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A B S T R A C T

Migraineurs show an increased load of white matter hyperintensities (WMHs) and more rapid deep WMH
progression. Previous methods for WMH segmentation have limited efficacy to detect small deep WMHs. We
developed a new fully automated detection pipeline, DEWS (DEep White matter hyperintensity Segmentation
framework), for small and superficially-located deep WMHs. A total of 148 non-elderly subjects with migraine
were included in this study. The pipeline consists of three components: 1) white matter (WM) extraction, 2)
WMH detection, and 3) false positive reduction. In WM extraction, we adjusted the WM mask to re-assign
misclassified WMHs back to WM using many sequential low-level image processing steps. In WMH detection, the
potential WMH clusters were detected using an intensity based threshold and region growing approach. For false
positive reduction, the detected WMH clusters were classified into final WMHs and non-WMHs using the random
forest (RF) classifier. Size, texture, and multi-scale deep features were used to train the RF classifier. DEWS
successfully detected small deep WMHs with a high positive predictive value (PPV) of 0.98 and true positive rate
(TPR) of 0.70 in the training and test sets. Similar performance of PPV (0.96) and TPR (0.68) was attained in the
validation set. DEWS showed a superior performance in comparison with other methods. Our proposed pipeline
is freely available online to help the research community in quantifying deep WMHs in non-elderly adults.

1. Introduction

Migraine is neurological disorder affecting ~20% of people world-
wide. While it is believed that migraine is a benign disease, the risk of
stroke, cardiovascular diseases, and death is increased in migraineurs
(Kurth et al., 2016). Migraineurs show an increased load of white
matter hyperintensities (WMHs) and more rapid WMH progression than
migraine-free controls (Erdélyi-Bõtor et al., 2015; Kruit et al., 2004;
Palm-Meinders et al., 2012). In addition, common psychiatric co-
morbidities of migraine such as depression and increased suicidality are
also associated with increased WMH load (Herrmann et al., 2008;
Serafini et al., 2011). A vascular hypothesis is commonly proposed as a
possible pathophysiology underlying deep WMH development, while

the development of periventricular WMH is currently more debated
(Fazekas et al., 1993; Fernando et al., 2006).

WMHs have been linked to several neurological disorders such as
vascular cognitive impairment. WMHs are also prevalent in the healthy
population, which has led to debate on the clinical importance of
WMHs in asymptomatic subjects (Mineura et al., 1995). However, re-
cent studies have shown that WMHs are associated with an increased
risk of cognitive decline, incident dementia, ischemic stroke, and death
in asymptomatic healthy subjects (Debette and Markus, 2010; Murray
et al., 2010; Vermeer et al., 2003). While the causative role of WMH for
these conditions is still considered controversial, these findings may
indicate that WMH can be a marker of brain damage, warranting more
research on their development in earlier life.
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As first suggested by Fazekas et al., WMHs have been classified into
periventricular and deep WMHs (Fazekas et al., 1987). Risk factors and
clinical implications differ between the two types of WMHs (Griffanti
et al., 2017; Kim et al., 2008). In the CAMERA-2 study, women with
migraine had a higher incidence and progression of deep WMHs, while
such an association was not found for periventricular WMHs (Palm-
Meinders et al., 2012). Longitudinal studies demonstrated that the
progression of periventricular WMH is associated with a decline in
cognitive function and cerebral blood flow, while no such association
was found with deep WMHs (Seo et al., 2012; ten Dam et al., 2007; Van
Dijk et al., 2008). Different pathogeneses may be involved in the de-
velopment of periventricular and deep WMHs (Kim et al., 2008). Au-
topsy studies suggested that deep WMHs were of hypoxic/ischemic
origin, while periventricular WMHs seldom showed markers of
ischemia. Periventricular WMHs are strongly related to advanced age
and arterial hypertension, but this association is weaker for deep WMHs
(Griffanti et al., 2017). Taken together, deep WMHs might be more
relevant to migraine and its ischemic complications than periven-
tricular WMHs.

Currently available methods for automated quantification of WMH
are less robust in the segmentation of small, juxtacortical deep WMHs
(Griffanti et al., 2017). In previous studies on WMH segmentation, only
elderly subjects with a high load of both periventricular and deep
WMHs were recruited (Griffanti et al., 2016; Jeon et al., 2011; Klöppel
et al., 2011; Yoshita et al., 2006). However, in young healthy subjects,
WMHs are often discrete, small-sized, and located in the deep white
matter (Hopkins et al., 2006). Therefore, accuracy of the detection of
small, superficially-located WMHs has not been adequately evaluated in
the literature. Furthermore, a simple intensity-based thresholding
technique has been widely used to detect WMHs in previous studies
(Hulsey et al., 2012; Ithapu et al., 2014; Jeon et al., 2011; Klöppel et al.,
2011). However, this technique is not optimal for detection of small or
low-intensity WMHs because lowering the threshold of WMH segmen-
tation increases the rate of false-positives. In addition, this technique
might underestimate superficially-located deep WMHs due to the si-
milar intensities between gray matter (GM) and WMHs (Jeon et al.,
2011). However, when examining WMHs among young healthy in-
dividuals, it is crucial to detect small, relatively low-intensity, and su-
perficially-located deep WMHs, which have been difficult to identify to
date. To overcome the limitations of previous detection methods, sev-
eral characteristics of deep WMHs, such as intensity value, shape, and
location should be considered.

In the current study, we developed a new, fully-automated, machine
learning-based pipeline for detecting deep WMHs, DEWS (DEep White
matter hyperintensity Segmentation framework), using non-elderly
migraineurs. For accurate detection of small, superficially-located deep
WMHs, we established a new procedure for WM mask extraction and a
classification model based on size, texture and multi-scale deep features
as well as intensity threshold information.

2. Materials and methods

The proposed pipeline of this study consisted of three components:
1) WM extraction, 2) WMH detection, and 3) false positive (FP) re-
duction. The overall scheme of our pipeline is given in Fig. 1.

2.1. Participants and imaging data

We prospectively collected magnetic resonance imaging (MRI) data
of new patients diagnosed with migraine at the Samsung Medical
Center headache clinic from January 2015 to January 2017. The di-
agnosis of migraine was confirmed by two headache specialists (MJL
and C-SC) based on the International Classification of Headache
Disorders-3rd edition beta version (ICHD-3 beta) (Headache
Classification Committee of the International Headache Society [IHS],
2013). We included patients with 1.1 migraine without aura, 1.2.1

migraine with typical aura, and 1.3 chronic migraine. A total of 233
non-elderly patients aged≤ 65 who voluntarily underwent brain MRI
during the study period were considered eligible for the analysis. After
reviewing all MRI data, we excluded 67 subjects with motion-related
artifacts and 18 subjects who did not have deep WMHs in their MRI
scan. Finally, 148 subjects were enrolled in the study. This study was
approved by the Institutional Review Board (IRB) of Samsung Medical
Center. Written consent was waived by the IRB.

The T1-weighted and fluid attenuated inversion recovery (FLAIR)
MRI scans were acquired using a 3 Tesla MR scanner (Achieva, Philips
Medical Systems, Best, Netherlands). The imaging parameters of T1-
weighted data were as follows: repetition time (TR)=9.9ms; echo
time (TE)= 4.6ms; field of view (FOV)=240×240mm2; acquisition
matrix= 480×480 pixels; and slice thickness= 1mm with 360 slices.
The imaging parameters of the FLAIR data were as follows:
TR=11,000ms; TE= 125ms; inversion time=2800ms;
FOV=240×240mm2; acquisition matrix= 512×512 pixels; and
slice thickness= 2mm with 80 slices. The same MRI scanner and
protocol were applied for all subjects during the study period.

2.2. Manual annotations of WMHs

The manual annotations of deep WMHs were drawn on the 2D slice
of FLAIR images by two investigators (MJL, a neurologist with 8 years
of experience in clinical neurology, and JC with 11 years of experience
in neuroradiology) who were blinded to the clinical information. WMHs
were defined as a round- or oval-shaped FLAIR hyperintensity with a
variable size in the U-fiber or subcortical WM, which can be discrete or
confluent and showed T1 iso- or hypo-intensity (Wardlaw et al., 2013).
WMHs were carefully differentiated from subcortical infarctions, peri-
vascular spaces, and artifacts (Kwee and Kwee, 2007; Wardlaw et al.,
2013). Periventricular WMHs and lacunes in deep nuclei were excluded
from the manual annotations. Periventricular WMH was defined as
hyperintensities along the walls of ventricles with an appearance of
small caps, thin rims, or confluent lesions (Fazekas et al., 1987; van den
Heuvel et al., 2006). The intra-class correlation coefficient between the
two raters was 0.994 (95% confidence interval between 0.968 and
0.999) for the number of WMHs for each subject.

2.3. WM extraction

The overall processing was performed using AFNI, FSL, and
MATLAB (Cox, 1996; Jenkinson et al., 2012). The T1-weighted and
FLAIR data were reoriented to the right-posterior-inferior (RPI) direc-
tion and the T1-weighted data were registered onto the FLAIR data
using rigid body transformation. The magnetic field bias for both the
T1-weighted and FLAIR data was corrected and the skull was removed
(Fig. 1A). The T1-weighted data were segmented into GM, WM, and
cerebrospinal fluid (CSF) using FSL (Fig. 1A). However, due to the si-
milar intensities between WMH and GM, some voxels of the WMH were
misclassified to GM. The following steps were performed to adjust the
WM mask to include WMH voxels. The segmented WM mask was di-
lated and eroded in the axial plane (both x and y directions) with disk
size of 5 voxels to fill the holes (shown in yellow circles) in the WM
mask which were due to the misclassified WMH voxels (Fig. 1B). The
segmented GM mask was adjusted by multiplying the GM partial vo-
lume effect (PVE) mask with the complement (i.e., logical negative) of
the WM mask of the previous step. The adjusted GM mask was dilated
in the axial plane with a disk size of 2 voxels (Fig. 1B). The segmented
CSF mask was skeletonized and dilated in the axial direction with a disk
size of 6. The ventricle mask was extracted from the segmented CSF
mask using the region growing method in each slice. The ventricle mask
was dilated in all three directions with a sphere radius of 5 voxels to
remove potential periventricular WMHs and MRI induced artifacts near
the ventricle which could be misjudged as periventricular WMHs
(Fig. 1B). The deep brain structures of the hippocampus, amygdala,
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caudate, putamen, pallidum, thalamus, hypothalamus, nucleus ac-
cumbens, mammillary body, subthalamic nuclei, substantia nigra, and
red nucleus that were specified by the automated anatomical labeling
(AAL) atlas were registered onto the FLAIR space (Fig. 1B). The ad-
justed GM, CSF, ventricle, and deep brain structure masks were re-
moved from the WM mask. The adjusted WM mask was eroded in the
axial direction with a disk size of 1 (Fig. 1B). The adjusted WM mask
might still contain non-WM regions near the boundary between the GM
and WM, and thus additional processing was performed. The pseudo-
GM mask was constructed by removing small objects (smaller than 500
voxels) within the WM from the GM PVE mask, and the pseudo-GM

mask was removed from the adjusted WM mask (Fig. 1B). After these
steps, the WM mask was finalized and applied to the FLAIR image to
obtain only the WM region (Fig. 1C). The WM region of the FLAIR
image was spatially smoothed with a full width at half maximum
(FWHM) of 0.7mm and intensity normalization was performed with a
mean value of 500 (Fig. 1C). This was considered as the final WM re-
gion which contained deep WMHs.

2.4. WMH detection

The detection of deep WMHs was performed (Fig. 1D) only within

Fig. 1. The overall scheme of the pipeline for automated deep WMH detection.
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the WM region specified from the previous steps. Potential deep WMH
voxels were detected by applying a threshold of 2.9 times the mean
intensity of FLAIR to WM FLAIR voxels. The thresholded voxels were
clustered and clusters smaller than 4 voxels (< 1mm) were removed
(Ghafoorian et al., 2016). We applied region growing for the remaining
clusters that were< 20 voxels in size. Region growing terminated when
the growing boundary met a voxel with an intensity value lower than
2.8 times the mean FLAIR intensity. A maximum of 5mm in Euclidean
distance was allowed for region growing. When there were two or more
contiguous clusters, the clusters were merged into a single cluster. Fi-
nally, clusters with an effective diameter smaller than 1mm, which was
defined as the major axis of the cluster in a 2D slice, were removed. The
WMH detection using the Gaussian mixture model (GMM) distribution
clustering algorithm was also performed (Biernacki et al., 2000; Zhuang
et al., 1996), and detailed methods and relevant results were reported
in the Supplementary material.

2.5. False positive reduction

2.5.1. Feature extraction
After the initial detection of potential deep WMH clusters, FP voxels

still existed in the detected clusters. Reduction of FP voxels is one of the
most challenging issues in WMH detection (Ghafoorian et al., 2016;
Ithapu et al., 2014; Jeon et al., 2011). We used the random forest (RF)
classifier, a supervised machine learning technique, based on manual
annotation to distinguish WMHs from non-WMH clusters using volume,
maximum 3D distance, the ratio between the major and minor axis,
texture, and multi-scale deep features (Table 1 and Fig. 1E). The texture

features consisted of 19 first order statistical based features that were
calculated using the voxel intensities of the clusters. The features were
max, min, median, mean, variance, energy, SD, skewness, kurtosis, root
mean square, range, inter quartile range, entropy, uniformity, and
percentiles of 2.5, 25, 50, 75, and 97.5 (Table 1). The multi-scale deep
features were computed by constructing a network architecture com-
monly found in the convolutional neural network (CNN) (Fig. 2). The
architecture consisted of two convolutional, two max pooling, and one
fully-connected layer. The architecture operated on image patches of
two different scales (15×15 and 10×10) that covered potential deep
WMH clusters. In the first convolutional layer, 25 2D filters of average,
disk, Gaussian, log of Gaussian, Laplacian, Prewitt, Sobel, and motion
filters with different hyper-parameters (Table 1) were applied and in
the next max pooling layer, the patches were down-sampled with a
kernel size of two. In the second convolutional layer, 10 3D filters of
average, ellipsoid, Gaussian, and log of Gaussian with different hyper-
parameters (Table 1) were used and then subsequently max pooling was
applied with a size of two. The output image patches of the first and
second max pooling layers (7× 7×25 and 3× 3×10 for large pat-
ches and 5×5×25 and 2× 2×10 for small patches) were vectorized
and concatenated in the fully connected layer. Finally, 1980 multi-scale
deep features were computed. The texture and multi-scale deep features
were computed from both the T1-weighted and FLAIR images.

2.5.2. RF classifier
Among 148 subjects, 128 subjects were used to train and test the RF

classifier and the remaining 20 subjects were used for validation. The
128 subjects were randomly divided into the training (n=102) and test
(n=26) set 1000 times. The RF classifier was constructed for each
iteration using the features extracted from the training data. The
trained RF classifier was tested using the test data. The number of true
positives (TP), FP, and false negatives (FN) were counted by comparing
the detected and manually drawn WMH clusters. The quality of the RF
classifier was assessed by calculating the positive predictive value
[PPV=TP/(TP+ FP)] and true positive rate [TPR=TP/(TP+FN)].
Histograms of the PPV and TPR were constructed and the model that
appeared most frequently (i.e., mode of the histogram) was selected as
the optimal RF classifier. The selected RF classifier was applied to the
independent validation dataset (Fig. 1G).

2.6. Evaluation

The quality of our algorithm was assessed by comparing the de-
tected deep WMH clusters and manual annotations. We compared the
locations of the detected and manually drawn deep WMH clusters. If the
detected and manual clusters overlapped spatially, we considered our
algorithm to have successfully detected the WMH cluster. After de-
termining TP, FP, and FN, FP were reviewed by investigators and re-
classified into either FP or TP. This two-tiered approach was adopted to
minimize FP which were initially missed in the manual annotation and
were only detected by our automated method. The PPV [=TP/
(TP+ FP)] and TPR [=TP/(TP+FN)] were calculated to assess the
quality of the results (Fig. 1H).

2.7. Comparison with other methods

We compared the accuracy of our DEWS with the Wisconsin WMH
Segmentation Toolbox (W2MHS) (Ithapu et al., 2014; https://www.
nitrc.org/projects/w2mhs/), Brain Intensity AbNormality Classification
Algorithm (BIANCA) (Griffanti et al., 2016; https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/BIANCA/), and Lesion-TOADS framework of MIPAV soft-
ware (Shiee et al., 2010). We chose the W2MHS, BIANCA, and Lesion-
TOADS to compare with our DEWS since they were open source soft-
ware algorithms and have been used as reference algorithms in other
studies (Baggio et al., 2015; Harrison et al., 2015; Paternicò et al.,
2016). A brief overview of the W2MHS is as follows: The FLAIR data

Table 1
Features and hyper-parameters used to train the random forest model.

Classes Features or filters Hyper-parameters Modality

Size Volume – T1w
Maximum 3D
distance

–

Major and minor axis
ratio

–

Texture Max – T1w & FLAIR
Min –
Median –
Mean –
Variance –
Energy –
Standard deviation –
Skewness –
Kurtosis –
Root mean square –
Range –
Inter quartile range 0.25–0.75
Entropy –
Uniformity –
Percentile 2.5, 25, 50, 75, 97.5

Multi-scale
deep

2D Average Kernel size= 3 T1w & FLAIR
2D Disk Radius= 1
2D Gaussian Kernel size= 3

σ=0.5, 1, 1.5, 2
2D Log of Gaussian Kernel size= 3

σ=0.5, 1, 1.5, 2
2D Laplacian σ=0, 0.25, 0.5, 0.75, 1
2D Prewitt Direction= 0, 90, 180,

270°
2D Sobel Direction= 0, 90, 180,

270°
2D Motion Length= 3, angle= 25,

50°
3D Average Kernel size= 3
3D Ellipsoid Kernel size= 3
3D Gaussian Kernel size= 3

σ=0.5, 1, 1.5, 2
3D Log of Gaussian Kernel size= 3

σ=0.5, 1, 1.5, 2
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was registered onto the T1-weighted data and corrected for magnetic
field bias. The PVE masks of GM, WM, and CSF were generated based
on the T1-weighted data and were applied to FLAIR to obtain the actual
tissue maps of FLAIR. The ventricle mask was extracted and dilated in
all three directions to detect periventricular and deep WMHs sepa-
rately. The modified WM mask was used for detecting WMHs. The in-
tensity threshold of 0.6 times the max intensity of WM voxels of FLAIR
was applied to the WM FLAIR voxels and the pre-trained random forest
model was used to reduce FP. Potential WMH voxels near the GM and
CSF were removed. BIANCA is a supervised machine learning algorithm
which requires manually annotated WMH images. It detects WMHs
based on the k-nearest neighbor algorithm using information from the
voxel- and patch-based intensity values, and prior spatial coordinates of
the Montreal Neurological Institute (MNI) template. The leave-one-out
cross validation approach was applied to T1-weighted, FLAIR, and
manually segmented WMH images. BIANCA produced a probability

Fig. 2. The architecture for computing multi-scale deep features. L, large patch; S, small patch; Conv1, convolutional layer 1; MP1, max pooling layer 1; Conv2, convolutional layer 2;
MP2, max pooling layer 2; FC, fully-connected layer.

Fig. 3. (A) Histograms of PPV (upper) and TPR (bottom) calculated from the 1000 iterations of the test set. The red arrows indicate the peak point of PPV and TPR. (B) Heatmaps of the
potential WMH features of the training (upper) and test (bottom) data. The volume, maximum 3D distance, ratio between the major and minor axis, 38 textures, and 3960 deep features
were plotted (horizontal axis) for 102 training and 26 test subjects (vertical axis). All features were z-normalized.

Table 2
Demographics of the study subjects. Data are presented as the median (interquartile
range) or number (percentage).

Information Subjects with migraine (n= 148)

Age, years 44.4 (12.40)
Females 82 (55.4%)
Disease duration, years 10 (4–20)
Diagnosis Migraine without aura 88 (59.5%)

Migraine with aura 13 (8.8%)
Chronic migraine 30 (20.3%)
Monthly headache days 10 (4–27)
Hypertension 17 (11.5%)
Diabetes 1 (0.7%)
Dyslipidemia 14 (9.5%)
Stroke 0 (0.0%)
Smoking 4 (2.7%)
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map of WMHs and the map was thresholded and binarized with a value
of 0.5. Segmentation of WM lesions using Lesion-TOADS was performed
based on the manually delineated topological atlas (Shiee et al., 2010).
A fuzzy classification algorithm was iteratively performed and mem-
bership functions were used to classify between the lesion and non-
lesion voxels. The false positives were removed based on the distance
from the boundary of GM and ventricles. The detected WMH voxels
were clustered and compared with our manual annotations as described
in the “Evaluation” section.

2.8. Statistical analysis

Statistical results of the demographics of the participants are pre-
sented as the mean (SD) or number (%). Descriptive analyses for clinical
data were performed using Stata 15.0 (StataCorp. 2017. Stata Statistical
Software: Release 15. College Station, TX: StataCorp LLC). The PPV
[=TP/(TP+ FP)] and TPR [=TP/(TP+FN)] were calculated using
MATLAB 2016a (Mathworks Inc., Natick, MA, USA). The optimal RF
classifier model was selected by constructing histograms of PPV and
TPR while iterating 1000 times with different training and test sets
(Fig. 3A). The RF model that appeared most frequently in terms of PPV
and TPR was selected (red arrows in Fig. 3A). The features used for the
RF classifier was normalized to z-scores. The heatmap of z-normalized
features for the training and test sets that were used to construct the
selected RF model is shown in Fig. 3B.

3. Results

3.1. Demographics of the participants

Demographics and characteristics of our study subjects are sum-
marized in Table 2. The mean age was 44.4 (SD 12.40) years, with a
range of 14 to 65 years. 60 (40.5%) subjects were below the age of 50.
70 (47.3%) had episodic migraine (median monthly headache days, 6;
interquartile range, 3–10), while 31 (20.9%) had chronic migraine
(median monthly headache days, 24; interquartile range 18–30). The
prevalence of hypertension, diabetes, dyslipidemia, stroke, and
smoking were 11.5%, 0.7%, 9.5%, 0%, and 2.7%, respectively
(Table 2).

3.2. WMH characteristics

Our subjects had a median of 6.5WMHs (interquartile range, 4–20)
per subject. The volume of each WMH was small, with a median esti-
mated volume of 8.0 mm3 (interquartile range, 5.3–13.7) per cluster.

The total WMH volume was a median of 53.0 mm3 (interquartile range,
19.2–226.6) per subject. Fig. 4 shows the distribution of the number of
WMHs per subject and WMH volumes per cluster.

3.3. Detection results of deep WMH clusters

Deep WMH clusters were detected using T1-weighted and FLAIR
data for 148 participants and compared with manual annotations.
DEWS yielded good results with a mean PPV of 0.98 (SD 0.12) and
mean TPR of 0.70 (SD 0.24) for the training and test sets. In the vali-
dation set, a mean PPV of 0.96 (SD 0.12) and mean TPR of 0.68 (SD
0.18) were observed. Results from a representative participant are re-
ported in Fig. 5.

Of the 32 clusters which were initially classified as FP, 18 were re-
classified into TP (6 missed WMH in the manual annotation and 12
small WMHs which were present in the manual drawing but excluded
during the validation procedure due to the small size, i.e. a maximal
diameter of< 1mm). Only 14 were determined to be real FP (1 peri-
ventricular WMHs, 9 cortices, and 4 artifacts). Otherwise, periven-
tricular WMHs and silent infarctions were successfully removed.
Representative images are shown in Fig. 6.

We also explored the change in sensitivity with respect to the size of
WMHs to gauge the lower limit of our algorithm. We applied different
thresholds from 1mm to 5mm with an interval of 0.5mm and com-
puted the TPR of our pipeline to detect manually drawn WMHs with
larger diameters than the predefined threshold. The TPR of all data
(n=148) was 0.70 for 1mm, 0.76 for 1.5mm, 0.82 for 2mm, 0.83 for
2.5 mm, 0.82 for 3mm, 0.87 for 3.5 mm, 0.88 for 4mm, 0.89 for
4.5 mm, and 0.92 for 5mm (Fig. 7). The TPR of the training, test, and
validation data is also plotted in Fig. 7. The TPR showed an increasing
trend as the size threshold of the effective diameter increased. The TPR
plot showed a general increasing trend but was not monotonically in-
creasing. If we increased the size threshold, there were fewer WMH
clusters and thus the sample size from which the TPR was computed
decreased. With the decreased sample size, the value of the TPR became
unstable, which might lead to the non-monotonic shape of the TPR
curve.

3.4. Comparison with other methods

We applied three openly accessible software algorithms, the
W2MHS, BIANCA, and Lesion-TOADS, to our dataset. The W2MHS had
a mean PPV of 0.02 (SD 0.05) and mean TPR of 0.09 (SD 0.19) for all
subjects. No WMH clusters were detected in the 69 subjects. BIANCA
yielded a mean PPV of 0.02 (SD 0.04) and mean TPR of 0.02 (SD 0.04)

Fig. 4. Histograms of (A) the number of WMHs per subject and (B) WMH volumes per cluster. Most of our subjects had< 10WMHs, and the volume of each WMH was small for most
subjects.
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for all subjects. Lesion-TOADS yielded a mean PPV of 0.02 (SD 0.03)
and mean TPR of 0.76 (SD 0.28) for all subjects. A representative case is
shown in Fig. 5. Both the W2MHS and BIANCA failed to detect small
deep WMHs, thus yielding a high number of FP per subject (W2MHS:
mean 40.82 with SD 67.45; BIANCA: mean 32.78 with SD 32.03). Le-
sion-TOADS showed better sensitivity in detecting small deep WMHs
than W2MHS and BIANCA but yielded a large number of FP per subject
(mean 1048.74 with SD 665.23). The number of FP was acceptable in
our results using DEWS (mean 0.11 FP with SD 0.51).

3.5. Reproducible research and open software

The software for our proposed pipeline (DEWS) and limited anon-
ymized imaging data are available at a software sharing site (https://

github.com/bypark/DEWS).

4. Discussion

Non-elderly migraineurs showed small, discrete, and superficially-
located deep WMHs, which have not been focused on in previous seg-
mentation studies. Our algorithm successfully detected small deep
WMHs with a higher PPV and TPR compared to previous methods.
DEWS yielded few false positives and captured several deep WMHs that
were missed by two investigators. It still showed moderate sensitivity
on detecting deep WMHs (TPR=0.7). Taken together, we recommend
that the final results of DEWS should be monitored and validated by
human experts at this stage. To the best of our knowledge, our proposed
method is the first method developed for the research of deep WMHs in

Fig. 5. Results from a representative case. Images are presented in the following order: 1st row, the FLAIR image corrected for magnetic field bias; 2nd row, manually drawn deep WMH
clusters (in yellow); 3rd ~ 6th rows, detected deep WMH clusters using our pipeline (DEWS), W2MHS, BIANCA, and Lesion-TOADS, respectively.

B.-y. Park et al. NeuroImage: Clinical 18 (2018) 638–647

644

https://github.com/bypark/DEWS
https://github.com/bypark/DEWS


non-demented, non-elderly individuals.
We applied the W2MHS, BIANCA, and Lesion-TOADS software al-

gorithms to our data from migraine patients for comparison. Our data
contained WMHs that were mostly deep WMHs rather than periven-
tricular WMHs. The W2MHS and BIANCA did not capture small deep
WMHs and thus yielded low PPV and TPR. This might be due to several
factors. First, the WMH detection procedure was performed on the T1-
weighted space for W2MHS and MNI space for BIANCA rather than the
FLAIR space. Registration errors of mapping FLAIR onto the T1-
weighted or MNI space might negatively affect the locations and in-
tensity values of WMHs especially for small deep WMHs. Our approach
performed detection on the FLAIR space and thus registration errors
had less of an effect. Second, these algorithms did not make fine ad-
justments to the WM mask and thus many WMHs were misclassified to
GM. Third, in the W2MHS software, the threshold value for WMH de-
tection was fixed at 0.6 times the maximum WM FLAIR intensity. Our

dataset had MRI artifacts and the artifacts usually had high intensity
values. Thus, adopting the threshold value using the max WM FLAIR
intensity was not appropriate for our dataset. The Lesion-TOADS de-
tected small deep WMHs but failed to remove a large number of FP. The
FP reduction step in Lesion-TOADS was performed by considering the
distance from the boundary of GM and ventricles, while our approach
used size, texture, and multi-scale deep features. Our pipeline reduced a
large number of FP compared to the Lesion-TOADS suggesting that the
deep WMHs were better quantified using size, texture, and multi-scale
deep features rather than only using location information.

We used numerous features to train the RF classifier including size,
texture, and multi-scale deep features. We trained the RF classifiers
with following different combinations of features: (1) size features only,
(2) texture features only, (3) multi-scale deep features only, (4) size and
texture features, (5) size and multi-scale deep features, (6) texture and
multi-scale deep features, and (7) all features. Each RF classifier was

Fig. 6. Representative cases that successfully removed (A) a silent infarction and (B) periventricular WMHs. (C) A representative case of a detected WMH cluster that was missed in the
manual annotation (red circle).

Fig. 7. The graph of the TPR with respect to the effective diameter of WMH clusters for all data (left), training and test data (middle), and validation data (right).
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constructed using the training data and tested using the test data for
seven cases. We compared the PPV and TPR for each case to determine
which case showed the best performance on classifying between WMHs
and non-WMHs. The sum of PPV and TPR was the highest value when
only multi-scale deep features or texture and multi-scale deep features
were used and followed by using all features (Table S1). The differences
in performance among using multi-scale deep features, texture and
multi-scale deep features, and all features were small, but we believe
using all features could be beneficial. Multi-scale deep features were
inspired by CNN architecture which is very difficult to interpret.
However, size and texture features, part of all features, are easy to in-
terpret with proven performance and known biological implications.
We wanted to keep those easily interpretable and robust features so that
our model could be effectively applied to an independent data of pos-
sibly different WMH properties.

Multi-scale deep features were calculated by constructing an ar-
chitecture inspired by the CNN. The CNN architecture allows extraction
of various features that span many scales. These deep features might
contain contrasting information to distinguish WMHs from non-WMHs
as shown in the heatmap in Fig. 3B. Thus, these features might con-
tribute positively toward the RF classifier. The CNN requires many
hyper-parameters: the number of convolutional, pooling, and fully
connected layers; the size and number of image patches; the type of
pooling layer (e.g., max, average, or overlapping); and the number and
types of filters. We chose these parameters in a typical fashion and did
not attempt to optimize them as this was beyond the scope of our study.

The CNN is one of the powerful machine learning tools for seg-
menting WMHs (Ghafoorian et al., 2017a, 2017b). Studies have re-
ported divergent CNN models including the number of convolutional,
pooling, and fully connected layers, input patch size, number of filters,
types of activation functions, and number of iteration steps to segment
brain tumors, which implies that there is no gold standard CNN fra-
mework for brain tumor segmentation. The results of a previous study
yielded a high Dice coefficient around 0.8 between the segmented and
manually drawn images (Ghafoorian et al., 2017b). This high perfor-
mance was achieved because the authors focused on segmenting big
rather than small WMHs. Detecting small WMHs using the CNN remains
a challenging task for future studies.

Our study has a few limitations. First, the Dice coefficient or Jaccard
index were not used to report the validation results (Ithapu et al., 2014;
Jeon et al., 2011). Because these indices are based on voxel-to-voxel
comparisons and have high variability for small objects containing only
a few voxels, they were considered inappropriate for the evaluation of
small discrete WMHs (Ghafoorian et al., 2016). We calculated the PPV
and TPR by counting the number of TP, FP, and FN to assess the quality
of our proposed pipeline. We considered the detected cluster as TP if it
overlapped with the manually annotated cluster. To overcome this
limitation, all detected WMHs were reviewed and confirmed by clinical
investigators (M.J.L. and J.C.). Second, DEWS required several small
steps to specify the WM mask. Our imaging data contained many small
deep WMHs which could easily be misclassified to GM during the tissue
segmentation process. Thus, we had to adjust the WM mask in small
heuristic increments so that misclassified WMHs were indeed included
in the WM mask. There was no single step that could revert back the
misclassified WMHs and many small adjustments were necessary as was
done in previous studies (Ghafoorian et al., 2016; Ithapu et al., 2014;
Jeon et al., 2011). Third, since our study is a single center study using a
single clinical subset, external validation is warranted using data from
other centers and subjects with clinical conditions other than migraine.
Fourth, due to the limited sample size, we divided the whole sample
into training (n=102), test (n=26), and validation (n=20) sets. In
future studies, we plan to collect larger cohort data to improve the
reliability of the results. Fifth, there were possible confounding effects
of risk factors and psychoactive treatments on WMHs. This issue might
not be overwhelming as our goal was not to generate hypothesis on the
pathogenesis of WMHs but to accurately detect WMHs.

5. Conclusions

Non-elderly migraineurs show discrete, small-sized, deep WMHs,
which could not be detected by previous automated segmentation
methods. DEWS, a fully automated detection pipeline dedicated for
small and superficially-located deep WMHs, can aid further research on
deep WMHs in migraineurs.
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