Skip to main content
. 2018 Mar 2;18:638–647. doi: 10.1016/j.nicl.2018.02.033

Table 1.

Features and hyper-parameters used to train the random forest model.

Classes Features or filters Hyper-parameters Modality
Size Volume T1w
Maximum 3D distance
Major and minor axis ratio
Texture Max T1w & FLAIR
Min
Median
Mean
Variance
Energy
Standard deviation
Skewness
Kurtosis
Root mean square
Range
Inter quartile range 0.25–0.75
Entropy
Uniformity
Percentile 2.5, 25, 50, 75, 97.5
Multi-scale deep 2D Average Kernel size = 3 T1w & FLAIR
2D Disk Radius = 1
2D Gaussian Kernel size = 3
σ = 0.5, 1, 1.5, 2
2D Log of Gaussian Kernel size = 3
σ = 0.5, 1, 1.5, 2
2D Laplacian σ = 0, 0.25, 0.5, 0.75, 1
2D Prewitt Direction = 0, 90, 180, 270°
2D Sobel Direction = 0, 90, 180, 270°
2D Motion Length = 3, angle = 25, 50°
3D Average Kernel size = 3
3D Ellipsoid Kernel size = 3
3D Gaussian Kernel size = 3
σ = 0.5, 1, 1.5, 2
3D Log of Gaussian Kernel size = 3
σ = 0.5, 1, 1.5, 2