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Summary

Surface Plasmon Resonance (SPR) is a quantitative, label-free method for determining molecular 

interactions in real time. The technology involves fixing a ligand onto a senor chip, measuring a 

baseline resonance angle, and flowing an analyte in bulk solution over the fixed ligand to measure 

the subsequent change in resonance angle. The mass of analyte bound to fixed ligand is directly 

proportional to the resonance angle change and the system is sensitive enough to detect as little as 

picomolar amounts of analyte in the bulk solution. SPR can be used to determine both the 

specificity of molecular interactions as well as the kinetics and affinity of an interaction. This 

technique has been especially useful in measuring the affinities of lipid-binding proteins to intact 

liposomes of varying lipid compositions.
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1. Introduction

A number of techniques have been developed to assess peripheral protein interactions with 

lipid membranes. Surface plasmon resonance (SPR) is one such technique that has emerged 

for quantifying protein affinity and specificity for different lipids [1,2]. Most SPR 

instruments are based upon the attenuated total reflectance configuration, which relies on the 

phenomenon of total internal reflection. Total internal reflection is observed when light 

travelling through an optically dense medium (e.g. glass) reaches an interface between this 

medium and a medium of lower optical density (e.g. air), and is reflected back. Detection of 

binding events is possible as an evanescent wave is a component of the incident light that is 

able to couple with free oscillating electrons (plasmons) in gold film at the interface. A 

specific angle of incidence (resonance angle) produces a SPR because of energy transfer 

between the evanescent wave and plasmons on a gold surface. Thus, the SPR signal is 

sensitive to the mass concentration on the gold surface and is expressed in resonance units 
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(RU). The mass change on the surface can be detected in a time dependent manner, which 

allows for real-time biomolecular interaction analysis.

SPR has been used extensively to observe protein-protein and small molecule-protein 

interactions, and more recently has been used to explore the interactions of proteins with 

other biomolecules such as lipids [2–4]. Lipid biochemistry, especially in eukaryotic systems 

is complex and not wholly understood; membranes may be comprised of over 1000 different 

lipid species [5], and many cell-signaling pathways are dependent on protein-lipid 

interactions [6]. As nearly half of proteins are located within or on membranes, it is 

imperative to characterize the specifics of lipid-protein interactions in order to discern the 

role these proteins and lipids play on a broader scale. Inherent advantages of SPR included 

interactions that can be monitored in real-time, neither the ligand nor the analyte require 

labeling, instruments have high sensitivity, and high throughput of samples can be 

performed.

Here we will discuss how SPR can be used to determine an apparent Kd after approximately 

eight hours of data collection. We have demonstrated sensitivity of this instrument to detect 

nanomolar quantities of protein in bulk solution [7]. Additionally, the method can be used to 

quantify both on- and off-rates and binding affinities of lipid-protein interactions. These 

applications allow a user to dig deeper into mechanisms regulating peripheral protein 

association and dissociation from lipid vesicles of varying compositions [8,3,4,9]. This 

guide details methods that can be used with a BiacoreX system and software.

2. Materials

Prepare all solutions using ultrapure water (18 MΩ resistivity at 25C) and analytical grade 

reagents. It is recommended that you use autoclaved, degassed buffers for both running the 

instrument as well as sample preparation. Diligently follow all waste disposal procedures. 

All solutions are kept at room temperature (25C) unless stated otherwise.

2.1 Buffer Preparation

1. SPR running buffer: in the most ideal experimental setup, the SPR running buffer 

should be the same buffer in which the analyte is stored. This will help to 

minimize any refractive index changes caused by small differences in buffer 

components (e.g., salt concentration). The running buffer should be free of all 

detergents as this would destabilize lipid vesicles (see Note 1). In the case that 

there is a buffer incompatibility between the analyte storage buffer and the SPR 

running buffer, a common alternative SPR running buffer is HEPES-KCl (10 

mM HEPES, 150 mM KCl, pH = 7.4) (see Note 2).

1One drawback to the absence of detergents in SPR buffers is that the instrument should be cleaned more frequently (every 2-3 days) 
as protein will be lost to the inner tube walls of the SPR during experimentation. Additionally, it is recommended that an SPR 
instrument is cleaned with the desorb procedure approximately every two days when working with lipid vesicles to minimize any 
contamination effects on the lipid surface.
2It is best to make a one L solution of SPR running buffer, autoclave it, and degas immediately before use using a water bath sonicator 
or vacuum filter prior to use. Keep the SPR running buffer covered with parafilm or capped with a lid at all times.
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2. 50 mM NaOH: Measure out 0.10 g of NaOH and add to ~ 25 mL of autoclaved 

ddH2O to dissolve the NaOH pellets, followed by dilution to a final volume of 50 

mL. Sterile filter this solution through a 0.2 µm filter. Store at room temperature.

3. 20 mM CHAPS detergent: Measure out 0.614 g CHAPS and add to ~25 mL of 

autoclaved ddH2O to dissolve the detergent. Once the detergent is solubilized, 

dilute to a final volume of 50 mL with autoclaved ddH2O. Sterile filter this 

solution through a 0.2 µm sterile syringe filter. Store at room temperature.

4. 40 mM Octyl-β-D-Glucopyranoside: Measure out 0.585 g of Octyl-β-Gluco-

Pyranoside and add to ~25 mL of autoclaved ddH2O to dissolve the detergent. 

Once the detergent is solubilized, dilute to a final volume of 50 mL with 

autoclaved ddH2O. Sterile filter this solution through a 0.2µm filter. Store at 

room temperature.

5. GE L1 Sensor Chip: Choose a sensor chip that is appropriate for the SPR 

instrument model you are using. Two common chips are the Sensor Chip L1 and 

the Series S Sensor Chip L1. The HPA chip can also be used to create a 

supported bilayer (see Note 3).

2.2 Lipids and Lipid Vesicle Preparation

It is customary to prepare two samples of lipid vesicles: a control vesicle that contains 

physiologically relevant compositions of lipids that minimally interact with your analyte, 

and a second variable component vesicle that contains the same lipids as control vesicles 

with a single, additional lipid species “spiked” in. Avanti Polar Lipids is the gold standard in 

terms of lipid purity. Additionally, this setup will help to assess any nonspecific binding of 

protein analyte to the L1 sensor chip surface.

1. 16:0-18:1 PC. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

2. 16:0-18:1 PE. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

3. 16:0-18:1 PS. 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (sodium salt)

4. Other commonly used lipids: Lipid-protein SPR can be used to test affinities to 

lipids other than those listed above. Members of the phosphoinositide (PIP) 

family [9–11], as well as ceramide-1-phosphate [12,13] have been used in lipid 

SPR studies. Most other phospholipids should be amenable to study via this 

technique (see Note 4).

3A variety of methods have been utilized to capture lipids on the sensor surface of SPR instrumentation. The most popular and 
standardized methods are the supported bilayer (HPA chip) or intact lipid vesicles (L1 chip). The HPA chip utilizes hydrophobic 
interactions between alkanethiol groups on the gold sensor surface, which will capture the hydrophobic tails of lipid molecules 
injected into the instrument. This forms a lipid monolayer on the alkanethiol referred to as a supported bilayer. The L1 chip captures 
intact lipid vesicles injected into the instrument using proprietary hydrophobic groups on the gold carboxymethyldextran sensor 
surface. In our experience both systems work well for coating and lipid-binding experiments with the L1 chip providing more 
reproducibility and a longer lifetime of the sensor surface. On the other hand, the HPA chip is better served for proteins that may or are 
known to cause vesicle fusion as these interactions can change the appearance of the vesicles on the L1 chip surface.
4For phosphoinositdes (PIP) it is recommended that concentrations in the 1-3 mol% range be used in a phosphatidylcholine (PC) 
vesicle. This way phosphatidylcholine can be used as a control to directly compare binding of the protein to PC or PC:PIP (97:3) 
vesicles.
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5. Avanti Lipids Mini-Extruder: https://www.avantilipids.com/index.php?

option=com_content&view=article&id=509&Itemid=292&catnumber=610023

6. Whatman Filter Membranes: Whatman Nuclepore Track-etch Membrane 

Filtration Product #800309. Specifications: 19 mm diameter, 0.1 µm pore size.

2.3 Protein (Analyte)

1. For the sake of this guide, we will discuss proteins as the primary SPR analyte. It 

is recommended that one follows an established protein purification protocol, 

keeping in mind that large or bulky tags may interfere with a true SPR signal. In 

our experience, hexahistitidine tags do not seem to cause much issue, but other, 

larger tags may pose a problem. If your protein is stored in glycerol for increased 

stability, it is recommended your running buffer contain 5% glycerol to minimize 

refractive index changes [14,15]. It is also advised that proteins remain on ice 

until just prior to an SPR run.

3. Methods

Carry out all procedures at room temperature unless otherwise specified.

3.1 Preparation of SPR Instrument

1. Cleaning and Maintenance: This procedure is recommended as routine 

maintenance and should be done before starting a new experiment if the SPR has 

been unused for some time. It is important that any buffers or solutions injected 

into the instrument are degassed and filtered sterilized. Running buffers should 

be freshly prepared and detergent-free. Run the following cleaning steps with a 

blank sensor chip (a “Maintenance” Chip) docked in the instrument to avoid 

permanently damaging a good Sensor Chip.

Ensure the buffer intake for the SPR is placed in fresh, degassed, and detergent-

free running buffer. Run Desorb, using BIAdesorb Solution 1 (0.5% w/v SDS in 

pure water) and BIAdesorb Solution 2 (50 mM glycine-NaOH pH 9.5) as per the 

instrument prompts. Follow the desorb procedure with the Sanitize (10% bleach 

solution) procedure according to the BIA instrument handbook and as per the 

instrument prompts. Allow the instrument to run on the Continue setting or at a 

low, continuous flow rate until it is time to run an experiment. It is recommended 

to dock a proper L1 Sensor Chip at least 12 hours prior to running an experiment 

so that the chip can become equilibrated with the running buffer.

3.2 Preparation of Lipids/LUVs

1. Control Vesicles: A standard ratio of lipids in control vesicles is 100 mol% 

POPC or 80:20 mole percent POPC:POPE. These lipid control compositions 

work well for protein analytes that bind anionic lipids. Prepare 0.5 mL of 0.5 

mM lipid mixture. It will be necessary to calculate the proper volume of stock 

lipid (in organic solvent) to create the mixture. The formula is as follows:
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Where M is Molecular Weight of Stock Lipid, in g/mol; TV is Target Volume, in 

mL; c is Target Concentration, in mM; P is Target Mole Percentage, as a decimal 

value of 1 (e.g. 60% noted as 0.6); C is Concentration of Stock Lipid, in mg/mL.

Measure out each volume of stock lipid precisely with a gastight Hamilton glass 

syringe. Then dry lipid mixtures under N2 gas (see Note 5). Alternatively, a 

rotary evaporator can be used. Re-suspend lipid mixture in the pre-determined 

amount of SPR Running Buffer (component TV in the equation above) by 

vortexing the sample for 10 seconds. Extrude this lipid mixture as per the 

protocol provided by Avanti Polar Lipids, Inc. (https://www.avantilipids.com/

index.php?option=com_content&view=article&id=1600&Itemid=381). It is 

recommended to extrude lipids 41 times, i.e. so that the lipid mixture passes 

through the inner membrane filter 41 times. An odd number of extrusions are 

necessary so as to collect the lipid vesicles on the opposite side of filter 

membrane from which the extrusion is started. Take note that vesicles used in 

SPR are generally 0.1 µm, it is advised to use a proper sized filter accordingly. 

Store vesicles in a 1.5 mL tube at room temperature (see Note 6). Vesicles of this 

size are stable for approximately 36-48 hours. Dynamic light scattering can be 

used to assess the mean vesicle diameter.

2. Variable Component Vesicles: A standard ratio of lipids in variable component 

vesicles will add in a physiologically relevant percentage of your new lipid 

species, and account for this mole percent addition by subtracting from the total 

mole percent of POPC. (Ex. Preparing 80:20 POPC:POPE control vesicles and 

comparing to 60:20:20 POPC:POPE:POPS vesicles). Prepare these vesicles as 

described in Step 1 (see Note 7).

3.3 Preparation of the sensor surface

1. CHAPS & Octyl Glucoside washes: Begin a new sensorgram with access to both 

flow channels and a flow rate of 30 µL/minute. Inject 50 µL of 20 mM CHAPS. 

On the sensorgram, press the “inject” button, and input the injected volume as 25 

µL. (see Note 8). Follow this with an injection of 50 µL of 40 mM Octyl 

Glucoside (Octyl-β-D-Glucopyranoside). On the sensorgram inject window, 

input the injected volume as 25 µL. After both injections, exit the sensorgram 

and prime the system by selecting Tools Working Tools Prime. Set the SPR to 

continue or a low (5 µL/min), continuous flow rate until ready to coat the chip 

with lipids.

5Lipid solutions that are prepared in glass amber vials can be dried down under N2 gas and stored at −20C for up to 6 months. It is 
recommended to wrap the junction between the cap and vial in Parafilm.
6An odd number of extrusions is necessary so as to collect the lipid vesicles on the opposite side of filter membrane from which the 
extrusion is started. Take note that vesicles used in SPR are generally 0.1 µm, it is advised to use a proper sized filter accordingly. 
Vesicles of this size are stable for approximately 36-48 hours and dynamic light scattering can be used to assess the mean vesicle 
diameter.
7The variable component vesicles should be extruded after control vesicles, so that there is no risk of contaminating the control lipids 
with any of the variable lipid species.
8It is always a good idea to inject a higher volume of solution into the SPR to minimize the accidental introduction of air bubbles into 
the system. The SPR will inject the volume that is input in the program and will divert any leftover solution into the waste—in this 
way, there is always more than enough liquid in the system and air introduction is minimized.
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2. Coating the chip with variable-component liposomes: Begin a new sensorgram 

with access only to flow channel 2 (FC2) at a flow rate of 5 µL/minute (see Note 
9). Allow the baseline to equilibrate for 2-3 minutes. Set a baseline for both 

curves. Pipet up 105 µL of variable component vesicles (made in section 3.2.2). 

Then add 5 µL of air by dialing the pipet up to 110 µL, ensuring the tip is 

exposed to the air. Then add 5 µL of sample by dialing the pipet up to 115 µL, 

ensuring the tip is submerged in the sample tube. Then add one final 5 µL of air. 

Inject all 120 µL of volume into the SPR. On the sensorgram inject window, 

input the injected volume as 80 µL. After the lipid injection, change the flow rate 

to 50 µL/minute. Inject 50 µL of 50 mM NaOH. On the sensorgram inject 

window, input the injected volume as 10 µL. After the injection, change the flow 

rate back to 5 µL/minute and keep the sensorgram running. Make note of both 

the absolute response value as well as the relative response value in resonance 

units (see Note 10).

3. Coating the chip with control liposomes: In the same sensorgram window, ensure 

the flow rate is 5 µL/minute. Change the flow channel from Flow Channel 2 

(FC2) to Flow Channel 1 (FC1) by using Command Flow Cell Flow Cell 1(see 
Note 11). Prepare the injection of control vesicles as above: 105 µL liposomes, 5 

µL air, 5 µL liposomes, 5 µL air. Inject all 120 µL into the injection port. On the 

sensorgram inject window, switch the Injection Type dropdown to “Manual 

Mode” Continue. Input volume as 80 µL. Pause the injection when the relative 

response level of FC1 matches FC2, keeping in mind that some of the FC1 

coating will come off with the NaOH wash, so erring slightly on overshooting is 

a good strategy. Once FC1 sufficiently matches FC2, exit the manual injection; 

any leftover liposomes will be diverted to waste. After the lipid injection, change 

the flow rate to 50 µL/minute. Inject 50 µL of 50 mM NaOH. On the sensorgram 

inject window, input the injected volume as 10 µL. Repeat this cycle of NaOH 

injections two more times. After the three NaOH injections, change the flow rate 

back to 5 µL/minute. Keep the sensorgram running. Make note of both the 

absolute response value as well as the relative response value in resonance units 

for both channels. (see Note 12). Stop this sensorgram; it is recommended to save 

the sensorgram as “Lipid Coat,” for reference. Before starting a new sensorgram, 

prime the system twice by using Tools Working Tools Prime.

3.4 Collecting SPR data of protein-lipid Interactions

1. Initial blocking with BSA: It is often necessary to block any exposed surfaces of 

the chip with a stable but unreactive protein (see Note 13). Bovine Serum 

Albumen (BSA) is often a good choice for this as it does not specifically bind to 

9Flow rates faster than 5 µL/min will not robustly support sufficient and timely coating of liposomes on the L1 sensor chip surface.
10The relative response value is just the Δresponse unit (ΔRU) change in absolute response units.
11Preparing flow cell 1 as the control and flow cell 2 as the active surface will prevent migration and sample loss of some lipids from 
flow cell 1 to flow cell 2. In our experience, this is necessary to obtain reproducible data over the course of 1 or 2 days of 
experimentation with a lipid surface.
12It is best to have relative response levels be within 3-5% between the channels so as not to bias data collection one-way or the other. 
The closer the channels match, the better.
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most lipids that would be used in the SPR. This is also a good test of assessing 

the coating efficiency of the L1 sensor chip. Begin a new sensorgram with access 

to both FC1 and FC2 at a flow rate of 5 µL/minute. Allow the baseline to 

equilibrate for 2-3 minutes before setting a baseline for both flow channels. 

Prepare a 150 µL sample of 0.1 mg/mL BSA. (see Note 14) Pipet up 105 µL of 

protein, 5 µL of air, 5 µL of protein, and 5 µL of air. Inject all 120 µL into the 

SPR. On the sensorgram inject window, input the injected volume as 80 µL. 

After the lipid injection, change the flow rate to 50 µL/minute. Inject 50 µL of 50 

mM NaOH. On the sensorgram inject window, input the injected volume as 10 

µL. After the injection, change the flow rate back to 5 µL/minute. Repeat this 

process as necessary to get the relative response value as close to the baseline as 

possible. (see Note 15). Make note of both the absolute response value as well as 

the relative response value in resonance units for both channels. This is the 

“new” baseline coating that will be used to collect all protein injection data.

2. Injections of protein over the sensor surface: For each protein injection, do not 

prepare the dilution until just prior to the injection. Collect a separate sensorgram 

for each protein injection to better organize the data sets. It is also advised to use 

fresh, active protein, and to prior to use, spin the stock sample of protein at 

50,000 g for 20 minutes to remove any precipitated protein. Plan the protein 

dilutions that will be tested over the sensor surface. It is a good idea to go as low 

as 10-fold below the predicted Kd and 10-fold above the predicted Kd. A curve 

should have no fewer than 6 points, and 8 or more points usually comprise a 

good data set for curve fitting with twelve being an optimal number of data 

points for fitting. Measurements should be taken from the lowest concentration 

of protein to the highest concentration. (see Note 16).

Begin a new sensorgram with access to both FC1 and FC2 at a flow rate of 5 µL/minute. 

Allow the baseline to equilibrate for 2-3 minutes before setting a baseline for both flow 

channels. Prepare a 150 µL sample of dilute protein (see Note 17). Pipet up 105 µL of 

sample, 5 µL of air, 5 µL of sample, and 5 µL of air. Inject all 120 µL into the SPR. On the 

sensorgram inject window, input the injected volume as 80 µL and set a delay for washing of 

200 seconds (see Note 18). Make note of the absolute response value and the relative 

response value of each channel. After the lipid injection, change the flow rate to 50 µL/

13How the lipid vesicles form on the L1 surface is still under debate with most studies suggesting that vesicles are retained intact on 
the L1 chip surface. One studied suggested the vesicles fuse and form a lipid bilayer [16], while several others using imaging and dye 
leakage assessment have strong evidence that the lipid vesicles are intact on the sensor surface [4]. The type of surface that forms may 
be specific to the types and origins of the lipids and lipid mixtures employed as well as the pH and osmolarity of the running buffer. 
Either way vesicles anchored to the L1 chip adopt a structure that is relevant for examining lipid-protein interactions.
14The significance of lipid-coating can be verified by injecting 0.1 mg/mL BSA as less than 100 RU of BSA should bind to a well 
coated surface while > 1000 RU of BSA will bind to an uncoated or poorly coated lipid surface. We’ve demonstrated that BSA left on 
the sensor surface will not influence lipid-binding parameters and under some conditions can reduce nonspecific binding to the L1 
chip should the protein of interest nonspecifically associate with the carboxylmethyldextran layer.
15If the relative response value goes down to a certain point but does not completely reach baseline, this is the BSA that has “blocked” 
the exposed hydrophobic portions of the chip. This often does not take more than 3-5 NaOH washes. Typically, BSA response will be 
less than 100 resonance units for a sufficiently lipid coated L1 sensor chip.
16Start with low protein concentration first in case protein binds or sticks to chip or is hard to remove from the lipid vesicles.
17Only prepare protein sample dilutions right before you are going to inject them into the SPR.
18It is advised to add a 200+ second delay so that washing of the injection port, which ensues immediately following an injection, 
does not significantly influence the SPR signal stability. Washing of the injection port can contribute to noise in the SPR signal. When 
performing saturation (equilibrium binding) measurements a short delay of 200 seconds or so is sufficient to avoid these issues. 
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minute. Inject 50 µL of 50 mM NaOH. On the sensorgram inject window, input the injected 

volume as 10 µL. After the injection, change the flow rate back to 5 µL/minute. Repeat this 

process as necessary to get the relative response value as close to the baseline as possible. 

Make note of both the absolute response value as well as the relative response value for both 

channels, noting especially if there is any minimal protein remaining on the chip. Proceed 

with a new sensorgram for each new injection. Once all injections are collected, continue 

with “Preparing the Sensor Chip for storage” (see Note 19).

3.5 Preparing the Sensor Chip for storage

1. CHAPS and octyl glucoside washes: After all protein-lipid binding 

measurements have been made, the chip should have all liposomes removed 

before storage. In a sensorgram with access to both FC1 and FC2 at a flow rate 

of 30 µL/minute, inject 50 µL of 20 mM CHAPS. On the sensorgram, press the 

“inject” button, and input the injected volume as 25 µL. Follow this with an 

injection of 50 µL of 40 mM Octyl Glucoside (Octyl-β-D-Glucopyranoside). On 

the sensorgram inject window, input the injected volume as 25 µL. After both 

injections, exit the sensorgram.

2. Undock L1 chip and store at 4C: Undock the L1 chip by navigating to Command 

Undock. Take out the L1 chip and store in a 50 mL conical tube containing 

approximately 200 µL of running buffer at the bottom to ensure slightly damp 

storage conditions. To reduce oxidation, a stream of N2 or argon gas can be used 

to displace the air in the conical tube prior to storage. Store the sealed tube at 4C. 

Place a maintenance chip in the SPR and dock it. Leave the instrument running 

on continue or at a low (5 µL/min), continuous flow rate until it is time to run 

another experiment. Ensure that the running buffer does not run out. Should the 

system not be needed for use in three days, perform a shutdown procedure can be 

run according to the manufacturer’s instructions.

3.6 Data analysis

This guide will describe how to process the data collected using BIAevaluation and 

KaleidaGraph software.

1. Quantify Δresonance Unit (ΔRU) for each injection: In BIAevaluation software, 

open the first protein injection. This will open the data files for both FC1 and 

FC2. Select both of these curves and display them using the chart button. Right 

click and drag to select a small section prior to the time of injection and select Y-

Transform Zero at Average of Selection Replace Original. Then select X-

Transform Curve Alignment Next. Zoom in to the area just prior to the injection. 

Move the cross-hatches for each curve to the point of the injection. Select 

Should a user wish to perform detailed kinetic analysis of the off-rate, it is advised to use a longer delay in washing so as to monitor 
the off-rate as long as possible. This will provide more data points for analysis without noise in signal that comes from the SPR wash 
step.
19SPR is also a technique that should receive dedication once a system is working and reproducible. The lifetime of a lipid surface on 
a L1 chip can last from 12-48 hours so we recommend dedication, organization, and experimental planning during these times for lab 
members to collect robust reproducible data over a period of one to two days.
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Accept/OK and this will align the curves at the same X-position. From the curve: 

dropdown, select the second of the two curves being analyzed. In the Y-

Transform window, select “Curve – Curve 2 (Blank Run Subtraction)” and select 

the first curve in the pair Replace Original. Delete off the NaOH washes by right 

clicking with the mouse and dragging to just before the NaOH washes begin and 

selecting Edit Cut. Note the response unit value at the point of saturation on the 

curve. Repeat this process for all remaining injections, making a table of protein 

concentration vs. ΔRU value at saturation. It is not necessary to keep the “odd” 

curves (the zeroed curves) in the analysis—one can plot all of the “even” curves 

together to obtain a saturation profile (see Note 20).

2. KaleidaGraph curve analysis of SPR data: Open KaliedaGraph and plot protein 

concentration in Column A, ΔRU Responses in Column B. Select Gallery Linear 

Scatter. Select Protein Concentration as X and ΔRU as Y. Select Curve Fit 

General Fit1 Define (m0*m1)/(m0+m2);m1=1100;m2=1 Check the “ΔRU” box. 

The m2 value that appears on the graph is the apparent Kd of the interaction 

based on the data from Columns A and B. Other graphing programs can be used 

according to user familiarity and preference.
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