panel analysis or whole-exome sequencing. For HEMS, definition of the MRI pheno-
type allowed identification of a homogeneous group of patients sufficiently large to detect the
unusual mutations. Second, of note, even deep intronic mutations may be disease-causing,
Third, MRI findings may be useful in concept formation regarding disease mechanisms. On
the basis of the fact that MRI demonstrated preferential hypomyelination of structures that
normally myelinate early, the name HEMS was coined, already suggesting a defect affecting
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It is still challenging to determine what cell
type(s) needs to be replaced in which
leukodystrophy and in which disease stage.

the normal temporospatial regulation of myelination.®* With HEMS, a new phenotype with
a new pathomechanism has been added to the PMD spectrum.

Stem cell therapy

Since the 1980s, the potential of stem cells in the context of leukodystrophy therapy has
been considered with hope and expectation. The first stem cells used were allogenic HSCs
harvested from bone marrow. Mortality of IV allogenic HSCT was high and treatment
success unclear. At present, the success of HSCT in patients with early stages of the child-
hood cerebral form of X-linked adrenoleukodystrophy (X-ALD) is undisputed, although
therapy-related morbidity and mortality remain considerable and HSCT does not prevent
myelopathy.'" The efficacy of HSCT in adults with the cerebral form of X-ALD is less
clear, and treatment-related complications are more frequent.'” For metachromatic leu-
kodystrophy (MLD), allogenic HSCT may halt the disease in patients with clinically
presymptomatic juvenile or adult disease, even with already considerable white matter
abnormalities on MRI, but HSCT is unsuccessful in patients with late-infantile MLD,
also in the presymptomatic stage.'? Krabbe disease mostly presents as an infantile variant
with rapid deterioration, and HSCT is not effective in stopping this downhill course.'*
With newborn screening, HSCT can be applied in presymptomatic infants and it mit-
igates the fast natural disease course, but medium-term outcome is disappointing, as all
children develop important neurologic impairment.'> Important recent news is that in
contrast to the well-established idea that IV HSCT can at best stabilize a disease, im-
provement of white matter abnormalities on MRI has been observed after HSCT in
several patients with X-ALD'® and MLD,"” suggesting the potential of white matter
recovery.

HSCT is applicable in only a few leukodystrophies, leaving all other leukodystrophies un-
addressed. Neural stem cell therapy is a promising new treatment option. Although leukodys-
trophies have many different causes, they share lack of proper function of astrocytes and
oligodendrocytes (macroglia or in short glia),> which makes glia replacement therapy an
excellent option. In 2004, the Goldman lab showed that administration of intracerebral
human glial precursor cells could rescue myelin-deficient shiverer mice.'® Subsequent studies
confirmed the regenerative capacity of human glia after transplantation in rodent models of
hypomyelination. Based on these outcomes, the first clinical study involving 4 patients with
PMD was initiated.'” This phase I trial aimed at testing the safety of intracerebral injection of
clinical-grade human CNS stem cells and at detecting (re)myelination. One year after trans-
plantation, no adverse effects had occurred and some signs of myelin formation were seen.
This study strengthens the belief that neural stem cell-based therapies will be part of future
treatment strategies for leukodystrophies.

The discovery that somatic cells can be reprogrammed into embryonic stem cell-like
cells, so-called induced pluripotent stem cells (iPSC),*° opened possibilities for person-
alized medicine, including cell replacement. iPSC technology offers the possibility of
generating large numbers of autologous cells and eliminates chances of immune rejection
as well as ethical concerns around the use of embryonic stem cells. Further improved
iPSC generation and differentiation procedures are needed, which are efficient and
nonintegrative, and can be quality-controlled at all stages. With the speed current stem
cell technologies are evolving, the first clinical studies using iPSC derivatives are not far
away.
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It is still challenging to determine what cell type(s) needs to be replaced in which leuko-
dystrophy and in which disease stage. In different leukodystrophies, distinct cell populations
are primarily or secondarily involved. For only a few disorders, the primarily affected cell
type is known. Examples are PMD, in which the myelin protein PLP1 expressed by oligo-
dendrocytes is mutated, and Alexander disease, which is caused by mutations in GFAP
predominantly expressed in astrocytes. However, for most leukodystrophies, sufficient
insight into the underlying disease mechanism is lacking and further studies are necessary
to determine which cell populations are primarily affected. It is expected that for many
leukodystrophies, neural stem cell replacement should target more than myelinating oli-
godendrocytes alone.

Next to residing cell populations, the white matter microenvironment, including the extra-
cellular matrix, determines the success of cell replacement. A recent cell therapy study for mice
with Krabbe disease failed, because accumulation of galactosyl-ceramide and its toxic derivative
psychosine killed the maturing oligodendrocytes after transplantation.”’ Our studies in
patients with vanishing white matter disease showed that hyaluronan is increased in the brain
extracellular matrix,”* which impedes maturation of oligodendrocyte progenitors and may also
affect transplanted oligodendrocyte progenitors.

Gene therapy

Current gene therapy strategies either involve HSCs in combination with lentiviral vectors
to target microglia precursors or intracerebral delivery of adeno-associated virus (AAV)
vectors.

Lentiviral-based gene therapies of HSCs have shown successful outcomes in X-ALD and
MLD.*** This strategy overcomes the problem of finding a matched donor and avoids
the morbidity associated with allogenic HSCT. In a trial of 2 boys with X-ALD, IV trans-
plantation of lentivirally transduced autologous HSCs stopped progressive demyelination.”® In
3 presymptomatic patients with MLD, IV administration of autologous HSCs after lentiviral-
based gene therapy halted disease progression.”* Phase II/III clinical trials are currently
ongoing for X-ALD and are in preparation for MLD. The development of more efficient
lentiviral vectors may further improve clinical outcomes.

Another strategy relies on direct intracerebral administration of AAV vectors, which has
the potential of more rapid and higher expression in the brain than transplantation of lenti-
virally transduced HSCs. Results of a phase I/1I clinical trial testing intraparenchymal gene
delivery with a recombinant AAV serotype 2 (AAV2) vector in Canavan disease look prom-
ising.””> Treated children showed decreased brain N-acetylaspartic acid concentrations and
MRI suggested more normal myelin.>> AAV transduction methods, however, need im-
provement. Intraparenchymal infusion is not suitable for widespread CNS transduction
because of localized delivery and limited diffusion capacity of AAV vectors. The recent
discovery of new AAV serotypes that can cross the blood-brain barrier was therefore
welcomed with great enthusiasm, as IV injection allows broad dispersion and is less in-
vasive than intracerebral delivery methods.?® Mice with Canavan disease could be cured
with a single IV recombinant AAV injection.”” None of the current AAV vectors efficiently
and selectively targets oligodendrocytes. Newer serotypes that cross the blood—brain barrier
and are more efficient and more specific for different neural cell types are needed. In
addition, the half-life of the transduced cells and the time point of treatment in disease
progression need further study.

The recently developed technology CRISPR (clustered regularly interspaced short
palindromic repeat)/Cas9 (CRISPR-associated nuclease 9) system provides a simple and
efficient method to precisely manipulate the genome. Because of the ease and speed of
designing CRISPR-guided nucleases, the CRISPR/Cas9 system has quickly evolved
to a widely used DNA editing tool. It repairs disease-causing alleles by changing the
DNA sequence at the exact location on the chromosome. In 2014, the first use of

Neurology: Clinical Practice I December 2016 Neurology.org/cp

511



http://Neurology.org/cp

Marjo S. van der Knaap et al.

512

Multimodal therapy approaches have the
highest potential not only of halting but also
repairing the complex and multifactorial
pathology of leukodystrophies.

CRISPR/Cas9 to fix a mutation in a living animal was shown.?® Although the efficiency in
this study was very low, it showed the potential of this technology for human gene
therapy in the future.

Multimodal therapy

Multimodal therapy approaches have the highest potential not only of halting but also
repairing the complex and multifactorial pathology of leukodystrophies (figure 3). Modal-
ities can be used as add-on to enhance the efficacy of another modality. Gene editing of
HSCs allows transplantation of genetically corrected autologous cells.?>** This strategy not
only overcomes problems such as finding a matched donor and complications of allogenic
HSCT, it also allows further manipulations of stem cells. Transplanted autologous HSCs
after lentiviral-based gene therapy, designed to overexpress the normal enzyme, increased
enzyme activity in the CNS and halted disease progression in MLD.?* Combinations of
individual modalities are probably even more efficacious. Gene therapy targeting neural
cells is a fast-working strategy to combat the primary defect, while cell replacement and
modulations of the microenvironment have high promise to accelerate repair of already
acquired damage. This point is illustrated by a mouse model for Krabbe disease that was
treated by either neural stem cells or AAV2/5-mediated gene therapy, followed by
HSCT.? Each approach gave clinical improvements, but a combination of procedures
dramatically increased treatment efficacy. Also, HSCT plus substrate reduction and plus

gene therapy, or HSCT plus enzyme replacement, were superior to single therapies in
Krabbe mice.”®

[ Figure 3 Multimodal therapy of leukodystrophies ]
Cell Gene
replacement correction
Multimodel
therapy

Other therapy approaches like
enzyme replacement,
substrate reduction,
modulation ECM, etc.

ECM = extracellular matrix.
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