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Abstract

Background: Percentiles are widely used as reference limits for determining the relative magnitude and substantial
importance of quantitative measurements. An important application is the advocated Bland-Altman limits of agreement.

Methods: To contribute to the data analysis and design planning of reference limit or percentile research, the purpose of
this paper is twofold. The first is to clarify the statistical features of interval estimation procedures for normal percentiles.
The second goal is to provide sample size procedures for precise interval estimation of normal percentiles.

Results: The delineation demonstrates the theoretical connections between different pivotal quantities for obtaining exact
confidence intervals. Moreover, the seemingly accurate approximate methods with equidistant from the principal

estimators are shown to have undesirable confidence limits. It is found that the optimal sample size has a minimum for
median or mean, and increases as the percentile approaches the extremes.

Conclusions: The exact interval procedure should be used in preference to the approximate methods. Computer
algorithms are presented to implement the suggested interval precision and sample size calculations for planning

percentile research.

Keywords: Assurance probability, Expected width, Precision, Quantile, Sample size

Background

A percentile is a numerical measure that represents the
reference point below which a given percentage of values
in the target population fall. Because of the conceptual
simplicity and context-free feature, percentiles are widely
used for determining the relative magnitude and
substantial importance of quantitative measurements in
all scientific fields. For example, the children health
conditions are often assessed by their weight and height
in comparison to the national averages and percentiles
found in the growth charts. Also, reference limits are
extensively applied in medicine and related fields to iden-
tify informative range of measurement from a reference
population. The most typical reference limits contain the
central 95% of the values in the population of interest. As
an important application, the Bland and Altman [1, 2]
95% limits of agreement are comprised of the 2.5th
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percentile and 97.5th percentile for the distribution of the
difference between paired measurements.

The practical usage of percentiles is often represented
by referring to a normal distribution. In this prominent
case, the normal percentile is a linear function of the
mean and standard deviation of the designated popula-
tion. Note that the sample mean and sample variance
are complete and sufficient statistics for the population
mean and variance. Although estimation of normal
percentile is not discussed in most standard texts, it is
straightforward to obtain the minimum variance
unbiased estimator of a normal percentile. However, the
dominance property does not extend to other principles
in decision theoretic analyses such as the mean square
error criterion. Among others, Royston and Mathews [3]
conducted a comparison of potential point estimators of
normal percentiles with respect to bias and mean square
error. More advanced and theoretical investigations of
normal percentile estimators can be found in Keating,
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Mason, and Balakrishnan [4], Keating and Tripathi [5],
Parrish [6], Rukhin [7], and Zidek [8, 9].

In view of the stochastic nature in statistical inference,
it is more informative to construct confidence intervals
for the target parameters than to provide a single esti-
mate about their values. General expositions and com-
prehensive guidelines of interval estimation are available
in Hahn [10, 11], Hahn and Meeker [12], and Vardeman
[13]. Accordingly, various interval methods of normal
percentiles have been described from different perspec-
tives. The exact interval procedure of normal percentiles
has been documented in the literature, for example, see
Hahn and Meeker [12], Johnson, Kotz, and Balakrishnan
[14], and Owen [15]. Moreover, the one-sided confi-
dence intervals of normal percentiles have a close link to
the one-sided tolerance bounds of a normal distribution
as noted in David and Nagaraja [16], Krishnamoorthy
and Mathew [17], and Odeh and Owen [18].

Notably, Bland and Altman [1, 2] suggested the 95%
limits of agreement for evaluating the differences
between measurements by two methods. The endpoints
of the Bland-Altman 95% limits of agreement are the
2.5th percentile and 97.5th percentile for the distribution
of the difference between paired measurements. To reflect
the uncertainty due to sampling error, approximate inter-
val formulas were presented for estimating the two indi-
vidual percentiles. The large number of citations revealed
that the Bland-Altman analysis has become the major
technique for assessing agreement between two methods
of clinical measurement. But the recent work of Carkeet
[19] and Carkeet and Goh [20] provided detailed discus-
sions in favor of exact confidence interval over the ap-
proximate procedure considered in Bland and Altman [1,
2], especially when the sample sizes are small. Further
considerations and reviews of measuring agreement in
method comparison studies are available in Barnhart, Ha-
ber, and Lin [21], Choudhary and Nagaraja [22], and Lin
et al. [23].

Although the practical implementation of the exact inter-
val procedure is well presented in Carkeet [19], the explica-
tion of the differences between the exact and approximate
methods mainly concentrated on the relative magnitudes
and symmetric/asymmetric bounds of the resulting confi-
dence limits. On the other hand, the endpoints of the
Bland-Altman 95% limits of agreement are usually viewed
as a pair of bound for measuring agreement in method
comparison studies. Accordingly, Carkeet [19] and Carkeet
and Goh [20] focused on the comparison of the approxi-
mate confidence intervals for upper and lower limits of
agreements as a pair and the exact two-sided tolerance
intervals for a normal distribution. Therefore, the distinctive
advantage of the exact interval procedures and the potential
limitation of the approximate confidence intervals for the
individual upper and lower limits of agreement were not
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fully addressed in Carkeet [19] and Carkeet and Goh [20]. It
is of practical importance to conduct a detailed appraisal of
the accuracy and discrepancy between the exact and
approximate interval procedures for an individual limit of
agreement under a wide range of model configurations.
The problem of obtaining a single confidence interval to
cover both limits of agreement simultaneously is more
involved and a detailed discussion of this topic is beyond
the scope of the present study.

In addition to the abovementioned studies, a numerical
comparison of several interval estimation methods of
normal percentiles was presented in Chakraborti and Li
[24]. They adopted a standardized minimum variance
unbiased estimator as the pivotal quantity and proposed
both exact and approximate confidence intervals of nor-
mal percentiles. Their simulation study showed that the
expected width and coverage probability of the suggested
exact and approximate methods are nearly identical to
that of the procedure described in Lawless ([25], p. 231).
Despite the analytic arguments and empirical findings in
Chakraborti and Li [24], the following two attentions to-
ward their illustration should be noted. First, although it
was demonstrated that Lawless’s [25] confidence intervals
are the same as the existing formulas in Owen [15] and
Odeh and Owen [18], they did not discuss the theoretical
implications between their exact method and the estab-
lished exact procedure. Second, in contrast to the asym-
metry of the exact confidence intervals, the approximate
confidence intervals of Chakraborti and Li [24] are equi-
distant around the minimum variance unbiased estimate.
Note that the two endpoints of a two-sided confidence
interval can also be interpreted as the limits of one-sided
confidence interval. Thus, the performance of the two
limits of Chakraborti and Li’s [24] approximate interval
method should be further evaluated with respect to the
equal-tailed property. The analytic and numerical results
in Chakraborti and Li [24] are not detailed enough to clar-
ify these fundamental issues. It is prudent to elucidate
these vital aspects of their methods to be accepted as a
feasible technique.

To enhance the adoption of appropriate techniques for
interval estimation and research design, this paper has
two objectives. The first is to appraise the statistical
features of interval estimation procedures for normal
percentiles. Theoretical justifications are presented to
illuminate the statistical connections between different
pivotal quantities for obtaining exact confidence inter-
vals. Furthermore, comprehensive empirical assessments
are provided to show the seemingly accurate approxi-
mate methods with equidistant around the principal esti-
mators have problematic confidence limits. The second
goal is to provide sample size procedures for precise
interval estimation of normal percentiles. The required
precision of a confidence interval is evaluated with the
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magnitude of expected width, and the assurance prob-
ability of interval width within a designated threshold. In
view of the general availability of statistical software
packages SAS and R, computer algorithms are developed
to facilitate the implementation of the suggested confi-
dence interval and sample size computations.

Methods

Assume X;, ..., Xy are a sample from a N(y, o?)
population with unknown mean p and variance ¢ for N >
1. The sample mean X and sample variance S* are defined
as X=YY X;/N and =3 (X;-X)’/(N-1),
respectively. The 100pth percentile of the distribution
N(y, 0% is denoted by 6, where

0=p+z,0 (1)

and z, is the 100pth percentile of the standard normal
distribution N(0, 1). To estimate the percentile 6, the
intuitive formula

05 =X +2,8 (2)

is a biased estimator because E[S]<o. As noted in
Royston and Mathews [3], the minimum variance
unbiased estimator is

éMU = )_( + ZPCS. (3)

where ¢ = (v/2)"’T(v/2)/T{(v +1)/2} and v=N — 1. Note
that ¢ is an adjusting factor so that ¢S is an unbiased
estimator of ¢ or E[cS] = 6. Moreover, it can be shown that
the variance and mean square error of the two estimators
are Var[0p] = {1 +Nz127(1—1/q2)}(02/N), MSE[@B] ={1+
2Nz2(1-1/0)}(0?/N), and Var[Byu/] = MSE[Bpn]] = {1 + Nz}
(c>~1)}(6*/N). Because c is slightly larger than 1 for N> 1,
further examinations assure the contrasting dominance
phenomena: Var[é Al > Var[é 5] and MSE] [é il > MSE[é 5l
The relative numerical performance of 9 B 9 s and
alternative estimators of 6 can also be found in Royston
and Mathews [3].

To obtain confidence intervals for 0, standard deriva-
tions show that

_ X6
~§/NY2T

*

(v, —szl/z) , (4)

where (v, —szl/ ?) is a noncentral ¢ distribution with
degrees of freedom v and noncentrality parameter —z,N'/
(Johnson, Kotz, & Balakrishnan [14], Chapter 31).
Accordingly, T* yields a pivotal quantity for constructing
confidence intervals of normal percentiles. An upper
100(1 - )% one-sided confidence interval of 0 is
expressed as {é 1, <} and the lower confidence limit is
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0

X—t1 0 (v, —szl/Z)S/Nl/ 2
=X +ta (V, sz1/2>S/N1/2, (5)

where £ _ (v, — le/ %) is the 100(1 — a)th percentile of the
distribution £(v, —szI/ 2 and ¢ _ (v, — le/ 2 =t (v, szl/ 2)
for 0 < a < 1. Also, a lower 100(1 — «)% one-sided confidence
interval of 8 is {-es, 6, and the upper confidence limit has
the form

X +tia (V, szl/z)S/NW. (6)

Furthermore, a 100(1 - a)% two-sided confidence
interval of 8 with equal tail probability can be readily

obtained as {éL, éu} where

~|

éL = _tl—o(/Z (V, —ZpN1/2)S/Nl/2

X+t (v, szl/z)S/Nl/2

and

éu = X—ta/z (V, —Zp]\ll/z)s’/]\[l/2
=X+ t1ap2 (v, sz1/2)S/N1/2. (7)

Supplementary SAS/IML and R computer programs are
provided to take advantage of the embedded statistical
functions for calculating the exact confidence intervals.

In addition, it may be more appealing to modify the
point estimators 9 g and 9 Mmu to acquire the alternative
pivotal quantities

(8)

for deriving the confidence intervals of 0, respectively. It is
easy to see that Tp=T*+z V2 and Toy=TF + zchm.
Therefore, T and Ty, differ from T* only in the location
shift. Because the terms ZPNU 2 and zchl/ 2 do not depend
on the unknown parameters, Tz and Ty, give the same
one- and two-sided confidence intervals for 6 described in
Egs. 5-7. As a generalization of the simple location shifts
between different pivotal quantities, the prescribed
application of pivotal quantity for exact interval estimation
extends to any linear function of T*. For example, Lawless
[25] constructed the confidence intervals of normal
percentiles through the quantity

T, = . 9)

Evidently, 77 can be expressed as a linear transformation
of T* by TL:(T*+ZPN1/2)/N1/2. Assume g7 1_, is the
100(1 — a)th percentile of 77, it is readily established that
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qr, 1-o={t_ o —sz1/2)+sz1/2}/N1/2. Although the
result in Lawless ([25], p. 231) is written in a different
form, the quantity 7; also leads to the same exact

confidence interval {éL, éu} for 6.
On the other hand, Chakraborti and Li [24] considered
the standardized quantity

00110

:_a1/2S/N1/2 (10)

Tst

for interval estimation of 0, where a =1 +NzI27 (>-1). Their
method relies on direct computations with the derived
probability density function and cumulative distribution
function of Tsr. Therefore, a special purpose algorithm is
required to compute the quantiles of Tsyand to obtain the
suggested confidence intervals of 0. Note that T is a linear
function of T* in terms of T = (T* + zchl/ %)/a"?. Hence, if
st 1- o denotes the 100(1 — a)th percentile of Ty it has the
identical linear transform with the 100(1 — a)th percentile of
T or gsz 1-a={t_aV—2,N"?) +2,cN"?}a'"®. As noted
earlier, the actual value # _ 4(v, —z,N""%) can be obtained with
the cumulative distribution function of a noncentral ¢
distribution in major statistical packages such as SAS and R.
Hence with the general availability of software systems and
the underlying linear relationship between Ts; and T%
direct calculation is not required to compute the percentile
qst, 1-« More importantly, using the standard pivotal
procedure and the prescribed linear transformation of 7%,
the pivotal quantity Ts; leads to the same interval
estimators of 6 with 7% and the other three pivotal
measures T, Th; and T;. Although the pivotal quantity
T; was also examined in Chakraborti and Li [24], the
resulting interval estimators of 7; and Ty are viewed as
two distinct procedures. However, the numerical
assessments in Chakraborti and Li [24] reported that the
performances of the two interval procedures of T; and Tsr
are almost identical. The important connections between
the pivotal quantities and the resulting confidence intervals
of 0 should be properly recognized. Essentially, the
prescribed  explication illuminates the conceptual
equivalence between the five pivotal quantities 7', T, Tass
T;, and Tgrfor constructing confidence intervals of 6.

Results

Along with the exact confidence interval procedure of
normal percentiles, Chakraborti and Li [24] also described
an approximate interval estimator by assuming T'sy has a ¢
distribution with degrees of freedom v:

TSTf;t(V). (11)

Thus, an approximate 100(1 — a)% two-sided equal tail

confidence interval {0 ,;, 6 Ay of 6 is immediately
constructed as
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éAL = éMU_tl—a/Z(V)ﬂl/ZS/Nl/z =X+ TALS/NI/2
and

éALI = éMLI + tl,“/z(V)tll/ZS/Nl/z = )_( + TAUs/Nl/Z,
(12)

where 147 = zch”2 - t_apWa'’? tay= zch”2 +
t_ap(V)a'’? and £ _gp(v) is the 100(1 — o/2)th
percentile of the distribution £(v). Although the two-sided
confidence interval is only an approximation, the simulation
study of Chakraborti and Li [24] revealed that 6.4, 6 aul is
very competitive with the exact interval estimator 0., 0.4
with respect to the coverage probability and interval width.

On the other hand, to construct confidence intervals
of limits of agreement or percentiles, Bland and Altman
[2] argued that Var[S] = 0*/(2v) and Var[é sl = bo*/N
where b =1+ zf’ /2 . With the approximation, they
suggested the simplified pivotal quantity

65-6 Lt(v). (13)

BA = bl/ZS/Nl/Z ~

Accordingly, the widely used confidence intervals of
Bland and Altman [2] can be derived from T4 and they

are written as {éBAL, éBALI} where
Bpar = Op—t1 oo (V)2 S/NV? = X + 154,S /N
and

Opau = 05 + tl-a/z(V)bl/ZS/Nl/z

:X—‘—TBAL[S/NI/27 (14)

with TBAL=ZPN1/2 — ti_ap()b'"?* and TBAU=ZPN1/2 +
t1 - a(V)BY% For the particular case of a=0.05, the
general expressions reduce to the confidence intervals
for the two endpoints of the 95% limits of agreement
considered in Bland and Altman [2]:

X—(1.96)S + to.075(v)(2.92)"/2S /N'/? (15)
and
X + (1.96)S = too75(v)(2.92)/2S /N'/2, (16)

respectively, because zpgz5 = — 1.96, 29975 = 1.96, and b
=2.92.

For the blood pressure data presented in Bland and
Altman [2] with the sample size N = 85, the sample mean
difference (observer minus machine) X = - 16.29 mmHg,
and the standard deviation of the differences S =19.61, the
95% confidence intervals of the exact and two approximate
methods for the 2.5th percentile are {é 5 0.0 =1{-629501,
— 483770}, {041, 0 a1 = {~62.1035, — 475754}, and {6 pa;
and 6 Ay = {— 619536, —47.4961}, respectively. For the
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interval estimation of the 97.5th percentile, the resulting
exact and two approximate 95% confidence intervals
are {0;, 0.} = {15.7970, 30.3701}, {84,, B4, = {14.9954,
29.5235}, and {éBAL, éBAL[} ={14.9161, 29.3736}, respect-
ively. Although the differences between these estimates
may not be substantial, it is vital to point out that the con-
fidence limits of the 2.5th percentile are in the ascending

order of éL < éAL < éBAL and éu < éAu < éBAu. Whereas
the confidence limits of the 97.5th percentile have a
reversed situation: éBAL < éAL < éL and éBALI < éAu < éu.
This inherent relationship between the three interval pro-
cedures is further justified as the usual occurrence in the
simulation study.

In general, the actual distribution of the pivotal quantity
T* is skewed, especially when sample size is small and p de-
viates considerably from 0.5. This implies that the interval
procedure should adopt asymmetric confidence intervals for

0. Notably, the exact two-sided interval estimates {é L éu}
are not equidistant from the sample mean except for the
special case p =0.5. In contrast, the approximate confidence

intervals {é AL 9 a1 of Chakraborti and Li [24] is equidistant

about the unbiased estimate 0 us- Therefore, the interval
procedure is presumably inappropriate and the two confi-

dence limits 6 4z and 0 au are methodologically inaccurate
when one-sided coverage probabilities are considered. But
the numerical investigations in Chakraborti and Li [24] did
not cover these fundamental issues. Similarly, the confi-

dence intervals {é BAL 9 Bary of Bland and Altman [2] are
symmetric around the estimate 65 and thus also suffer the

same shortcoming as the intervals {é AL 0 gt of Chakraborti
and Li [24].

Note that the lower and upper confidence limits of a
100(1 — «)% two-sided confidence interval are equivalent to
the lower and upper confidence limits of the 100(1 — «/2)%
one-sided upper and lower confidence intervals, respect-
ively. To demonstrate the potential drawback of the
approximate interval procedures of Chakraborti and Li [24]
and Bland and Altman [2], a simulation study was
conducted to evaluate the coverage performance of their
one- and two-sided confidence intervals. Although the
approximate interval method of Bland and Altman [2] has
been examined in Carkeet and Goh [20] under a different
perspective, the particular method is included in the follow-
ing appraisal for the sake of completeness and with the
intention to explicate additional properties that were not
reported before.

Specifically, Monte Carlo simulation studies of 10,000 iter-
ations were performed to compute the simulated coverage
probability of the exact and approximate confidence inter-
vals for the percentiles of a standard normal distribution
N(0, 1). The designated sample size has six different magni-
tudes: N = 10, 20, 30, 50, 100, and 200. Also, a total of eight
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percentile probabilities are examined: p = 0.025, 0.05, 0.10,
0.20, 0.80, 0.90, 0.95, and 0.975. For each replicate, the

lower and upper confidence limits {éL, éu}, {é AL 9 au, and

{é BAL ) Ay} were computed to construct the 95 and 97.5%
one-sided confidence intervals and the corresponding 90
and 95% two-sided confidence intervals. The simulated
coverage probability was the proportion of the 10,000 rep-
licates whose confidence interval contained the population
normal percentile. Then, the adequacy of the one- and
two-sided interval procedures is determined by the error =
simulated coverage probability — nominal coverage prob-
ability. The results are summarized in Tables 1, 2, 3 and 4
for the exact and approximate confidence intervals with
two-sided confidence coefficient 1 — a=0.90 and 0.95,
respectively.

It can be seen from the resulting errors of the three
types of confidence intervals that the exact approach per-
forms extremely well for all 96 cases presented in
Tables 1, 2, 3 and 4. For the two approximate methods of
Chakraborti and Li [24] and Bland and Altman [2], the
coverage probabilities of their two-sided interval remain
rather close to the nominal confidence levels. However,
the corresponding approximate one-sided interval proce-
dures do not preserve the same desired accuracy unless
the sample size is large. Due to different degree of pre-
sumed simplifications, the interval procedure of Bland
and Altman [2] is inferior to that of Chakraborti and Li
[24], especially for small sample sizes. To enhance the
explication, the simulated coverage probabilities of the 97.5%
one-sided confidence intervals for N =10 are plotted
in Fig. 1. Despite the attractive coverage behavior of
the approximate two-sided confidence intervals, the
errors of the upper confidence intervals tend to be
negative for small p while those associated with large
p are consistently positive. The situations of the lower
confidence intervals reveal exactly the opposite pat-
terns. In other words, the corresponding lower and
upper confidence limits are generally too large for the
2.5th, 5th, 10th and 20th normal percentiles and are
mostly too small for the 80th, 90th, 95th, and 97.5th nor-
mal percentiles. Consequently, the two endpoints of the
two-sided confidence intervals generally do not meet the
assumption of equal-tailed error rates for the two approxi-
mate interval methods. A mere coverage probability as-
sessment of the approximate two-sided confidence
intervals may obscure the potential biases of the confi-
dence limits based on the £(v) approximations described
in Egs. 11 and 13. It is inappropriate to claim that a two-
sided interval procedure is accurate on the basis of a com-
bination of some noticeable under- and over-estimated
confidence limits. Instead, the exact interval procedure
should be used in preference to the approximate methods
of Bland and Altman [2] and Chakraborti and Li [24].
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Table 1 The error between simulated coverage probability and nominal coverage probability for the 90% two-sided and 95%

one-sided confidence intervals when N=10, 20, and 30

Exact approach

Chakraborti and Li [24]

Bland and Altman [2]

N p Upper Lower Two-sided Upper Lower Two-sided Upper Lower Two-sided
95% Cl 95% Cl 90% Cl 95% Cl 95% Cl 90% Cl 95% Cl 95% Cl 90% Cl

10 0.025 —0.0003 0.0013 0.0010 —-0.0418 0.0447 0.0029 —0.0604 0.0455 —-00149
0.05 0.0014 0.0011 0.0025 —-0.03% 0.0436 0.0040 —0.0541 0.0442 —-0.0099

0.10 —0.0005 0.0024 0.0019 -0.0368 0.0407 0.0039 -0.0511 0.0418 —0.0093

020 0.0012 —0.0024 —0.0012 —-0.0269 0.0313 0.0044 —0.0361 0.0328 —0.0033

0.80 0.0021 0.0006 0.0027 0.0303 —-0.0282 0.0021 0.0319 -0.0370 —0.0051

0.90 0.0013 0.0036 0.0049 0.0392 —-0.0384 0.0008 0.0404 -0.0519 -0.0115

0.95 0.0017 0.0001 0.0018 0.0428 —0.0414 0.0014 0.0435 —-0.0593 —-00158

0.975 -0.0048 0.0031 -0.0017 0.0434 —-0.0435 —0.0001 0.0440 -0.0617 -0.0177

20 0.025 0.0041 0.0041 0.0082 -0.0274 0.0331 0.0057 —0.0398 0.0348 —-0.0050
0.05 0.0035 0.0029 0.0064 -0.0254 0.0327 0.0073 -0.0362 0.0342 -0.0020

0.10 —-0.0018 —0.0030 —0.0048 —-0.0257 0.0272 0.0015 —0.0364 0.0292 —-0.0072

0.20 0.0005 -0.0015 -0.0010 -0.0217 0.0228 0.0011 -0.0276 0.0244 —-0.0032

0.80 0.0021 0.0015 0.0036 0.0241 —0.0201 0.0040 0.0256 -0.0257 —0.0001

0.90 0.0019 —-0.0022 —0.0003 0.0314 -0.0282 0.0032 0.0329 -0.0382 —-0.0053

0.95 0.0027 —-0.0007 0.0020 0.0345 -0.0324 0.0021 0.0364 -0.0415 —0.0051

0975 —0.0055 —-0.0027 —0.0082 0.0323 —0.0347 —0.0024 0.0342 —0.0467 —-00125

30 0.025 0.0014 —0.0008 0.0006 —-0.0210 0.0262 0.0052 —-0.0285 0.0278 —0.0007
0.05 0.0010 -0.0027 -0.0017 —-0.0208 0.0238 0.0030 -0.0271 0.0263 —0.0008

0.10 —0.0035 0.0016 —-0.0019 —-0.0261 0.0255 —0.0006 —-0.0341 0.0272 —0.0069

020 0.0007 —0.0040 —-0.0033 —-00184 0.0152 —-0.0032 —-0.0231 00174 —-0.0057

0.80 0.0019 —0.0046 -0.0027 0.0208 -0.0216 —0.0008 0.0225 —0.0253 —0.0028

0.90 0.0028 —0.0033 —0.0005 0.0259 -0.0256 0.0003 0.0277 -0.0319 —0.0042

095 0.0031 0.0030 0.0061 0.0264 -0.0204 0.0060 0.0289 -0.0284 0.0005

0.975 0.0019 0.0003 0.0022 0.0268 -0.0260 0.0008 0.0291 -0.0339 —-0.0048

Sample size determinations
From a study design viewpoint, it is essential to determine
the optimal sample sizes so that the resulting confidence
interval will meet the designated precision requirement.
Two particularly useful criteria concern the control of
the expected width and the assurance probability of
the width within a designated bound (Beal [26];
Kupper & Hafner [27]).

The width of the 100(1 — a)% two-sided confidence

intervals {éL, éu} given in Eq. 7 is

W = {tl,“/z <v,sz1/2) ~ta/2 (v, szl/z) } (S/Nl/z) .
(17)

Accordingly, it is desired to calculate the least sam-
ple size such that the expected width of a 100(1 — «)

% two-sided confidence interval is within the given
threshold:

E[W]<8, (18)
where § (>0) is a constant. On the other hand, one may
compute the minimum sample size needed to guarantee,
with a given assurance probability, that the width of a
100(1 - )% two-sided confidence interval will not
exceed the planned value:

P(W=zw)z1-y, (19)
where 1 — y is the specified assurance level and o (> 0)
is a constant.

Under the normal assumption, the assessments of
expected width and assurance probability are further
simplified for brevity. Note that the expected width
E[W] has the alternative form
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Table 2 The error between simulated coverage probability and nominal coverage probability for the 90% two-sided and 95%

one-sided confidence intervals when N =50, 100, and 200

Exact approach

Chakraborti and Li [24]

Bland and Altman [2]

N p Upper Lower Two-sided Upper Lower Two-sided Upper Lower Two-sided
95% Cl 95% Cl 90% Cl 95% Cl 95% Cl 90% Cl 95% Cl 95% Cl 90% Cl

50 0.025 —-0.0010 —-0.0026 —0.0036 —-0.0185 0.0193 0.0008 —-0.0237 0.0214 —-0.0023
0.05 —-0.0017 —0.0031 —0.0048 —-0.0193 00172 —0.0021 —-0.0238 0.0197 —0.0041

0.10 —0.0007 —0.0033 —0.0040 -0.0165 0.0158 —-0.0007 -0.0217 0.0179 —0.0038

020 0.0022 —-0.0020 0.0002 —-00124 0.0136 0.0012 —-00156 00161 0.0005

0.80 0.0006 —0.0006 0.0000 0.0160 —-0.0140 0.0020 00179 -0.0173 0.0006

0.90 0.0002 -0.0015 -0.0013 0.0198 -0.0183 0.0015 0.0225 -0.0229 —-0.0004

0.95 0.0006 0.0013 0.0019 0.0221 -0.0179 0.0042 0.0246 —-0.0222 0.0024

0.975 0.0013 -0.0025 —-0.0012 0.0221 -0.0233 -0.0012 0.0254 -0.0299 —0.0045

100 0.025 0.0027 —-0.0012 0.0015 -0.0105 0.0137 0.0032 -0.0138 0.0157 0.0019
0.05 0.0038 —0.0009 0.0029 -0.0116 0.0112 —0.0004 -0.0152 0.0135 —-0.0017

0.10 —-0.0017 -0.0026 —0.0043 —-00153 0.0120 —0.0033 -00182 0.0132 —0.0050

0.20 -0.0018 0.0035 0.0017 -0.0116 0.0134 0.0018 -0.0130 0.0147 0.0017

0.80 0.0050 0.0007 0.0057 0.0126 —-0.0094 0.0032 0.0145 -00114 0.0031

0.90 0.0016 0.0007 0.0023 0.0141 —-0.0093 0.0048 0.0158 -0.0124 0.0034

0.95 0.0028 —-0.0033 —0.0005 0.0162 -0.0165 —0.0003 0.0177 -0.0199 -0.0022

0.975 0.0015 —0.0031 —-0.0016 0.0161 -0.0182 —0.0021 0.0183 —-0.0224 —0.0041

200 0.025 —0.0005 —-0.0015 —-0.0020 —-0.0094 0.0090 —0.0004 -00123 0.0098 —0.0025
0.05 0.0002 -0.0023 -0.0021 —-0.0086 0.0068 -0.0018 -00118 0.0093 -0.0025

0.10 0.0000 0.0016 0.0016 —0.0095 00116 0.0021 -0.0115 0.0134 0.0019

020 0.0023 —-0.0002 0.0021 —0.0059 0.0074 0.0015 -0.0072 0.0083 0.0011

0.80 0.0018 —-0.0056 —0.0038 0.0089 -00122 —-0.0033 0.0106 -0.0141 —0.0035

0.90 —0.0002 0.0002 0.0000 0.0087 —-0.0099 —-0.0012 0.0102 -00124 —-0.0022

0.95 0.0024 —0.0006 0.0018 00117 —00111 0.0006 00131 —-0.0137 —0.0006

0.975 0.0017 —-0.0001 0.0016 0.0120 —-0.0096 0.0024 0.0131 -0.0127 0.0004

EW) = {0 (5. 2oNY2) 1 (5,0 2) o/ (e2) ).
(20)

Hence, the inequality E[W] <8 is expressed as
{t1 a2V, 2,N'?) = top(v, Z,N"?)}/(eN'?) < 8/0. Also,
the assurance probability is equivalent to

P(W<sw) =P(K < x) = O(k), (21)

where K = v§%/0* ~ x?(v) is a chi-square distribution with v
degrees of freedom, k= {N(N - 1)(w/0)3/{t1 — ao(Vs ZPNI/ 2)
2\ szl/ 212 and () is the cumulative distribution
function of the chi-square random variable K. With the
exact computational formulas of expected width and
assurance probability given in Egs. 20 and 21,
respectively, the sample size N needed to attain the
specified precision can be found with a simple itera-
tive search for the chosen parameter values {u, o},
percentile p, and confidence level 1 — a.

Evidently, the sample size determinations do not
depend on the mean value p and reduce to the sample
size procedures of Kupper and Hafner [27] because 6 =
when p=0.5. The precision evaluations of expected
width and assurance probability depend on the
thresholds 8§ and w through the relative magnitude ratios
8/c and w/o, respectively. Accordingly, supplementary
SAS/IML and R computer programs are presented to
facilitate the required computations. Due to the
prospective nature of advance research planning, the
general guidelines suggest that typical sources like
published findings or expert opinions can offer plausible
and reasonable values for the vital characteristics of
future study. For illustration, the sample statistics of the
blood pressure data in Bland and Altman [2] are adopted
as parameter values = - 16.29 and 0 =19.61. With § = »
=(0.7)0=9.805 and 1 — y=0.9, the optimal sample sizes
for precise 95% interval estimation of the 97.5th per-
centile are 183 and 207 under the expected width



Shieh BMC Medical Research Methodology (2018) 18:45

Page 8 of 11

Table 3 The error between simulated coverage probability and nominal coverage probability for the 95% two-sided and 97.5%

one-sided when N =10, 20, and 30

Exact approach

Chakraborti and Li [24]

Bland and Altman [2]

N p Upper Lower Two-sided Upper Lower Two-sided Upper Lower Two-sided
97.5% Cl 97.5% Cl 95% Cl 97.5% Cl 97.5% Cl 95% Cl 97.5% Cl 97.5% Cl 95% Cl

10 0.025 0.0017 0.0010 0.0027 —-0.0350 0.0247 —-0.0103 —-0.0464 0.0247 -0.0217
0.05 0.0012 0.0008 0.0020 —-0.0328 0.0246 —-0.0082 —-0.0440 0.0246 -0.0194

0.10 —-0.0001 0.0016 0.0015 -0.0308 0.0239 —-0.0069 —0.0405 0.0239 -0.0166

020 0.0014 —-0.0012 0.0002 —0.0231 0.0200 —0.0031 —-0.0275 0.0203 —0.0072

0.80 —-0.0002 —-0.0009 —0.0011 0.0192 —-0.0234 —-0.0042 0.0195 —0.0288 —-0.0093

0.90 0.0018 —0.0005 0.0013 0.0231 -0.0282 —0.0051 0.0231 —-0.0384 -0.0153

0.95 0.0009 0.0011 0.0020 0.0245 —0.0341 —-0.0096 0.0245 —0.0481 —-0.0236

0.975 —-0.0015 0.0023 0.0008 0.0246 -0.0335 -0.0089 0.0246 -0.0487 -0.0241

20 0.025 0.0031 —-0.0007 0.0024 -0.0221 0.0215 —0.0006 -0.0296 0.0216 —-0.0080
0.05 0.0027 —0.0006 0.0021 -0.0213 0.0207 —0.0006 -0.0276 0.0213 —-0.0063

0.10 -0.0016 —-0.0013 —0.0029 —-0.0237 0.0192 —0.0045 —0.02% 0.0198 —0.009

0.20 —-0.0008 —-0.0004 -0.0012 -0.0166 0.0153 -0.0013 —0.0208 0.0157 —0.0051

0.80 0.0007 0.0016 0.0023 0.0168 —0.0161 0.0007 00177 —0.0206 —0.0029

0.90 0.0020 —-0.0002 0.0018 0.0188 —-0.0245 —-0.0057 0.0189 —0.0300 -00111

0.95 0.0016 0.0003 0.0019 0.0222 -0.0256 -0.0034 0.0223 -0.0324 -0.0101

0975 —0.0021 —-0.0013 —0.0034 0.0216 —-0.0287 —0.0071 0.0220 -0.0372 —-00152

30 0.025 0.0023 -0.0019 0.0004 —-0.0215 0.0179 —-0.0036 -0.0254 0.0183 —-0.0071
0.05 0.0024 -0.0025 —-0.0001 —-0.0200 0.0162 —0.0038 —-0.0245 0.0172 -0.0073

0.10 —0.0011 0.0014 0.0003 —0.0206 00164 —0.0042 -0.0256 0.0170 —0.0086

020 0.0018 -0.0017 0.0001 —0.0131 0.0131 0.0000 -0.0161 0.0136 —-0.0025

0.80 0.0016 0.0001 0.0017 0.0142 -0.0156 -0.0014 0.0150 -0.0196 —0.0046

0.90 0.0018 —0.0003 0.0015 0.0166 —0.0205 —-0.0039 0.0170 —0.0256 —0.0086

0.95 0.0006 0.0014 0.0020 0.0198 —0.0181 0.0017 0.0201 —-0.0230 —0.0029

0.975 -0.0017 0.0004 —-0.0013 0.0194 -0.0214 -0.0020 0.0199 -0.0265 —0.0066

and assurance probability criteria, respectively. For
ease of application, the prescribed configurations
are incorporated in the user specification sections
of the SAS/IML (Additional files 1, 2 and 3) and R
programs (Additional files 4, 5 and 6).

To further demonstrate the features and differences of
the two suggested sample size procedures for precise
interval estimation of the normal percentiles, numerical
computations are performed for p = 0.025, 0.05, 0.10, 0.20,
0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, and 0.975 under
the expected width and assurance probability criteria. The
parameter configurations are fixed as =0, 0>=1,1 - a =
0.95 throughout the empirical appraisal. Moreover, the
selected two thresholds of expected width are 6 =0.5
and 1.0. For assurance evaluation, the four designated
settings are 1 — y=0.80 and 0.9 combined with »=0.5
and 1.0. These configurations are chosen to reflect
common sample sizes used in typical research settings.

For ease of illustration, the computed sample sizes are
plotted in Fig. 2.

It is seen from Fig. 2 for the six types of precision that
the graphs of the optimal sample size are symmetric
with respect to p = 0.5 and are monotonously increasing
with the absolute difference |p — 0.5|. Therefore, the
required sample size for precise interval estimation of
median or mean is smaller than those of the other nor-
mal percentiles. Also, the optimal sample size increases
with a smaller width bound of & and w when all other
factors are fixed. As expected, more sample size is
needed to attain a higher assurance level 1 — y when the
designated width w and other configurations remain
identical. Regarding the difference between the two pre-
cision principles, it typically requires a larger sample size
to meet the necessary precision of assurance probability
than the control of a designated expected width. With
the same interval bound 8=, the sample sizes
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Table 4 The error between simulated coverage probability and nominal coverage probability for the 95% two-sided and 97.5%

one-sided confidence intervals when N =50, 100, and 200

Exact approach

Chakraborti and Li [24]

Bland and Altman [2]

N p Upper Lower Two-sided Upper Lower Two-sided Upper Lower Two-sided
97.5% Cl 97.5% Cl 95% Cl 97.5% Cl 97.5% Cl 95% Cl 97.5% Cl 97.5% Cl 95% Cl

50 0.025 —-0.0004 —-0.0022 —0.0026 —-0.0188 0.0144 —0.0044 —0.0221 0.0157 —0.0064
0.05 —-0.0002 —-0.0026 —-0.0028 -0.0169 00131 —-0.0038 —0.0208 0.0145 —0.0063

0.10 0.0007 -0.0018 -0.0011 -0.0135 0.0104 —0.0031 -0.0164 0.0120 -0.0044

020 0.0009 —-0.0020 —0.0011 —0.0083 0.0084 0.0001 —-0.0105 0.0089 —0.0016

0.80 —0.0001 —-0.0008 —0.0009 0.0102 -00114 —-0.0012 00112 -0.0132 —-0.0020

0.90 0.0020 -0.0017 0.0003 0.0138 -0.0161 —-0.0023 0.0146 -0.0189 —0.0043

0.95 0.0031 0.0006 0.0037 0.0159 —0.0145 0.0014 00161 —-0.0183 —0.0022

0.975 0.0014 -0.0010 0.0004 0.0160 -0.0182 —-0.0022 0.0167 -0.0227 —0.0060

100 0.025 0.0015 -0.0017 —0.0002 —0.0096 0.0105 0.0009 -0.0119 0.0116 —-0.0003
0.05 0.0007 —0.0030 —0.0023 —0.0090 0.0091 0.0001 -0.0108 0.0106 —-0.0002

0.10 0.0002 —-0.0008 —0.0006 —-0.0106 0.0095 —0.0011 -0.0128 0.0101 —-0.0027

0.20 —-0.0002 0.0035 0.0033 —0.0090 0.0110 0.0020 -0.0104 0.0115 0.0011

0.80 0.0014 0.0008 0.0022 0.0088 —0.0075 0.0013 0.0092 —0.0094 —-0.0002

0.90 0.0005 0.0000 0.0005 00111 —0.0096 0.0015 0.0121 -0.0120 0.0001

0.95 0.0013 —-0.0012 0.0001 0.0115 -0.0143 -0.0028 0.0117 -0.0164 —0.0047

0.975 0.0014 —0.0011 0.0003 0.0118 —0.0140 —-0.0022 0.0125 —-0.0160 —0.0035

200 0.025 0.0006 -0.0019 —-0.0013 —0.0066 0.0077 0.0011 —-0.0084 0.0084 0.0000
0.05 0.0021 -0.0013 0.0008 -0.0056 0.0075 0.0019 -0.0077 0.0079 0.0002

0.10 0.0005 0.0023 0.0028 —0.0068 0.0088 0.0020 —-0.0079 0.0095 0.0016

020 0.0012 —-0.0012 0.0000 —-0.0042 0.0047 0.0005 —-0.0052 0.0053 0.0001

0.80 0.0029 -0.0017 0.0012 0.0077 -0.0077 0.0000 0.0080 —0.0095 -0.0015

0.90 —-0.0015 —0.0001 —-0.0016 0.0054 —-0.0070 —-0.0016 0.0061 —0.0085 —0.0024

0.95 0.0020 —-0.0021 —0.0001 0.0100 —0.0089 0.0011 0.0104 —-0.0100 0.0004

0.975 0.0016 0.0003 0.0019 0.0093 —-0.0080 0.0013 0.0103 -0.0099 0.0004

associated with the assurance criterion are larger than
those under the expected width consideration. For the
precision settings considered here, the sample sizes for
0/0 = w/o = 1.0 are within the range of [40, 60] for p = 0.95
and 0.975. With 8/0=w/0=0.5, the computed sample
sizes for the same percentiles are much larger and have a
wider interval [148, 207]. These numerical illustrations
suggest that the width bounds §/0 = w/0=0.5 and 1.0 and
the assurance level 1 — y=0.80 and 0.90 lead to sensible
sample sizes and are suitable benchmark precision setups
for designing percentile studies. Deciding on the appropri-
ate precision requirements always requires careful thought
and should be determined by the research context and
study goal within a particular scientific field.

Discussion

In view of the wide application in medical studies, this
article aims to explicate the theoretical and empirical
features of interval procedures of percentiles. An

integrated discussion is presented to address the similar-
ities and differences of exact and approximate confi-
dence intervals constructed with various pivotal
quantities described in the literature. Although there are
distinct selections of pivotal quantities, it is shown that
they yield the same exact confidence intervals. Notably,
the exact interval procedure requires the use of the
cumulative distribution function of a noncentral ¢ distri-
bution. The difficulty of applying the exact approach has
been alleviated because of the availability of specialized
routines in popular software packages. In contrast, the
approximate interval methods are computationally
simple and do not require specialized software because
they only involve the quantiles of a regular ¢ distribution.
However, the approximate confidence intervals carry the
symmetry property of a ¢ distribution whereas the
noncentral ¢ distribution is skewed so that the resulting
exact confidence intervals are not equidistant around
the primary statistic.
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Conclusions

Despite the positive findings in previous research, detailed
numerical assessments are presented to reveal the under-
lying drawbacks of the approximate methods under the
notion that the endpoints of a two-sided confidence interval
have a corresponding interpretation as a lower or upper
confidence limit of a one-sided confidence interval. Essen-
tially, the simplicity and symmetry of an approximate confi-
dence interval generally do not maintain the assumption of
equal-tailed error rates for the two individual endpoints.
For the purpose of planning percentile studies so that the
results will help confirm meaningful reference targets,
sample size procedures for precise interval estimation of
normal percentiles are described under the precision
criteria of expected width and assurance probability. To
enhance the applicability of the exact interval approach and
corresponding sample size methodologies, computer codes
are also presented to perform the required computations.

Additional files

Additional file 1: SAS/IML program for computing the exact confidence
interval of percentile. (DOCX 64 kb)

Additional file 2: SAS/IML program for computing sample size required
to meet the designated expected width for confidence interval of
percentile. (DOCX 64 kb)

Additional file 3: SAS/IML program for computing sample size required
to ensure adequate assurance probability of achieving the desired width
for confidence interval of percentile. (DOCX 67 kb)

Additional file 4: R program for computing the exact confidence interval
of percentile. (DOCX 62 kb)

Additional file 5: R program for computing sample size required to meet
the designated expected width for confidence interval of percentile.
(DOCX 64 kb)

Additional file 6: R program for computing sample size required to ensure
adequate assurance probability of achieving the desired width for confidence
interval of percentile. (DOCX 20 kb)
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