
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Locally stable brain states predict suppression of epileptic activity by
enhanced cognitive effort

Sarah F. Muldoona,b,1, Julia Costantinia, W.R.S. Webberc, Ronald Lesserc, Danielle S. Bassetta,d,e,f,⁎

a Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
bUS Army Research Laboratory, Aberdeen, MD 21005, USA
c Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
d Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
e Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
fDepartment of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA

A R T I C L E I N F O

Keywords:
Epilepsy
Afterdischarges
Functional connectivity
Brain networks
Cognitive intervention

A B S T R A C T

Cognitive effort is known to play a role in healthy brain state organization, but little is known about its effects on
pathological brain dynamics. When cortical stimulation is used to map functional brain areas prior to surgery, a
common unwanted side effect is the appearance of afterdischarges (ADs), epileptiform and potentially epi-
leptogenic discharges that can progress to a clinical seizure. It is therefore desirable to suppress this activity.
Here, we analyze electrocorticography recordings from 15 patients with epilepsy. We show that a cognitive
intervention in the form of asking an arithmetic question can be effective in suppressing ADs, but that its ef-
fectiveness is dependent upon the brain state at the time of intervention. By applying novel techniques from
network analysis to quantify brain states, we find that the spatial organization of ADs with respect to coherent
brain regions relates to the success of the cognitive intervention: if ADs are mainly localized within a single
stable brain region, a cognitive intervention is likely to suppress the ADs. These findings show that cognitive
effort is a useful tactic to modify unstable pathological activity associated with epilepsy, and suggest that the
success of therapeutic interventions to alter activity may depend on an individual's brain state at the time of
intervention.

1. Introduction

The healthy human brain is a dynamic system of connected ele-
ments whose state is constantly changing over time and with behavior.
However, in diseased patients, it is sometimes the case that brain ac-
tivity becomes altered. Suppressing unwanted brain activity through
applied perturbations is possible, and brain stimulation has demon-
strated success in treating pathological brain activity associated with a
multitude of disorders such as tremor (Elias and Shah, 2014; Fasano
and Lozano, 2015), Parkinson's disease (Grafton et al., 2006; Hess,
2013), and epilepsy (Fisher and Velasco, 2014). However, much re-
mains unknown about the mechanisms of such interventions, making it
difficult to direct and improve treatment strategies (Johnson et al.,
2013).

This is particularly true in the case of epilepsy, a highly diverse
spectrum of disorders characterized by the presence of recurrent

seizures (England et al., 2012). Because approximately 1/3 of epilepsy
patients will develop a drug resistant form of the disorder (Laxer et al.,
2014), the development of alternative methods to suppress and/or
modify the unwanted brain activity are essential, and recent advances
in the ability to selectively modify brain circuits makes this kind of
intervention an attractive option (Krook-Magnuson and Soltesz, 2015).
Such interventions can be achieved by electrical stimulation through
implanted electrodes that target specific anatomical regions (Fisher and
Velasco, 2014; Fridley et al., 2012; Schulze-Bonhage, 2017), or in ro-
dent models, by optical stimulation (Ewell et al., 2015; Krook-
Magnuson et al., 2013; Paz et al., 2013), targeting genetically defined
subpopulations of neurons. However, it is known that certain subnet-
works of brain regions become engaged during task performance
(Davison et al., 2015; Kirschner et al., 2012), and thus an alternative
and non-invasive option is the modification of brain activity through
the activation or inactivation of a subnetwork associated with the
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performance of a task.
Much work has focused on altering epileptiform activity associated

with seizures (Fisher and Velasco, 2014; Fridley et al., 2012; Schulze-
Bonhage, 2017), but epileptiform afterdischarges (ADs) present another
form of undesirable brain activity associated with epilepsy. These short
spike and wave events visible in electrocorticography recordings can
appear after electrical stimulation in patients undergoing functional
brain mapping for surgical evaluation (Lee et al., 2010; Lesser et al.,
1999). Brief pulse stimulation (BPS) has been shown to sometimes be
successful in aborting ADs when applied through the same stimulating
electrodes (Lesser et al., 1999; Mizuno-Matsumoto et al., 2002; Ren
et al., 2017), but if this intervention is not effective, the ADs can pro-
gress to a clinical seizure, interfering with clinical testing and placing
the patient at risk. Because BPS is only partially effective in aborting
AD, it is especially important to investigate alternative methods of in-
tervention, such as task circuit activation, in order to suppress the AD
and prevent seizures.

While targeted stimulation or task network activation provide effi-
cient means to alter brain activity, it is also known that the current state
of the brain can also play a role in the efficacy of the intervention
(Alagapan et al., 2016; Gharabaghi et al., 2014; Silvanto et al., 2008,
2007). It is therefore necessary to develop methods to quantify and
classify brain state evolution. Here, network science provides the ne-
cessary tools to map the brain to a graph and measure brain states by
quantifying network structure over time (Bassett and Sporns, 2017;
Muldoon and Bassett, 2016). Functional brain networks can be derived
in which recording electrodes are network nodes and connections be-
tween nodes (electrodes) are given by statistical relationships such as
synchronization between brain activity recorded by two electrodes. It is
then possible to quantify brain states over time using techniques from
network theory to measure dynamic properties of the network struc-
ture.

In this study, we use network neuroscience to characterize electro-
corticography recordings from 15 patients with epilepsy who display
ADs resulting from stimulation during functional brain mapping. Each
patient's data is mapped to a functional brain network by measuring the
pairwise coherence between electrodes. We then quantify the brain
state using community detection techniques to identify the presence
and spatial location of coherent communities of electrodes. We ad-
ditionally measure the spatial interaction between detected commu-
nities and the AD subnetwork and further characterize the brain state
by measuring community strength and stability. Finally, we show that a
cognitive intervention (in the form of an arithmetic question) can be
successful in stopping unstable brain activity characterized by epi-
leptiform ADs, but that the success of the intervention hinges on the
brain state immediately prior to the intervention.

2. Materials and methods

2.1. Patient data and experimental design

Electrocorticographic activity was continuously recorded from 15
patients in their hospital rooms in the Epilepsy Monitoring Unit at
Johns Hopkins Hospital. Patients were awaiting surgical resection for
intractable epilepsy and had been previously implanted with grid, strip,
or depth electrodes. Placement and locations of electrodes were de-
termined solely on clinical grounds. Implantations and surgeries on a
given patient were always done by the same surgeon. One surgeon
performed ten cases, another performed four, and another performed
one. See Table 1 for details of patient information and recording sites.
Patients underwent continuous video-electrocorticographic monitoring.
Electrocorticography (ECoG) was recorded at 1000 samples/s using
Schwarzer EEG Amplifiers Model 210033 (Natus Europe GmbH, Ro-
bert-Koch-Str. 1, Planegg, Germany). The machines used 16 bit A-D
converters (gain 1408, range 4.5 V, noise referred to input 1.5mV).
Recordings had a high linear frequency setting of 300 Hz with a 20 dB/

octave slope and a low linear frequency setting of 0.0016 Hz, slope
6 dB/octave. During recordings, patients were awake and comfortable,
lying in bed with the head of the bed elevated. Stimulation for clinical
testing was delivered to pairs of implanted electrodes, using 50 Hz, 0.3-
millisecond-duration biphasic square wave pulse pairs, delivered in
trains lasting up to 5 s, with intensities gradually increased from 1 up to
as high as 15mA, depending upon clinical findings. ADs appeared with
intensities of 7–15mA (11.5 ± 1.8). If ADs occurred, brief pulse sti-
mulation (BPS; (Lesser et al., 1999)) was used in an attempt to stop the
ADs. Decisions to use BPS, or to subsequently use a cognitive task in an
effort to abort the ADs, were determined solely on clinical grounds. We
reviewed 58 consecutive patients who underwent cortical stimulation
via subdural electrodes over a 4 year period. Of these, 15 were found to
have been asked arithmetic questions in an effort to abort ADs, and this
15 patient subgroup is presented in this study. The analysis of the re-
cordings was approved by the Institutional Review Board of the Johns
Hopkins Medical Institutions.

2.2. Cognitive task

When BPS was unsuccessful in terminating ADs, patients were next
given a cognitive task: they were asked to answer an arithmetic ques-
tion using mental calculation. The calculation involved addition to,
subtraction from, or multiplication of a two-digit number, each chosen
at random from the set of real numbers between 10 and 99.

2.3. Selection of analysis windows

The data were analyzed for two artifact free 4.096 s windows. The
first was during ADs but before the arithmetic question was asked. The
second window was after the question was asked but before the ADs
stopped. Because ADs could end quickly after the question was asked,
the second 4.096 s window might include the time when the question
was asked, or might be after the question ended but include the time
when the answer was given. If the initial question did not stop the ADs,
in some cases, subsequent questions were asked in an attempt to stop
the ADs. However, in this paper, only the data associated with the first
question was analyzed for comparison to the brain state before ques-
tions were asked (57 total trials across the 15 patients; 27 trials in
which ADs stopped; 30 trials in which ADs continued). The times of the
stimulations, BPS, onset of the questions and answers, and timing of the
4.096 s windows were marked to a precision of 10ms using a locally
developed software program (written by one of the co-authors W.R.S.
Webber), called VZ. The software tool is an EEG review program similar
to clinical EEG viewers with added tools for precision marking and
selecting segments of EEG for import into analysis programs such as
MATLAB.

2.4. Quantifying functional brain states

To assess functional brain connectivity, we examined pairwise re-
lationships between the time series of ECoG signals. To decrease the
impact of the reference electrode on subsequent calculations, we first
subtracted the average reference from each electrode in the ECoG time
series (Kramer et al., 2011). Although common in the analysis of scalp
EEG data, a spatial Laplacian was not applied, as theoretical calcula-
tions predict that spatial spreading between electrode contacts is not
expected in ECoG data (Zaveri et al., 2009). In our study, the electrode
edges were 7.7 mm apart, and we observed distinct patterns of both AD
and non-AD activity on adjacent electrodes further indicating that
spatial spreading was not observed in our data (Supplementary Fig. 1).
We then calculated the pairwise magnitude-squared coherence to de-
termine the interactions (edge weights) between electrodes. The mag-
nitude-squared coherence operates in the frequency domain and is
defined as
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where Sii(f) is the power spectral density of node i, Sjj(f) is the power
spectral density of node j, and Sij(f) is the cross-power spectral density
between node i and node j. The pairwise coherence between electrode
channels was computed using the multitaper method (time-bandwidth
product of 5 and 9 tapers) (Kramer et al., 2011). We examined the
difference in average pairwise connectivity strength after the arithmetic
question was asked between electrodes that expressed AD and those
that did not across a range of frequency bands (5–15 Hz, 15–30 Hz,
30–50 Hz, 70–110 Hz). Because we observed the greatest changes in
functional connectivity between electrodes that expressed ADs and
those that did not in a frequency range of 70–110 Hz corresponding to
high gamma band, all further analysis was performed only for this
frequency band (5–15 Hz: median AD=0.35, median no AD=0.31,
p=2.96; 15–30 Hz: median AD=0.26, median no AD=0.30,
p=0.64; 30–50 Hz: median AD=0.23, median no AD=0.30,
p=2.5×10−3; 70–110 Hz: median AD=0.20, median no AD=0.33,
p=7.1×10−7; two-sample Kolmogorov-Smirnov test; N= 57 trials
from 15 patients). This frequency band has also previously been shown
to display time specific task-related cortical activation in ECoG re-
cordings at 1000 Hz (Crone et al., 2006).

2.5. Static community detection

To detect static communities, functional connectivity was first cal-
culated between all pairs of electrodes in the 4.096 s window im-
mediately preceding the cognitive intervention. Within this NxN matrix
A, we searched for groups of electrodes that were more densely and
strongly interconnected to one another than expected by chance.
Specifically, we employed a commonly used community detection al-
gorithm based on optimizing the following modularity quality function:

∑= −Q A P δ g g[ γ ] ( , ),ij ij i j

where Aij represents the strength of a connection (in this case, the
pairwise coherence) from node i to node j, node i is assigned to com-
munity gi, node j is assigned to community gj, the Kronecker delta δ
(gi,gj) is 0 unless gi= gj, in which case it is 1, γ is the structural re-
solution parameter, and Pij is the expected strength of the connection
between node i and node j under the Newman-Girvan null model (also
called the configuration model: a random graph model that gives the
probability of node i and node j being connected by chance while
maintaining the expected strengths of all nodes) (Blondel et al., 2008;
Newman, 2006). We then used a Louvain-like (Blondel et al., 2008)
locally greedy algorithm to maximize Q to identify a partition of nodes
into communities, where nodes within a community share the greatest
possible total edge weight (Jutla et al., n.d.).

To assess the robustness of the partitions identified with the com-
munity detection algorithm, we varied the value of the structural re-
solution parameter, γ, in the modularity quality function and examined
the number of resultant communities with γ=0.5–1.5 (stepsize of 0.1).
We determined that setting γ=1 resulted in a stable community
structure over iterative optimizations of the quality function across
subjects, resulting in the detection of 3.14 ± 0.08 communities on
average (Supplementary Fig. 2A). Therefore all subsequent analysis was
performed using this value.

Due to the many near-degeneracies in the modularity quality
function (Good et al., 2010), each run of the community-detection al-
gorithm returns similar yet not identical community assignments. Thus,
to determine a robust representative community partition, we followed
the nodal association method (Bassett et al., 2013a). For this process,
we ran static community detection 100 times with γ=1 on the nodal
association matrix and used a consensus partition approach to identify
consistent communities (Chai et al., 2016).

2.6. Dynamic community detection

While static community detection over the 4.096 s window gives an
average account of the community structure during this time, it is also
possible to calculate fluctuations in the community structure over time
using dynamic community detection applied over the same window of
data (Bassett et al., 2011, 2013b; Chai et al., 2016; Mattar et al., 2015).
To do so, we split the window before the ADs into seven, 1 s time
windows with 50% overlap. A window size of 1 s was chosen to balance
stationarity and sufficient data length for functional connectivity cal-
culations (Kramer et al., 2011). For each window, we calculated the
functional connectivity as previously described. We then linked the
seven resultant networks to form a temporal network through the ad-
dition of interlayer self-identity links connecting nodes in adjacent
temporal windows (Bassett et al., 2013a).

To determine the dynamic community structure in these temporal
networks, we maximized a multilayer extension of the previously de-
scribed modularity quality function:

∑= − +Q
μ

A γ P δ δ ω δ g g1
2

{( ) } ( , ),
ijlr

ijl l ijl lr ij jlr il jr

where in layer l, Aijl is the adjacency matrix, Pijl is the corresponding
component in the Newman-Girvan null model, γl is the structural re-
solution parameter, node i is assigned to community gil, κjl= kjl+ cjl is
the strength of node j, kjl= ∑iAijl is the intra-layer strength of node j,
and cjl= ∑rωjlr is the inter-layer strength of node j. In addition, node j in
layer r is assigned to community gjr, ωjlr is the temporal resolution
parameter from node j in layer r to node j in layer l, and = ∑μ κjr jr

1
2 is

the total edge weight of the temporal network (Bassett et al., 2013a;
Mucha et al., 2010).

As in static community detection, we used a value of γ= 1 and
varied ω between ω= 0.1–0.6 (step size of 0.05). We determined that
ω= 0.45 resulted in a stable regime across subjects, detecting on
average 6.3 ± 0.3 communities overall and 3.70 ± 0.08 communities
per layer (Supplementary Fig. 2B). To determine robust representative
community partitions for each time slice, we again followed the nodal
association method (Bassett et al., 2013a).

2.7. Stability and strength

To quantify the stability of a community, we first calculated the
flexibility (Bassett et al., 2011) of each node (electrode), fi, defined to
be the number of times a single node changes module allegiance in the
dynamic community structure, normalized by the total number of
possible changes. We defined the community stability to be.

∑= −
=

S
N

f1 1 ,C
C i

N

i
1

C

where NC is the total number of nodes in a static community. This
measure is bounded between 0 and 1 with higher values representing a
more stable structure over time. Note that the average community
stability was consistent across varying choices of the amount of window
overlap used to created temporal networks (Supplementary Fig. 3). The
strength of a static community was calculated as the average strength of
connections between nodes within the community.

2.8. Classification of trial groups

When classifying trials into “high” and “low” groups with respect to
the percentage of AD channels within a community and with respect to
community stability, we calculated the median value of these measures
during the window of data immediately preceding the intervention
(median percentage AD channels= 73.86%; median stability= 0.89).
Trials were classified as “high” if above the median and “low” if below
the median.
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2.9. Statistical analysis

We used a permutation test to determine whether our observed
result occurs more frequently than expected by chance. First, we con-
structed a random sampling distribution for each possible population by
permuting successful and unsuccessful trials into possible populations
1000 times. Next, we determined each population's p-value by locating
its observed statistic on its corresponding distribution. All reported p-
values were adjusted using a Bonferroni correction for multiple com-
parisons when necessary.

3. Results

We analyzed ECoG recordings from fifteen patients at Johns
Hopkins Hospital undergoing clinical evaluation for medically re-
fractory focal epilepsy. Before surgical resections, these patients un-
derwent extraoperative cortical stimulation to localize regions of the
brain critical for motor, sensory, or language function (Jayakar and
Lesser, 2008). As a result of the electrical stimulation, ADs sometimes
occurred in the cortex underlying a subset of their electrodes (Supple-
mentary Fig. 1). Brief pulse stimulation (BPS) applied to the same
electrodes has been shown to sometimes abort ADs, but is only suc-
cessful approximately half of the time (Lesser et al., 1999). Because BPS
can fail, we explored other options for intervention and observed that a
cognitive intervention – specifically, having patients answer an ar-
ithmetic question in the form of adding to or subtracting from, or
multiplying by a two digit number – often could suppress a patient's
ADs. To understand the role of the brain state in the efficacy of the
cognitive intervention, we analyzed two separate 4.096-s intervals: (i)
the patient's initial brain state while the ADs were present, but before
the arithmetic question was asked, and (ii) the patient's resultant brain
state after the question at the end of the ADs (Fig. 1, Materials and
methods).

Brain states were quantified by assessing the functional connectivity
of brain dynamics based on the pairwise magnitude-squared coherence
in the high gamma band (70–110 Hz) between electrode channels. This

method involves modeling the brain as a network, where the electrodes
represent network nodes and the strength of connections between nodes
is assigned based on the pairwise coherence of their recorded activity
(Fig. 2A). We chose the high gamma band based on previous reports of
the sensitivity of gamma to mental arithmetic (Kissler et al., 2000;
Umeno et al., 2003), and based on the fact that the frequency range of
70–110 Hz showed the greatest differences in functional connectivity
between electrodes that expressed ADs and those that did not (see
Materials and methods).

In our data, ECoG networks displayed similar values of edge
strength (coherence) both before and after the cognitive intervention
(mean edge strength - Fig. 2B; before: median=0.30, after:
median= 0.30, p=0.74; two-sample Kolmogorov-Smirnov test;
N= 57 trials from 15 patients; and median edge strength - Supple-
mentary Fig. 5; before: median= 0.27, after: median=0.27, =0.85;
two-sample Kolmogorov-Smirnov test; N=57 trials from 15 patients).
However, when examining subnetworks composed of only electrodes
that displayed (or did not display) ADs, we observe a weakened average
connectivity among the electrodes that displayed ADs, which becomes
statistically significant after the cognitive intervention (Fig. 2C; before:
median ADs=0.23, median no ADs= 0.32, p= 9.5× 10−5, after:
median ADs= 0.20, median no ADs= 0.33, p= 7.1× 10−7; two-
sample Kolmogorov-Smirnov test; N=57 trials from 15 patients), in-
dicating that subnetworks of AD electrodes are not as coherent as their
non-AD counterparts. This weakened coherence was observed in both
trials in which the ADs continued and trials in which the ADs stopped.

We next asked if the interplay between the spatial arrangement of
the AD subnetworks and the lobar structure of the brain was related to
the success of the cognitive intervention given that both frontal and
parietal regions have been implicated in the cognitive processes sup-
porting mental arithmetic (Fehr et al., 2008; Vansteensel et al., 2014).
Electrode channels were classified as frontal, parietal, or temporal,
based upon their location on the brain. Due to the variability in elec-
trode location among patients, we additionally classified each trial as
having the majority of AD electrodes in the frontal, parietal, or tem-
poral lobe. As seen in Fig. 2D, we observed some weak trends in the

4 s window 
before

Q: What is 
15-12?

4 s window 
after

Stim Afterdischarges (ADs)

A: 3

ADs end

Fig. 1. Experimental design. Stimulation is applied to the im-
planted electrodes during testing, resulting in the appearance
of ADs in some (but not all) ECoG channels. The patient is
asked to answer an arithmetic question, which sometimes
causes the ADs to stop. We analyze the approximately 4-second
window of brain activity before the arithmetic question is
asked as well as an approximately 4-second window after the
question has been asked but before the ADs stop.
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data: in trials with a majority of AD electrodes in the frontal lobe, ADs
seemed more likely to stop if a lower percentage of AD electrodes were
located in the parietal lobe, while in trials with a majority of AD
electrodes in the temporal lobe, ADs seemed more likely to stop if a
higher percentage of AD electrodes were located in the frontal lobe.
However, none of these observations were statistically significant.

Given that we did not observe a link between the arrangement of AD
subnetworks and lobar brain structure with respect to the success of the
intervention, we next asked how the location of AD channels related to
the functional brain state immediately before patients were asked ar-
ithmetic questions. To quantify the spatial properties of the functional
brain state, we employed static community detection to parse the
functional brain network into communities in which electrodes within a
given community displayed coherent activity, but activity between two
electrodes in different communities was not coherent. (Note that the

community detection algorithm does not depend on the presence or
lack of ADs in a channel, and additionally was found to be robust to
random removal of electrodes from the data as shown in Supplementary
Fig. 6) In almost all cases, we observed that the community detection
algorithm found 2–4 communities (Fig. 3A) of coherent brain activity.
In trials with greater than 4 communities (7 trials), patients possessed
brain state that was not comparable to that observed in the trials with 4
or fewer communities due to the spatial size and arrangement of
community partitions, and therefore in the remaining analysis, we
analyze only trials with less than 5 communities (N= 50 total trials
from 14 patients).

To determine how AD electrodes were distributed within these
functional communities, we extracted the community containing the
highest percentage of AD electrodes and compared this value between
trials in which the intervention successfully stopped the ADs and those
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Fig. 2. Brain states and lobar brain structure. (A) Brain state
networks are quantified by calculating the functional con-
nectivity between electrodes based on the pairwise mean-
squared coherence (MSC) between recorded activity. (B) No
differences are observed in the average connectivity strength of
full brain state networks before and after the cognitive inter-
vention. (C) Average connectivity strength of AD and non-AD
subnetworks before and after the cognitive intervention. In both
cases, the AD subnetwork shows a significantly weaker con-
nectivity than its non-AD counterpart. (D) Percentage of AD
subnetwork contained in the frontal (left column), parietal
(middle column), and temporal (right column) lobes for trials
where the majority of the AD subnetwork is located within the
frontal (top row), parietal (middle row), or temporal (bottom
row) lobe. No significant differences are observed between spa-
tial relationships in trials where ADs stopped or continued.
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in which it did not. We observed a trend that in trials where the act of
answering the arithmetic question stopped the ADs, a higher percentage
of the AD subnetwork was located within a single community (Fig. 3B
and Supplementary Fig. 7; median ADs stopped= 80, median ADs
continued= 67; two-sample Kolmogorov-Smirnov test, p= 0.12,
N=50 trials from 14 patients). An example of the spatial distribution
of the AD subnetwork with regard to the functional brain state can be
seen in Fig. 3C for a trial in which the intervention stopped the ADs and
one in which the ADs continued. Note that when the arithmetic ques-
tion stopped the ADs, most of the AD subnetwork is contained in the
dark blue community, whereas when the arithmetic question did not
stop the ADs, this network spans both the light and dark blue com-
munities.

While this finding could indicate a link between the functional brain
state and ability of the intervention to stop the ADs, our observation
was only that of a trend and not statistically significant. We therefore
further investigated the properties of the brain state by quantifying its
stability and strength. For each of the detected static communities
previously analyzed, we calculated the community stability using a
dynamic community detection technique, and additionally, classified
communities as having a high or low percentage of AD channels. In
communities classified as having a low percentage of AD channels, we
saw no differences in the community strength or stability. However, in
communities with a high percentage of ADs, we again noted a trend of a
higher community stability in trials where the intervention stopped the
ADs (Fig. 4A; median ADs stopped=0.92, median ADs con-
tinued= 0.79; two-sample Kolmogorov-Smirnov test, p= 0.15) as well
as an increased strength of coherence (Fig. 4B; median ADs
stopped=0.26, median ADs continued= 0.18; two-sample Kolmo-
gorov-Smirnov test, p= 0.15).

The presence of a strong and stable local community that en-
compasses the majority of the AD subnetwork is therefore linked to the

success of the cognitive effort in suppressing the ADs. To demonstrate
this, we divided the communities into four groups based upon their
classification as having a high or low stability, and a high or low per-
centage of AD electrodes (Materials and methods). This sorting parti-
tioned trials into 4 groups: low stability/low percentage ADs (12 trials),
low stability/high percentage ADs (13 trials), high stability/low per-
centage ADs (13 trials), high stability/high percentage ADs (12 trials).
By comparison to a permutation test, we observed that only the group
with a high percentage of ADs and high stability was more likely to
result in an effective intervention that stopped the ADs more often than
would be expected by chance (Fig. 4C; group permutation test,
p= 0.05, N= 1000 permutations).

4. Discussion

We conclude that the ability of the cognitive intervention – an-
swering an arithmetic question – to suppress the unstable AD activity,
was enhanced upon the spatial co-localization of the AD subnetwork
and a strong, stable coherent community in the functional brain state.
While we can currently only speculate on the mechanisms of the cog-
nitive intervention, it is plausible that the presence of a highly coherent,
stable functional community aides in the suppression of ADs because if
a portion of the AD subnetwork is positively affected by the cognitive
intervention, the entire functional community follows suit, and the ADs
cease. However, in instances where the AD subnetwork is split between
functional communities and/or the communities are less coherent, the
individual dynamics of the AD subnetwork are less linked and the
suppression of ADs in a few channels is not sufficient to abort ADs
across the entire network. These data motivate the future examination
of cognitive interventions to suppress other forms of pathological
neural activity, including seizures.

Our findings indicate that it is important to observe the functional
brain state at the time of intervention to achieve optimal success in
mitigating unstable or unwanted brain activity. The influence of the
brain state on epileptiform activity has been observed previously in the
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context of sleep versus awake states (Ewell et al., 2015; Sedigh-
Sarvestani et al., 2014; Sinha, 2011) and it has been shown in rat
models of epilepsy that optogenetic stimulation of a subset of inter-
neurons could shorten the duration of seizures that originated from
non-theta (but not theta) states (Ewell et al., 2015). However, here, we
define a more subtle classification of brain states based on the observed
patterns of functional brain connectivity recorded during seemingly
similar awake behavioral states. The fact that such subtle, yet quanti-
fiable, differences in brain states can influence the effect of the inter-
vention has important implications for the development of in-
dividualized therapies to treat pathological brain activity. Given that
seizures themselves have been shown to evolve through a sequence of
states, (Burns et al., 2014; Khambhati et al., 2015), our analysis sug-
gests that methods for on-demand seizure control will likely benefit
from careful consideration of real-time brain state evolution.

While our results present promising new avenues for suppressing
epileptiform activity, the current study does suffer from a few limita-
tions. Given the clinical nature of the data, the placement of electrodes
varied from patient to patient. Although we used techniques from
network theory that were agnostic to spatial locations of electrodes to
define network communities and measure brain states, we cannot
control for the impact of specific brain regions on the underlying dy-
namics that could influence the detected network structure, nor could
we control for differences in the severity of the epilepsy between pa-
tients. Future studies could examine the relationship between the AD
subnetwork and the specific brain regions implicated the performance
of mental arithmetic, although one would also need to control for the
complexity and type of calculation as these factors can influence the
specific networks activated by the calculation (Fehr et al., 2008). The
heterogeneity of anti-epileptic drugs used to treat the patients and their
potential modulatory effects could also introduce noise into the data.
Finally, the study was limited by its small sample size. Due to the fact
that much of the data was obtained from subject 1, we also analyzed the
data in the absence of this subject. As seen in Supplementary Fig. 8,
while we cannot achieve statistical significance due to the reduced
number of trials, we see similar trends to those reported in the main
manuscript. Future studies with a larger sample size should further
examine the impact of these important issues and their relationship to
the quantification of brain states and impact on the AD subnetwork.

The results presented in this study also only focused on one form of
cognitive intervention in the form of answering an arithmetic question.
Preliminary findings suggest that other types of cognitive intervention
(such as spelling a word) can also be effective in suppressing ADs.
Different types of cognitive effort (i.e., different tasks) invoke different
subnetworks (Collard et al., 2016; Korzeniewska et al., 2011; Roux
et al., 2008), and therefore it could be true that if one type of cognitive
intervention is unsuccessful in suppressing epileptiform activity during
a specific brain state, that a different type of cognitive intervention
could still prove successful. We therefore encourage future studies to
explore this interaction between brain state and task subnetwork acti-
vation as a promising new avenue for altering brain states and we
further encourage future work to take these findings into account when
using brain computer interfaces to develop therapeutic protocols.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.02.027.
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