
Genomics of human pulmonary tuberculosis: from genes to 
pathways

Catherine M. Stein1,2, Lindsay Sausville1, Christian Wejse3, Rafal S. Sobota4, Nicola M. 
Zetola5,6,7, Philip C. Hill8, W. Henry Boom2, William K. Scott9, Giorgio Sirugo10, and Scott 
M. Williams1

1Department of Population and Quantitative Health Sciences, Cleveland, OH 2Tuberculosis 
Research Unit, Case Western Reserve University, Cleveland, OH 3Dept of Infectious Diseases/
Center for Global Health, Aarhus University, Aarhus, Denmark 4The Ken and Ruth Davee 
Department of Neurology, Northwestern University, Chicago, IL 5Division of Infectious Diseases, 
University of Pennsylvania, Philadelphia, PA 19104, USA 6Botswana-UPenn Partnership, 
Gaborone, Botswana 7Department of Medicine, University of Botswana, Gaborone, Botswana 
8Centre for International Health, University of Otago, Dunedin, New Zealand 9Department of 
Human Genetics and Genomics, University of Miami School of Medicine, Miami, FL 10Institute for 
Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of 
Medicine, Philadelphia, PA

Abstract

Purpose of review—Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), 

remains a major public health threat globally. Several lines of evidence support a role for host 

genetic factors in resistance/susceptibility to TB disease and MTB infection. However, results 

across candidate gene and genome-wide association studies (GWAS) are largely inconsistent, so a 

cohesive genetic model underlying TB risk has not emerged.

Recent Findings—Despite the difficulties in identifying consistent genetic associations, genetic 

studies of TB and MTB infection have revealed a few well-documented loci. These well validated 

genes are presented in this review, but there remains a large gap in how these genes translate into 

better understanding of TB. To address this, we present a pathway based extension of standard 

association analyses, seeding the results with the best validated genes from candidate gene and 

GWAS studies.

Summary—Several pathways were significantly enriched using pathway analyses that may help 

to explain population patterns of TB risk. In conclusion, we advocate for novel approaches to the 

study of host genetic analysis of TB that extend traditional association approaches.
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Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a global public health 

problem with an estimated 1 in 3 to 1 in 4 people being infected by MTB [1, 2]. However, 

less than 10% of those infected by MTB develop active TB disease. In 2014, 9.6 million new 

cases were diagnosed, many (12%) due to coinfection with the human immunodeficiency 

virus (HIV), and there were 1.4 million deaths attributed to TB [3].

Initially, TB was considered to be a familial disease, as it was realized early on that close 

relatives of TB cases were at higher risk of TB than similarly close unrelated contacts. Twin 

studies estimated the concordance of TB among monozygotic twins to be between 32-62%, 

and between dizygotic twins to be between 14-18% [4, 5]. These observations of co-

occurrence in families and concordance decreasing with degree of relatedness led to genetic 

studies to identify genes associated with TB. These included candidate gene studies 

(reviewed in [6–8]) and more recently genome-wide studies [9] (summarized below). As yet, 

no consistent genetic model underlying TB risk has emerged. This is likely to be due to 

multiple genes affecting TB risk, and/or each gene or set of genes promoting risk in different 

people. However, it is possible that several genes residing in the same or related pathways 

modulate TB risk. Therefore, in this review, we take a pathway approach to dissecting the 

host genetics of TB in order to shed light on potentially validated findings and pathways that 

could be exploited for functional studies. Using genomic studies to reveal putative pathways 

that are dysregulated in TB may be a particularly efficient means to develop more 

efficacious vaccines and treatments.

Epidemiology

The development of TB disease requires exposure, host genetic, and environmental factors 

that promote susceptibility. Exposure to an active TB case is required for transmission of 

MTB, and several epidemiologic studies have identified specific characteristics of the 

susceptible host and infectious TB case that facilitate the acquisition of MTB infection and 

development of TB disease [10–12]. In immunocompetent hosts, MTB organisms may be 

eliminated early by the innate immune system or, as in the majority of individuals, contained 

as a low-organism load in asymptomatic latent infection; latent infection develops into active 

disease in about 10% of people over their lifetimes. Because only a minority of MTB-

infected individuals go on to develop active TB disease, host biologic factors are likely 

involved in progression vs long-term control or disease.

HIV is a prominent factor involved in global TB epidemiology, but the Population 

Attributable Fraction (PAF) for HIV is only 11% of TB cases in the world globally [13]. 

Even in TB/HIV high burden countries, the majority of TB patients are HIV-negative, e.g. in 

Guinea Bissau, one of the WHO TB/HIV high burden countries, HIV-1 co-infection is 

prevalent in one in four patients [14]. Hence, immunocompromising factors may play a role, 

but only a partial role in TB; host genetic factors may play a modifying role, although the 

PAF for host genetics on TB risk is unknown. The complexity of the host-pathogen 

interaction is considerable. involving modified antigen-expression by the dormant pathogen 
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[15]. Proper control of the dormant MTB is, therefore, likely to be influenced by the genetic 

makeup of the host.

TB burden is clearly the worst in sub-Saharan Africa, East Asia, and to a lesser degree in the 

former Soviet Republics. The global distribution of TB is also manifested through the 

genetic diversity of MTB itself, as phylogenetic analysis of sequence variation in MTB 

shows geographic clustering of MTB lineages [16–18]. Clearly, both human genetic and 

MTB genetic variation have roles in the global distribution of TB.

Previous genetic studies of TB

Robust genetic associations – Candidate Gene Studies

In recent years, numerous candidate gene studies have been conducted to assess host genetic 

factors in TB risk. As with studies of other diseases, the early studies focused on one gene at 

a time, with only a few polymorphisms within each gene. Even after the advent of high-

throughput genotyping technology, many studies continued in this vein, thus contributing 

limited amounts to our knowledge of the genetic underpinnings of TB. Given clear 

differences in incidence by geography, early studies that were only conducted in a handful of 

global settings could not necessarily be generalized across continents. However, with time, 

the geographic scope of research expanded, allowing increased potential to assess 

replicability across diverse ethnic backgrounds and to determine if universal susceptibility 

factors exist. We review here both robust candidate gene results and discuss why significant 

associations with candidate gene associations across multiple studies may not replicate well 

in other studies. Genome-wide association studies (GWAS) are also reported in the section 

below.

To identify robust risk loci for this review, we searched for genetic associations using the 

HuGE Navigator (https://phgkb.cdc.gov/HuGENavigator/home.do), a web-based application 

that queries population-based epidemiologic studies utilizing a machine learning algorithm 

to systematically select relevant studies. Indexing based on GeneID and MeSH terms, along 

with manual review, ensured appropriateness for inclusion in the database. Here, all abstracts 

identified by Phenopedia, an extension of HuGE Navigator that reports gene-disease 

associations organized by disease, were compiled for ‘Pulmonary Tuberculosis’ (PTB). In 

addition, studies co-authored by members of our groups were also included [19–29]. Using 

manual review of each article, we identified the specific variant(s) and gene(s) associated 

with PTB risk, as well as the direction of effect. In addition, manual review excluded articles 

reporting solely genetic associations with PTB severity or extrapulmonary TB. Other 

exclusion criteria included the presence of extrapulmonary cases in the study population as 

well. We included genes that showed a significant association with PTB in at least 5 

publications, whether significant single locus main effects, effects detected by interactions 

among loci (epistasis), diplotype associations, haplotype associations, or genetic risk score 

associations were reported (Table 1).

A total of 15 genes met these criteria, with main effects representing the majority of the 

associations. However, all of the included genes also demonstrated other types of 

associations in addition to main effects. Additionally, genetic variants with main effects were 
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reported according to their gene identity (Table 2). HLA-DRB1 and VDR had the most 

reported studies, with 15 unique studies recorded for each of these genes (Table 1), but aside 

from a few reports from South Africa, there were no reported associations between HLA and 

TB in Sub-Saharan African populations. A SNP in NRAMP1, rs17235416, was identified as 

associated with PTB risk in eight studies in a variety of ethnic populations. However, many 

of specific genetic variants found to associate with PTB risk were reported by only one 

study. Notably, when multiple studies reported an association for a given polymorphism, the 

direction of effect was not always consistent between studies. For example, although 

rs4804803 in CD209 associated with PTB risk in both an Iranian and a West African 

population, the minor allele associated with protection and risk, respectively (Table 2). 

Similar to the main effects, most of the haplotype associations were reported by only one 

study. In addition, HLA-DRB1 had the most PTB associated haplotypes reported (Table 3). 

However, relatively few associations for the genes in Table 2 were reported in African 

populations, where the burden of TB is greatest. This suggests one of several possibilities. 

The genetic effects could differ, environmental factors, including sanitation and 

malnutrition, involved in Africa are more pronounced thereby possibly overwhelming 

genetic effects, or as is the case these populations have been severely understudied.

As noted above [30], there has been very limited replication of genetic associations across 

studies. Possible reasons for this include:

1. Population genetic differences across populations: It is well established that 

linkage disequilibrium (LD) patterns differ greatly globally. This is especially 

true in Africa, where LD generally is the lowest [31–33] and TB burden is the 

greatest. Therefore, if a SNP under examination is not the causal SNP, LD 

differences among populations will decrease the probability of detecting an 

association even with a common functional variant. This is compounded by 

studies that only examine a few polymorphisms within a gene and do not cover 

the genetic variation sufficiently. Therefore, the SNPs may not be highly 

correlated with the same functional variant in diverse populations. This is 

compounded when there is allelic heterogeneity across populations.

2. Differences in study design: Both case and control definitions vary widely by 

research setting. Some TB cases are defined strictly using microbiological 

confirmation, while others use a smattering of clinical criteria to define TB 

(reviewed in [30]). Controls are often defined even more inconsistently. Some 

controls are known to be exposed to an active TB case, and thus have the 

opportunity to develop TB; others are population-based and have not been 

clinically characterized at all. These potential misclassifications can result in a 

bias towards the null hypothesis. Some studies have been family-based, while 

others used a traditional case-control design. The advantage of family-based 

studies of TB is that exposure is more certain even if variable [34, 35].

3. Gene-gene and gene-environment interactions: A number of studies have 

suggested that TB susceptibility genes interact with each other (Table 1) [7, 20, 

22, 25, 36, 37]. When interaction exists between two genes, it is possible that 

significant main effects may not be observed due to different allele frequencies at 
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the second gene or environmental exposure [38]. This is a generic danger for 

studies that examine one gene at a time. Further complicating gene discovery, a 

few studies have indicated an interaction between human genes and MTB lineage 

[39, 40], further complicating identification of human genes. If significant 

genetic effects only exist in the context of a specific MTB lineage, non-

replication across populations may be due to strong gene-environment factors.

Role of GWAS vs candidate gene studies

To date, nine GWAS studies have been published in PTB (summarized in Table 1 of Uren et 

al [9]). A 2010 study discovered an association in a gene desert on chromosome 18q11.2 in a 

combined Ghanaian, Gambian and Malawian cohort [41]. Availability of 1000 Genomes 

Project data allowed the authors to impute SNPs into the Ghanaian cohort and identify a 

genome-wide significant association for a locus 46 kb downstream of WT1 [42]. This 

association was replicated in Gambian, Indonesian and Russian populations [42] and also by 

an independently conducted GWAS in an admixed population in South Africa [43]. The 

South African GWAS also detected loci on chromosomes 14q24.2 and 11q21-q22 that were 

just below genome-wide significance [43]. A case-control GWAS in a Russian population 

replicated the chromosome 11 locus, but not the chromosome 18 locus; it also detected 

significant association with the ASAP1 gene [44]. While a GWAS conducted in a Moroccan 

population did not detect any genome-wide significant associations, it replicated results from 

chromosomes 11 and 18 at a nominal significance (p<0.05) [45]. A GWAS in an Indonesian 

population did not detect any loci that were significant after multiple testing correction, 

although it did identify suggestively associated loci involved in immune signaling; the 

previous GWAS associations were not explicitly tested in this study [46]. A GWAS 

conducted in Icelandic, Russian, and Croatian populations identified significant association 

with the HLA region [47], but did not replicate the loci on chromosomes 11 and 18. This is 

possibly because these previously associated variants are rarer in European populations. An 

analysis that stratified young versus older subjects with TB in Indonesia and Japan detected 

a significant locus on chromosome 20q12 associated in the younger onset group [48]. 

Finally, our GWAS of TB in HIV-infected subjects identified a significant association at 

5q33.3, and haplotype analyses suggested that this association is due to the IL12B gene [49].

Reasons for failure to replicate GWAS results include the reasons as noted above as for 

targeted candidate gene studies. Overall, such limitations have impeded progress in 

identifying key genetic associations for TB, but if we treat association studies as hypothesis 

generating exercises, they still provide an important way to gain insight about TB 

pathogenesis; with careful study design, genome-wide studies can provide entry points for 

learning about TB biology.

Pathway enrichment from gene associations

With few exceptions [21, 23, 50], most previous genetic association studies have not 

considered genes as part of pathways Using the 15 genes and 36 genes identified by 

candidate literature review and GWAS literature review (the latter as described in Table 1 

and do overlap with some of the candidate genes [9]), respectively, we used Ingenuity 

Stein et al. Page 5

Curr Genet Med Rep. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pathway Analysis (IPA) (Qiagen) to determine if any pathways were enriched using all 

genes from our list. IPA mapped all genes from our provided list onto expert-curated 

canonical pathways from the Ingenuity Knowledge Base. A right-tailed Fisher’s exact test 

using a Benjamini-Hochberg multiple testing corrected p-value of 0.05 determined whether 

the association between our literature generated list and a particular canonical pathway was 

significant compared to random chance.

IPA identified several enriched pathways, the majority of which were involved in immune 

response or processes (Figure 1; Supplemental Table 1). In total 71 pathways were found to 

be significantly enriched. The most significant pathway (p < 10−10) was altered T cell and B 

cell signaling in Rheumatoid Arthritis, of which our literature generated gene list 

represented 12.2% of the genes contained in the pathway (Figure 1 and Supplemental Table 

1). While this top pathway is labeled as being associated with Rheumatoid Arthritis (RA), it 

is well known that the same inflammatory pathways involved in RA are also involved 

infectious disease response. The next few top pathways also reflected major components of 

the immune response to TB, such as T cells and other cells involved in pathogen recognition 

and the innate and adaptive immune response, and Th1 and Th2 cytokine response. Of 

course, as with all analyses of this type, pathway enrichment may be driven by common 

genes across pathways, and this is the case here as well.

While this recognition of genetic influences on the innate and adaptive immune response is 

not novel in itself, this analysis provides three novel insights into the genetics of response to 

TB. First, there may be other genes within these pathways, perhaps with smaller effect sizes, 

that are also important in TB genetics. Such smaller non-significant effect sizes would 

reflect the newly proposed “omnigenic” theory of complex trait genetics [51]. Second, we 

may find that the disruption of entire pathways is what contributes to TB susceptibility, not 

single genes. This line of thinking matches the approach of transcriptomic studies 

(summarized below). Third, it is noteworthy that a significantly associated pathway is 

diabetes signaling, and there is a well-established comorbidity between diabetes and TB. 

Therefore, approaches incorporating broader biological perspectives such as pathways may 

help to enhance our understanding of TB risk through how it may relate to other diseases.

Role of transcriptomic studies

Another approach to examine the role of host genomics in TB risk has been through gene 

expression studies, most of which have focused on identifying biomarkers that uniquely 

characterize TB cases [52, 53] [54] [55–59]. As with genetic studies, these studies have 

differed widely in their choice of comparison group (household contacts, latent MTB 

infection (LTBI), and/or uncharacterized healthy subjects). They have also differed widely in 

the number of gene transcripts interrogated. Some studies reported a transcriptional 

signature involving the type I/II interferon pathways [52, 58] [54] [59], while the others 

either did not compare their signatures to those previously published or did not describe the 

genes that composed these signatures. Some studies demonstrated that the signature 

observed in newly diagnosed TB cases normalized during or after treatment [52, 54] [59], 

validating that those genes were expressed in newly diagnosed TB but did not establish a 

causal relationship. One prospective study identified a signature that occurred prior to the 
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development of TB that resolved post-treatment, and went on to show that SNPs within 

CCL1, one of the differentially expressed genes, were associated with TB in a case-control 

study [54]. The aforementioned studies used peripheral blood, which is attractive for a 

biomarker. Thuong et al. [60] took a different approach, by obtaining monocytes from 

circulating blood, stimulating them with MTB in vitro, and comparing the transcriptional 

responses to MTB between samples from cases and controls. This may more accurately 

reflect the in vivo response, but is not as translatable as a whole blood biomarker.

While the specific results of all these studies are quite different, two broad conclusions can 

be drawn. First, the usual focus on one gene at a time may be inadequate to accurately assess 

risk. The challenge of transcriptional studies is that this approach is not easily translatable to 

the field, even if it represents excellent biomarkers. Second, by examining the entire 

transcriptome instead of single genes, there are more likely to be consistent findings in 

pathways of interest than by simply assessing individual genes or transcripts. A more 

comprehensive review of transcriptional effects can be found in a review by Orlova and 

Schurr in this same issue.

Lessons learned from Mendelian immuodeficiencies and on family studies

Mendelian genetics has provided a proof of concept for susceptibility to mycobacterial 

infection and disease by demonstrating a role for gene variants. A monogenic etiology due 

to rare mutations with strong phenotypic effects, has been observed in some children with 

severe or disseminated mycobacterial infections and can inform studies of the complexity of 

genetic risk for TB. To date, the immuno-deficiencies (PIDs) associated with increased risk 

for mycobacterial infection and disease (including TB) in children have been primarily 

associated with defects in the IFN-γ signaling pathway. [61]. This Mendelian Susceptibility 

to Mycobacterial Diseases, OMIM209950 (MSMD), is a rare (10−5−10−6) and highly 

heterogeneous condition identified in families with parental consanguinity [62]. Molecular 

studies of MSMD revealed 18 genetic forms that associated with IFNGR1, IFNGR2, STAT1, 
IRF8, CYBB, IL12B, IL12RB1, NEMO and ISG15 genes, that all are part of the IL12/IFN-

γ signaling pathways [61]. Mutations in these nine genes vary and exhibit incomplete 

penetrance that can translate into partial or complete loss of function. A general consistency 

among these phenotypes is impairment of IFN-γ function that affects activity of 

macrophages and dendritic cells for anti-mycobacterial defenses and antigen processing. Of 

relevance to more complex forms of resistance to TB as well as to therapeutic strategies, 

IL12B (IL-12 p40) or IL12RB1 (its receptor) mutations do not produce enough IFN-γ, and 

benefit from human recombinant cytokine treatment. Not surprisingly, IFN-γ treatment has 

no effect in persons with mutations in IFNGR1 and IFNGR2 [63]. Clearly, molecular 

dissection of MSMD has been crucial in defining the central role of the IL-12/IFNγ axis and 

associated genetic network in controlling/determining mycobacterial infection and disease, 

and has also provided therapeutic opportunities.

Resistance vs. susceptibility as a measured phenotype

An alternative approach to studying the genomics of TB susceptibility that we have 

successfully taken is to study the genetics of extreme resistance instead of the development 
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of disease. Specifically, HIV-infected individuals living in TB-endemic settings are at high 

risk for developing TB. The importance of this is borne out by the fact that TB is the number 

one killer of HIV-infected individuals. Therefore, individuals who are HIV-infected but 

either resistant to disease or resistant to MTB display protection from MTB infection and its 

resulting disease. Additionally, genes that confer this resistance may help identify novel 

therapeutics more easily than genetic factors that increase susceptibility; adding something 

is easier than subtracting it in vivo. We have used this strategy to differentiate between TB 

cases and controls despite immunosuppression to shed light on innate immune factors that 

influence resistance [49]. We identified a locus near IL12B, a previously described candidate 

gene that has been shown to affect response to TB in mice as well as define highly 

susceptible families that have an IL12B knockout as well as among persons with MSMD. 

We have also studied persistently tuberculin skin test negativity despite close and prolonged 

exposure to active TB cases [64, 65] – while the focus here is on infection and not disease, 

this resistance phenotype may help identify novel targets for vaccine development and host 

directed therapies [66].

Necessary future directions

Need for biological validation

The majority of TB genetic association studies fail to identify the functional consequences 

of the associated polymorphisms. A few exceptions have yielded insight into TB biology. 

For example, a candidate gene study of CD1a illustrated how SNPs in this gene associate 

with markers of T cell response [67]. Similarly, a case-control study of TOLLIP showed 

association with TB, levels of mRNA expression of that gene, and IL6 production [68]. 

Gene expression studies indicated that the sodium butyrate pathway was associated with 

persistent TST negativity. Follow-up studies demonstrated that sodium butyrate and histone 

deacetylase inhibitors were associated with immunological response to MTB in vitro [66]. 

While these studies had smaller sample sizes, they often included independent case-control 

replication sets with functional validation relevant to TB biology. Another approach to 

functional validation are eQTL studies, where the association between genetic variants and 

RNA expression levels are demonstrated. This has proven quite insightful into TB biology 

[69, 70].

Need for novel pathway approaches

As mentioned above, examination of pathways instead of single gene effects has revealed 

novel therapeutic insight for TB [66]. Network approaches may be better for discovery and 

characterization of gene-gene interactions and pathways associated with disease than 

standard analytical approaches, because variants may have unremarkable individual effects 

but instead affect the phenotype through gene-gene interactions [71, 72]. In fact, the 

integration of data generated across multiple platforms to disentangle multifactorial diseases 

was suggested years ago [73], but rarely executed [74, 75].

Need for thorough epidemiology/clinical characterization

As we have reviewed previously [30], variability in diagnostic criteria and documentation of 

MTB exposure in controls can contribute to the inconsistency in the TB genetics literature. 
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This also likely contributes to the variability across GWAS studies summarized above - 

differences in diagnostic criteria, local prevalence of TB, and lack of documented exposure 

in controls all may explain the inability to replicate across studies. However, our GWAS of 

HIV-infected populations in Uganda and Tanzania showed great consistency across those 

two populations [49], likely due to the thorough clinical characterization of the study 

subjects, and longitudinal follow-up of controls over several years to exclude the 

development of TB. Future studies should aim to use strict criteria such as the CDC/ATS 

criteria for diagnosis of TB [76] and include efforts to quantify exposure in controls. In our 

study of resistance to MTB infection, we carefully quantified exposure to an index TB case 

using extensive epidemiologic and clinical data [35]. An epidemiologic risk score can be 

used to determine whether control subjects were highly exposed to an infectious TB case, 

but resisted MTB infection or disease. There are other ways to demonstrate a high level of 

MTB exposure; for example, South African miners who work in poorly ventilated 

environments and are heavily exposed to MTB, can resist MTB infection and disease for 

years, if not decades [77].

The importance of HIV

Although globally 1 in 8 new TB cases are in people with HIV and 1 in 4 HIV-infected 

individuals die due to TB [2, 75, 78], examining the genetic risk for TB in HIV-infected 

individuals is uncommon. In fact, all of the aforementioned GWAS for TB excluded HIV-

infected individuals, except ours [49]. Thus, the majority of genetic studies of TB 

disregarded the potential modification of the relationship between host genetic variation and 

risk of TB by HIV infection. We have previously shown a significant interaction between 

TNFR1 alleles and HIV status [24], reinforcing the importance of assessing genetic risk of 

TB in the context of HIV. As previously shown, novel insights into TB genetic resistance 

and susceptibility can be gained by focusing on TB-HIV co-infected individuals; additional 

studies using this approach are warranted.

Need to study host-pathogen interaction in diverse populations

One additional set of genetic factors that may affect risk of developing TB are external to the 

human genome. Host-pathogen interaction or co-evolution defined as “reciprocal, adaptive 

genetic changes in interacting host and pathogen species” [79] may affect MTB 

pathogenesis. Co-evolution of host and pathogen has been hypothesized to account for some 

disease pathogenesis variation and the discrepancy between exposure and disease in several 

infectious diseases, including TB [80]. Specifically, some MTB strains are highly infectious 

- but only in certain hosts, where the pathogenicity is modulated by host genetic variation for 

which ethnicity has been used as a surrogate measure of host genetics [81–85]. This is 

supported by the observation that there may be an association of MTB strains with host 

ethnicity [83]. The historical co-occurrence of humans and MTB and their co-migration out 

of Africa supports a long-standing relationship that provides the ideal condition for co-

evolution, leading to reduced pathogenicity [16]. Host-pathogen co-evolution in TB is 

additionally supported by animal models [86, 87]. The existence of co-evolved genes can 

significantly affect our ability to identify loci in both species, which interact to affect disease 

risk or severity. A gene in one study may associate with TB because of the MTB strain, 

while it may not in places where the MTB strain differs. In a similar vein, we have recently 
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shown that the disruption of co-evolution between Helicobacter pylori ancestry and human 

ancestry increases gastric disease severity in a diverse cohort of Colombians, providing 

proof of principle that co-evolution can be detected genomewide [88].

Conclusions

While numerous studies have been done on the human genetics of susceptibility to MTB, the 

inconsistencies across studies warrant new approaches to studying the genetics of TB. 

Family-based studies provide an opportunity for documented exposure and powerful genetic 

epidemiological approaches for rare variant mapping. Rigorous clinical characterization is 

essential. Where single gene approaches have fallen short, new approaches using pathway 

and/or polygenic/omnigenic approaches have the potential to reveal new insight into the 

complex host-pathogen interaction between MTB and humans. Finally, functional 

characterization and validation of findings in diverse populations are essential for genetic 

findings to turn into useful tools for risk stratification and development of novel vaccine and 

therapeutic targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Ten Most Significantly Associated Canonical Pathways from IPA
IPA determined the association between canonical pathways and the provided literature-

based gene list. Here the top 10 associated pathways are shown. For each canonical pathway, 

the significance of association for a canonical pathway is depicted as the blue bar that is the 

-log(p-value) for the Benjamini-Hochberg corrected p-value. The ratio of genes represented 

within the provided list vs all genes contained within a pathway are shown as a gold point 

for each pathway.
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Table 2
Studies Reporting Significant Main Effects for Candidate Gene Studies

Genetic variants associating with PTB risk as main effects are reported by gene if five or more studies reported 

any type of significant association, including main effects, genetic risk score, haplotype, and SNP-SNP 

interaction associations. For each genetic variant, study population and direction of effect relative to the minor 

allele are reported unless noted otherwise.

Gene SNPs/Genetic Locus Population Reference and Effecta

CD209/DC-SIGN

rs4804803 Iranian [89] +

West African [27] −

rs735240 Indonesian [90] −

HLA-A

HLA-A*02 Chinese [91] +

HLA-A*24 Chinese [91] +

HLA-A*26 Iranian [92] +

HLA-A*32 Indian (Sahariya) [93] +

HLA-A-R114 Greek [94] +

HLA-DQB1

HLA-DQB1*02 Polish [95] −

HLA-DQB1*0201 Polish [96] −

HLA-DQB1*0301 Thai [97] −

HLA-DQB1*0303 Indian [98] −

HLA-DQB1*05 Pole [95] +

HLA-DQB1*0502 Thai [97] +

HLA-DQB1*050301 Indian [98] +

HLA-DQB1*0601 Indian [98] +

Korean [99] +

HLA-DQB1*1502 Indian [100] −

HLA-DQB1*1601 Polish [96] +

HLA-DRB1

HLA-DRB1*04 Brazilian [101] +
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Gene SNPs/Genetic Locus Population Reference and Effecta

HLA-DRB1*04:07:01 Amazonian [102] −

HLA-DRB1*04:11:01 Amazonian [102] +

HLA-DRB1*04:92 Amazonian [102] +

HLA-DRB1*0601 Korean [99] +

HLA-DRB1*07 Iranian [92] +

HLA-DRB1*0803 Korean [99] +

HLA-DRB1*1302 South African [103] +

HLA-DRB1*14 Portuguese [104] +

HLA-DRB1*15 Brazilian [101] −

Chinese [105] +

Indian (Sahariya) [93] +

HLA-DRB1*1502 Indian [101] +

HLA-DRB1*16 Chinese [91] +

Indian (Sahariya) [93] −

HLA-DRB1*1601 Polish [96] +

HLA-DRB1-N37 Greek [94] +

IFNG

CA repeats Chinese [106] -e

rs1861493 Indian [107] −

rs1861494 Chinese [108] −

Indian [107] −

rs2069705 West African [28] −

rs2069718 West African [28] −

rs2430561 Iranian [109] −

Sicilian [110] −

Spaniard [111] −

Tunisian [112] −

IFNGR1

-56 T/C West African [28] +

rs1327475 Chinese [113] +
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Gene SNPs/Genetic Locus Population Reference and Effecta

rs2234711 Chinese [113] +

rs7749390 Chinese [113] −

rs489243 Ugandan [24] −

CA repeats Indonesian [114] +e

Ugandans [24] +

IL10

rs1800871 Chinese [115] −

rs1800872 Chinese [106] −

Korean [116] −

rs1800896 Cambodian [117] +

Korean [118] −

Sicilian [119] b

MBL2

Exon 1 ”AO” Brazilian [120] +

Brazilian [121] +

rs11003125 Chinese [122] −

rs1800451 Brazilian [120] +

rs7096206 Brazilian [120] +

MCP1

-11822 G/A Ghanaian [123] −

rs1024611 Chinese [124] +

Chinese [125] +

Ghanaian [126] −

Ghanaian [123] −

Korean [127] +

Mexican [127] +

Moroccan [128] −

Tunisian [129] +

-1549 A/T Ghanaian [123]b

rs2857656 Ghanaian [126] −

Ghanaian [123] −

+900 C/T Ghanaian [123]b
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Gene SNPs/Genetic Locus Population Reference and Effecta

rs3917887 Ghanaian [126] −

+5356 C/T Ghanaian [123] −

NRAMP1/SLC11A1

(GT)n Allele 2 Gambian [130] +f

(GT)n Allele 3 Gambian [130] -g

Polish [131] +h

5′(GT)n Allele 9 South African [132]i

rs17221959 Indian [133] −

rs17235409 Cambodian [117]b

Chinese [134] +c

Chinese [135] +

Peruvian [136] b

Tunisian [137] +

rs17235416 Cambodian [117] b

Chinese [135] +

Chinese [122] +

Indian [133] +

Indonesian [138] +

South African [132] +

Tunisian [137] +

Chinese [134] +c

rs3731865 Chinese [139] +

Indian [133] +

Peruvian [136] +

TLR2

-196 to -174 del Pakistan [140] +

Guinea-Bissauan [21] −

GTn repeats in intron 
2

Chinese [141] +j

Chinese [141] -k

rs121917864 Tunisian [142] +

rs3804099 Chinese [143] +d

Iranian [144] +
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Gene SNPs/Genetic Locus Population Reference and Effecta

Moroccan [145]b

TLR4

rs11536889 Moroccan [145] +

rs1927906 Sudanese [146] +

rs1927911 Sudanese [146] +

rs4986790 Indian [147] +

Tanzanian [148] +

rs4986791 Indian [147] +

rs5030725 Sudanese [146] +

rs7869402 Sudanese [146] +

TLR9

rs352139 Chinese [108] +

rs352140 Aché [149] +

Chinese [108] +

rs352143 Vietnamese [150] +

TNF

rs1799724 Chinese [151] −

rs1800629 Chinese [152] +

Colombian [153] −

Iranian [154] +

Mozambican [155] +

Sicilian [119] +

rs1800630 Chinese [151] +

rs361525 Colombian [153] +

Iranian [156] −

VDR

rs1544410 Indian [157] +

Indonesian (Batak) [158] −

Iranian [154] −

Iranian [159] +

Iranian [160]−

rs2228570 Chinese [122] +
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Gene SNPs/Genetic Locus Population Reference and Effecta

Chinese [135] +

Indians [161] +

Indians [162] +

Iranian [160] −

rs731236 Chinese [122] −

Indian [163] −

Indian [164] +

Indian [162] +

Iranian [159] +

rs7975232 Indian [163] +

Indian [162] −

West African [26] −

a
When the minor allele associated with increased risk, + was reported for effect, while - was reported when the minor allele associated with 

decreased risk. Direction of effect was reported based on allelic and/or genotypic associations.

b
Denotes associations where only heterozygotes associated with PTB risk.

c
Indicates the association with PTB risk was only found in women.

d
Indicates the association with PTB risk was only found in men.

e
Direction of effect is relative to non-12 CA repeats

f
Direction of effect is relative to non-allele 2

g
Allele 3 associated with decreased risk

h
Allele 3 associated with increased risk

i
Direction of effect is relative to non 5′ (GT)9 alleles

j
S/M genotype associated with increased risk

k
S/L genotype associated with decreased risk
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Table 3
Studies Reporting Significant Haplotype Associations by Gene

For each association the genetic variants composing the haplotype, the study population, and the reference are 

reported. Inclusion criteria for a particular gene to be located in this table included at least 5 studies reporting 

genetic variation within that gene In the situation genetic variants composing a haplotype were located within 

multiple genes, such as the HLA region, the haplotype association was only reported for one gene.

Gene Haplotype Population Reference

HLA-A

HLA-A2-DRB1*1502 Indian [100]

HLA-A*24-B*40-DRB1*15 Indian (Sahariya) [93]

HLA-A*02-B*40-DRB1*16 Indian (Sahariya) [93]

HLA-A*02-B*40-DRB1*03 Indian (Sahariya) [93]

HLA-DQB1

HLA-DQB1*301-304 South African [103]

HLA-DQB1*0601-DPB1*0201 Indian [98]

HLA-DRB1

HLA-DRB1*1101-1121-DQB1*05 South African [103]

HLA-DRB1*16-DQB1*05 Polish [96]

HLA-DRB1*04-DQB1*03 Polish [96]

HLA-DRB1*1601-DQB1*0502 Polish [96]

HLA-DRB1*11-DQB1*03 Polish [96]

HLA-DRB1*1502-DQB1*0601-DPB1*201 Indian [98]

HLA-B40-DRB1*1501 Indian [100]

HLA-B40-DRB1*04 Indian [100]

HLA-DRB1*1502-DPB1*0201 Indian [98]

HLA-DRB1*1502-DQB1*0601-DPB1*0201 Indian [98]

IFNG

rs1861493-rs1861494 Indian [107]

IFNGR1

rs2234711-rs3799488 Chinese [113]

MBL2
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Gene Haplotype Population Reference

rs11003125-rs7095891-rs7096206-rs1800450 Chinese [122]

rs7096206-rs1800450 Chinese [165]

MCP1

rs1024611-rs2857656-rs3917887 Ghanaian [126]

rs1024611-rs2857656 Ghanaian [123]

NRAMP1/SLC11A1

rs17235416-rs3731865-rs17221959 Indian [133]

Peruvian [136]

Iranian [154]

rs17235416-rs17221959 Tunisian [137]

TLR2

rs4696480-rs3804099-rs5743699 Moroccan [145]

rs4696480-rs1898830-(-196 to -174 ins/del)-rs3804100 Taiwanese [166]

TLR4

rs10116253-rs10759932-rs1927911-rs1927907-rs5030717-rs5030725 Sudanese [146]

rs7869402-rs1927906-rs7044464 Sudanese [146]

TNFA

HLA-B17- rs361525 Indian [167]

HLA-B17- rs1800629 Indian [167]

rs1800629-rs361525 Colombian [153]

VDR

rs2228570-rs1544410-rs7975232-rs731236 Indian [162]

Moroccan [145]

South African [103]

rs2228570- rs1544410-rs7975232 Indian [162]

rs1544410-rs7975232-rs731236 Indian [162]

Indian [164]

rs1544410-rs7975232 Indian [162]

rs2228570-rs1544410 Indian [162]
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