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AbstrAct

The frenetic development of imaging technology—both hardware and software—provides exceptional potential 
for investigation of the lung. In the last two decades, CT was exploited for detailed characterization of pulmonary 
structures and description of respiratory disease. The introduction of volumetric acquisition allowed increasingly 
sophisticated analysis of CT data by means of computerized algorithm, namely quantitative CT (QCT). Hundreds 
of thousands of CTs have been analysed for characterization of focal and diffuse disease of the lung. Several QCT 
metrics were developed and tested against clinical, functional and prognostic descriptors. Computer-aided detec-
tion of nodules, textural analysis of focal lesions, densitometric analysis and airway segmentation in obstructive 
pulmonary disease and textural analysis in interstitial lung disease are the major chapters of this discipline. The vali-
dation of QCT metrics for specific clinical and investigational needs prompted the translation of such metrics from 
research field to patient care. The present review summarizes the state of the art of QCT in both focal and diffuse 
lung disease, including a dedicated discussion about application of QCT metrics as parameters for clinical care and 
outcomes in clinical trials.
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introDuction
The modern CT scanner has excellent spatial and temporal 
resolution for anatomical evaluation in vivo. The ability to 
derive quantitative CT (QCT) imaging provides a non-in-
vasive mean for direct visualization, characterization and 
quantification of anatomic structures, as well as for spec-
ulation about pathophysiological processes of pulmonary 
diseases.1

There is clearly interest in optimizing the role of QCT 
for application of its objective metrics, for instance in 
clinical trials and lung cancer screening.2–4 Indeed, QCT 
techniques for characterization of interstitial lung disease 
(ILD), chronic obstructive pulmonary disease (COPD), 
as well as focal lesions (e.g. lung nodules), have been 
progressively developed, validated and refined over the 
past 20 years.

The purpose of the present review article is to summa-
rize major QCT advances in both focal findings and 
diffuse lung disease, either in research or routine  
realms.

Detection AnD chArActerizAtion of 
PulMonAry noDule
State of the art
Computer-aided detection (CAD) of pulmonary nodule 
was progressively introduced, improved and validated for 
optimization of radiologist reading.5 In particular, CAD 
has been massively tested within lung cancer screening 
trials, where it could be optimized for both sensitivity 
and, notably, positive-predictive value (e.g. reduction of 
false-positive CAD findings is a major issue for optimal 
efficiency of the system).6–8 CAD can act as first, second 
or concurrent-reader.9 The second reader approach shows 
the highest sensitivity at the cost of a greater reading time 
compared to the concurrent reader.9–16

CAD has been evaluated for the detection of both solid and 
subsolid nodules.17 Sensitivity of CAD for solid nodules 
ranged from 38 to 100%.18–22 Sensitivity for the detection 
of subsolid nodules of the first CAD software was poor23 
and currently shows a wide range between 54%24 and above 
70%.17,25,26 This high heterogeneity derives from the tech-
nical differencesf the CAD systems commercialized by 

Received: 
29 August 2017

Accepted: 
23 November 2017

Revised: 
14 November 2017

© 2018 The Authors. Published by the British Institute of Radiology

https://doi.org/10.1259/bjr.20170644
mailto:nicola.sverzellati@unipr.it


2 of 14 birpublications.org/bjr Br J Radiol;91:20170644

BJR  Silva et al

Figure 1.  (a–i) CAD segmentation of subsolid nodule during 
a 4-year active surveillance. The semi-automatic segmenta-
tion of pulmonary nodule provides several metrics that can 
be used for standardized characterization and management. 
Noteworthy, the longitudinal assessment of subsolid nodule 
takes advantage of volumetric measurement of density, which 
was proposed for optimal stratification of nodule growth, also 
known as mass doubling time. From right to left, the same 
non-solid nodule segmented at baseline (a–c), after 2 years 
(middle column: d–f), and after 4 years (g–i) with progressive 
increase in growth rate according to MDT. For each time point 
the segmentation is rendered in axial (a, d and f), coronal (b, 
e and h) and sagittal plane (c, f and i). The MDT of this non-
solid nodule rose from 1562 days at the 2-year LDCT to 350 
days at the 4-year LDCT, reflecting a progressive increase in 
growth rate. CAD, computer-aided detection; LDCT, low-dose 
CT; MDT, mass doubling time.

various manufacturers as well as from different studies’ method-
ologies.14,27 Subsolid nodules are less frequent than the solid ones, 
nevertheless, they show higher incidence of lung neoplasms,28 
hence, it is mandatory that CAD be validated before its imple-
mentation in this subset of nodules.

CAD provides the radiologist with semi-automatic metrics 
driving the nodule management, such as volume and volume 
doubling time, which are more accurate than manual diam-
eter.29,30 Noteworthy, volumetric measurements and volume 
doubling time are particularly useful for the evaluation of size 
change during follow-up.31 Nevertheless, it cannot be overem-
phasized that variation occurs also for semi-automatic volum-
etry of nodules by CAD, notably as a function of size32 and in 
association with inspiratory effort.33 It was proposed that 25% 
increase be an accurate threshold to define nodule growth in 
the follow-up of indeterminate solid nodules surrounded by 
aerated parenchyma (more limitations apply to nodules abutting 
vessels, bronchi and pleura).34,35 A combination of volume and 
density is used to calculate the mass and the mass doubling time 
of subsolid nodules (Figure 1).36 However, such metrics are not 
widespread,37 partly because of the variability between different 
CAD software (even between different versions of the same 
software) that hampers longitudinal reproducibility (e.g. when 
measurements are performed in different radiology departments 
during follow-up).32,38 The suggestion is to analyse the complete 
data set of CT time points with the same software at the time of 
the most recent CT scan, eventually with its most recent software 
version.

Clinical application
CAD aims to reduce false-negative scans,13,39,40 which are asso-
ciated with the lone visual reading,41 thus improving sensi-
tivity.14,42 For instance, in a series of 400 low-dose CTs with 151 
true-positive findings, 5 were missed by CAD while 33 by the 
two reading radiologists.21 However, in the current clinical daily 
practice, CAD are not commonly used because of the drawback 
of a high rate of false-positive findings requiring radiologists’ 
interaction5,43,44 and the need for data transfer to a dedicated 
workstation. Noteworthy, lung cancer trials showed the useful-
ness of CAD for the semi-automated detection and measure-
ment of nodules.6,8,45 In keeping with the results of such large 
studies, it is believed that CAD will progressively be integrated 
also in clinical practice, increasing the sensitivity of radiologists 
for lung nodules.

Application in scientific investigation and clinical 
trials
The major issue of nodule management comes with the large 
amount of clinically silent lesions (e.g. benign, premalignant or 
malignant with indolent behaviour). Interobserver variability is 
the main limitation in objective assessment of nodule risk, yet, 
there are computerized alternatives for such task, also called 
radiomics. Radiomics is the high-throughput extraction of 
image features imperceptible for the human eyes,46 such as pixel 
values, variation of those values within a region of interest (ROI) 
and edge strengths.47

Currently, there are  a number of software available for texture 
analysis (TA), each of them capable to extrapolate and evaluate 
different groups of radiomic features.48 Radiomics works in 
multistep fashion composed of subsequent processes, namely: 
image acquisition, delineation of ROIs and extraction and anal-
ysis of features.49 Noteworthy, features can be extracted with 
a semi-automated method reducing the number of manual 
inputs50 and this approach might be beneficial if TA will be avail-
able in the clinical workflow.

Radiomic features extraction currently suffers from a significant 
inter-reader variability related to the selection of ROI.51 TA was 
shown to be capable of predicting patient outcome based on CT 
data  sets acquired with different scanning parameters52—the 
latter representing a frequent work setting— however, there is 
evidence about significant variability among CT data sets recon-
structed with different algorithms.51,53,54 Hence, future studies 
should investigate whether different scanning protocols can 
reliably be used for the TA-based stratification of patients. The 
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Figure 2. (a–d) Density histogram for computation of paren-
chymal metrics. Axial CT images of a patient with upper lobe 
predominant emphysema (a,  b). The density histogram (c) 
summarizes the distribution of parenchymal density (white 
line: both lungs). Dedicated representation of individual lobar 
density histograms provides quantitative differences between 
lobes (red line: right upper lobe; green line: right lower lobe) 
for objective assessment of emphysema heterogeneity and 
selection of the most appropriate treatment (e.g. endo-
bronchial valves  vs  endobronchial coils). Numeric output is 
automatically computed by the software (d) and displayed 
according to whole lung characteristics or according to the 
selected lobes (e.g. right and left lung or individual lobes). 
Quantitative metrics that can be extracted from the histo-
gram include lung volume, mean lung density, weight, density 
percentiles (in the present table, the lowest 15th percentile is 
reported, P15), density mode (the most represented density 
value within the entire lung, Pk) and volume of lung paren-
chyma with density below a predefined threshold (in the pres-
ent table, the relative volume of lung with density < −950 HU 
is reported as a measure of emphysema, LAV, low attenuation 
volume). HU,  Hounsfield unit;  MLD,  mean lung density; Vol. 
volume; Wt., weight.

consistency of radiomic features extracted from CT data  sets 
obtained by different scanners will be particularly beneficial 
for clinical application as radiologists are frequently asked to 
compare CT studies acquired from different hospitals.

TA was evaluated to determine if radiomic features could differ-
entiate between lung cancer and benign nodules,55 as well as 
between transient and persistent part-solid nodules56 or pre-in-
vasive and invasive part-solid nodules.57,58 In patients suffering 
from lung cancer, TA could non-invasively monitor changes in 
tumour heterogeneity in the early phase of therapy59 to poten-
tially provide objective biomarkers31,60 for prediction of treat-
ment response and survival.30,46,51,61–66 Furthermore, TA is 
increasingly investigated to stratify the risk of distant metastases 
from lung cancer52 as well as to provide in  vivo non-invasive 
differentiation between histological types of lung cancer,67 we 
hope future developments will supply robust metrics for this 
purpose.

obstructive PulMonAry DiseAse
The heterogeneous framework of obstructive pulmonary disease 
can be biased on pulmonary function tests (PFTs). Conversely, 
quantitative imaging can detail abnormalities and differentiate 
between parenchymal and bronchial disease,68,69 yet its valida-
tion for clinical application can be further demonstrated. CT is 
not recommended as part of the routine evaluation of obstruc-
tive pulmonary disease, nevertheless it can be employed in the 
phenotypization of chronic obstructive pulmonary disease 
(COPD),4 therapeutic planning for emphysema,70 characteri-
zation of asthma,71 early detection of bronchiolitis obliterans 
syndrome after transplantation (e.g. bone marrow, lung)72 and 
even in paediatric obstructive diseases (e.g. cystic fibrosis, bron-
chopulmonary dysplasia).73,74 The characterization of paren-
chyma and airway in obstructive pulmonary diseases has been 
anatomically and functionally covered by volumetric and multi-
phase CT acquisition.75,76

State of the art
Parenchymal quantification
Pulmonary texture in obstructive lung disease shows relatively 
low tightness compared to normal lung because of air abun-
dance. Air abundance can be caused either by tissue loss (e.g. 
emphysema) or by functional limitation to air outflow (e.g. air 
trapping), oftentimes by a combination of them. The more the 
air the lower the pulmonary density, which can be quantified 
by volumetric segmentation of the lung and arithmetic analysis 
of density histogram (Figure  2). Densitometric quantification 
includes absolute thresholding and relative distribution of voxel 
density.

Pulmonary density is highly influenced by the respiratory 
phase;77 this characteristic offers the opportunity for morpho-
functional quantification of the lung.

On inspiratory scans, emphysema is conventionally attributed 
to areas of lung with density < −950 Hounsfield unit,78 more-
over, it is indirectly related to the lowest 15th percentile (P15)79 
(Figure 2). It cannot be overemphasized that lung density is also 

a function of tissue inflammation as it was shown in former 
smokers.80 Therefore, lung density should always be inter-
preted within the appropriate pathophysiological context. It was 
proposed that emphysema quantification be integrated with lung 
mass for comprehensive depiction of a multiphase disease that 
might begin with active inflammation (higher density) and evolve 
towards irreversible tissue depletion (lower density). Washko 
reported that lung mass increasingly dropped from GOLD 1 to 
GOLD 4 (global initiative for chronic obstructive lung disease), 
and it predicted FEV1 (forced expiratory volume) decline in a 
large population of smokers (current or former).81

Volumetric expiratory scan for assessment of lung parenchyma is 
acquired at the end of expiration. Such acquisition was relatively 
challenging in the past, yet, it is currently made much easier by 
scanners with large arrays of detectors (e.g. 64 or more) that 
allow fast scan of the whole chest (scan time <5 s). Expiratory 
scan is useful to assess functional parenchymal change caused by 
obstructive small airway disease, namely air trapping. The densi-
tometric parameters for quantification of air trapping include the 
relative area of lung < −856 Hounsfield unit on expiratory scan82 
and the ratio between expiratory and inspiratory mean lung 
density.83 However, these two metrics have potential bias due 
to the heterogeneity of parenchymal densitometry at different 
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 Figure 3. (a-d) Parametric response mapping for topographic 
densitometric categorization of parenchyma into normal lung, 
air trapping and emphysema in COPD. Volumetric inspiratory 
(a) and expiratory (b) CTs are warped together for quanti-
tative analysis of densitometric clusters by means of para-
metric response map (c): Insp > −950 HU and Exp > −856 
HU (normal lung), Insp > −950 and Exp < −856 HU (SAD) 
and Insp < −950 and Exp −856HU (emphysema). The native 
CT data set (d) is overlaid by colour-coded volumetric rep-
resentation of the densitometric categories that allow top-
ographic description of pulmonary disease (green,  normal 
lung; yellow,  air trapping; red,  emphysema). The present 
COPD case shows the coexistence of air trapping and emphy-
sema, which are objectively apportioned by the b-phase 
densitometric quantification with evidence of airway predom-
inant disease. COPD, chronic obstructive pulmonary disease; 
HU, Hounsfield unit; SAD, small airway disease.

Figure 4.  (a–d) Direct and indirect quantification of airway. 
Airway segmentation from trachea to intrapulmonary bron-
chi and stretched view of a selected airway in the right lower 
lobe (a); oblique axial reformatting of bronchial structure with 
direct automatic segmentation lumen diameter (LD: 4.6 mm), 
wall thickness (WT: 1.0 mm) and relative surface of wall com-
pared to total airway surface (wall area, WA%: 52.1). Volumet-
ric reconstruction of airway segmentation (c) for automatic 
direct measurement of all airways for indirect calculation 
of Pi10 by means of regression line derived from plotting of 
internal perimeter and square root of wall area of airways with 
internal perimeter <20 mm (d).

lung volumes, notably because air trapping and emphysema 
may be admixed.84 Volumetric non-rigid registration of inspi-
ratory and expiratory scan overcomes such limitation because 
it allows biphase characterization of each voxel, and is particu-
larly interesting for quantification of air trapping. This approach 
was named parametric response mapping (PRM) when used 
to define density clusters for topographic categorization of 
parenchyma into normal lung, air trapping and emphysema85 
(Figure 3). A similar registration was used to simulate the local 
dynamic volume change. Bodduluri reported biomechanical CT 
descriptors of air trapping in association with patient outcome 
in a large COPD population.86 Nonetheless, it should be realized 
that there is a normal range of air trapping even in young healthy 
subjects, which should be acknowledged for clinical application 
of QCT.87,88

Airway quantification
Quantitative analysis of the airway follows the preliminary 
processing step of bronchial tree segmentation and isolation of 
three-dimensional airway model89,90 (Figure  4a–c). Airway is 
usually quantified according to its generation, and the genera-
tion-specific mean can be calculated throughout the entire lung,91 
nonetheless, Gupta et al reported that a single bronchus might 

be representative.92 Direct characterization of airway is feasible 
for several bronchial generations,93 yet, direct QCT metrics are 
widely accepted up to fifth generation.94,95 Direct quantification 
of airway includes lumen diameter and area, wall thickness and 
area, relative area of wall (obtained by the ratio between area of 
the wall and total area of the airway at a given section) and density 
of the airway wall.96 Smaller airway can be indirectly quantified 
by the regression line between the square root of the airway wall 
area and the internal perimeter of the airway: the so called Pi10 
that reflects wall conspicuity in airway with internal perimeter 
of 10 mm (broadly 3 mm of internal diameter) (Figure 4d). The 
variability and potential bias of airway metrics are significant 
and include lung volume, age and transient inflammation.91,97 
For this reason, the clinical application of airway QCT is still to 
be validated.4 Pi10 is deemed the most consistent among airway 
metrics, albeit only when calculated on a minimum of 12 subseg-
mental bronchi.98 Beyond size of bronchial components, also 
density was investigated and potential association with mast cell 
infiltration was found in asthmatic patients.99

Expiratory scan is still an issue for direct quantification of airway. 
Preliminary experiences suggested that more severe asthma 
might be associated with increased airway stiffness at third and 
fourth generation bronchi.100 However, more analysis is needed 
to have a clear picture on the consistency of this observation.

Vascular quantification
Vascular quantification is relatively complex task in quantitative 
imaging of the lung. Quantitative metrics of pulmonary vascular 
volume have been recently proposed and are utmost promising 
to fill the gaps between morphological descriptors and physi-
ology. Diaz showed that the broncho-arterial ratio is increased 
in smokers because of a relative reduction in vessel size.101 More 
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quantitative studies showed characteristic vascular pruning of 
small pulmonary arteries102 and reduction of lung perfusion 
assessed by contrast-enhanced dual-energy spectral CT.103 The 
latter was first shown to detect perfusional defects in pulmonary 
embolism, with increasing degree of enhancement from occlu-
sive to non-occlusive clots.104 The spectral imaging for quanti-
fication of small pulmonary vessels is now being approached by 
extremely preliminary experience for detection of lung suscep-
tibility to vasodilators in healthy smokers with emphysema,103 
yet, its application still yields some degree of variability (e.g. 
cardiac ejection rate, physiological gradients and scanning 
conditions) and artefacts (e.g. beam hardening, cardiac motion) 
that prevent such technique in the routine of COPD.105,106 The 
role of vascular disease in the complex pathogenesis of COPD 
needs to be further investigated from different perspectives, 
either as a cause or a consequence of lung tissue depletion, and 
in association with cardiovascular function. Along the cardio-
pulmonary functional cascade, left ventricle filling and systemic 
blood delivery progressively decrease according to emphysema 
extent and airflow obstruction, as it was shown in a large cohort 
of COPD patients.107

Clinical application
The hardest effort towards standardization of imaging data  set 
(acquisition and reconstruction) is mandatory for clinical appli-
cation of quantitative imaging.108–110 In particular, continuous 
change in protocol acquisition for dose reduction and related 
evolution in reconstruction algorithm should be accounted.111,112

The clinical application of quantitative imaging looks now closer 
than ever, in particular in tertiary centres where multidisci-
plinary teams optimally merge information from physiology, 
symptoms, imaging and therapeutic options.

Treatment of emphysema
Lung volume reduction (LVR) is a therapeutic option to improve 
pulmonary mechanics in severe emphysema. Techniques of LVR 
include endobronchial valves (EBV), endobronchial coils and 
surgery (LVRS). Regional quantification of emphysema by CT 
is paramount for the planning of LVR.70,113 Emphysema distri-
bution pattern and fissures integrity are pivotal for prediction of 
treatment efficacy.

EBVs can be used in both upper and lower predominant emphy-
sema and are the less invasive technique, yet their selection 
criteria are extremely strict: fissure integrity >90% for predic-
tion of collateral ventilation (major contraindication to EBV), 
heterogeneity of emphysema distribution between lobes (>15% 
difference in emphysema extent between ipsilateral lobes), 
emphysema >40% in the target lobe114 (Figure 2). Furthermore, 
CT is extremely useful also for measurement of bronchial lumen 
and tailoring of EBV size. In the follow-up, CT can quantify 
the lobar volumetric reduction in treated lobes and the relative 
expansion of healthier lobes.

If EBV requirements are not met, endobronchial coils or LVRS 
can be considered. LVRS should be proposed only for upper 
lobe predominant emphysema. Both techniques are substantially 

irreversible, hence, they are preceded by a CT-based quanti-
fication of residual volume for estimation of post-procedural 
pulmonary function.115 For this purpose, the integration of 
lung damage by CT quantification and perfusion scintigraphy 
provides the best prediction of clinical outcome.116

COPD phenotypization
The relative contribution of airway and parenchymal disease 
varies substantially in COPD, and determines prognosis and ther-
apeutic response. PFTs have limitation in differentiating between 
phenotypes,68 thus, patients with the same GOLD stage may 
present substantial clinical differences. Conversely, the literature 
on QCT increasingly supports the substantial amount of func-
tional information that can be extracted from CT for phenotyp-
ization of COPD, even in case of mild to moderate disease.117,118 
Integration of visual and quantitative CT assessment permits 
categorization of COPD into emphysema predominant subtypes 
(proposed five different patterns) and airway-predominant 
subtypes (proposed two patterns).119 Most subjects with emphy-
sema have significant airway disease, conversely, a proportion of 
COPD subjects have minimal emphysematous lung (<6% of lung 
with density < −950 HU on inspiratory CT) and predominant 
airway disease.119 PRM for objective estimation of normal lung, 
air trapping and emphysema appears to be the most promising 
QCT tool for clinical phenotypization of COPD, with potential 
application in longitudinal follow-up (Figure 3).120,121

Bronchiolitis obliterans syndrome in transplanted 
patients
Bronchiolitis obliterans syndrome is seen after lung or bone 
marrow transplantation.72,122 It is diagnosed by spirometry, 
though there is lack of clinical tools to identify the degree of small 
airway obstruction. Quantification of functional small airways 
disease by PRM was shown to offer prognostic stratification in 
transplant recipients with spirometric decline.72,122 In particular, 
PRM-quantified air trapping >30% after lung transplant could 
outrank subjects with shorter survival among patients with 
decline in lung function.72

Application in scientific investigation and clinical 
trials
Lung imaging is now being employed to provide quantitative 
assessment of morphology and function in scientific investiga-
tion. The utmost ability of imaging for non-invasive quantita-
tive in vivo assessment of obstructive lung diseases increasingly 
provides imaging biomarkers as outcome measures in clinical 
trials.

Large longitudinal prospective trials recruited thousands of 
patients with and without COPD to undertake deep analysis 
about the clinical, functional, imaging and genetic framework 
of this syndrome.123–125 These powerful trials represent the 
cornerstone of QCT investigation in COPD and provide massive 
data for its translation to clinical practice.4,126,127 Major reports 
from these studies include regional disease progression,121 QCT 
metrics associated with COPD exacerbations,127,128 quantifica-
tion of cardiovascular disease in COPD,129 QCT stratification of 
smokers without COPD,86,130 variability of parenchymal QCT 
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Figure 5. (a–c) Asthma phenotypes according to QCT cluster. 
Volumetric model of segmented airway and specific quanti-
tative analysis of the right upper lobe apical segmental bron-
chus (RB1) on cross-section (insets). The airway metrics were 
normalized to the body surface area for definition of QCT 
clusters of asthma according to wall volume (WV) and lumen 
volume (LV). The three clusters are defined as follows: (a) 
cluster 1 with increased WV and LV, decreased percentage WV 
and severe air trapping; (b) cluster 2 with minor central airway 
remodelling, moderate air trapping and low response to bron-
chodilator; (c) cluster 3 reduced WV and LV, increased WV 
percentage and severe air trapping on CT. Figure reproduced 
under a Creative Commons license (CC BY) from Gupta S. et 
al, J Allergy Clin Immunol. 2014 Mar;1333 :729–38.e18. https://
doi.org/10.1016/j.jaci.2013.09.039. LV, lumen volume;  QCT, 
quantitative CT; WV, wall volume.

metrics according to smoking status80 and standardization of CT 
protocol for multicentre application of QCT phenotypes.108

Emphysema
Emphysema is irreversible disease by definition, and in some 
cases it is relatively fast progressive. It is the case of α−1 anti-
trypsin deficiency where parenchymal tissue is actively disrupted 
as a consequence of reduced protease inhibition. QCT of lung 
parenchyma can be used to quantify progression of emphysem-
atous destruction. Stoeckley used the P15 to test the effect of 
intravenous α−1 antitrypsin against placebo and could quantify 
a relative reduction of emphysema progression in the pharma-
ceutical arm.131

Asthma severity: proximal and distal airway
The airway remodelling seen in asthmatic patients is a 
morphological feature that yields substantial promise of 
imaging biomarkers for personalized asthma care.132,133 
Airway remodelling is particularly targeted on QCT, notably, 
there is association between epithelial thickness and central 
airway quantification by CT.94 This association led to defini-
tion of CT-based clinical clusters of asthma, with different 
clinical and therapeutic features. The imaging-based clus-
tering of asthmatic patients was first proposed by Gupta, who 
found heterogeneity of response to bronchodilator in patients 
with different imaging cluster92 (Figure  5). Recently, further 
description of asthma clusters has been obtained including 
topographic metrics of air trapping, with substantial clinical 
relevance compared to asthma phenotypes based on the sole 

clinical characterization or sputum cell count.88 Noteworthy, 
Choi reported that the four imaging-based clusters show 
different response to high-dose inhaled corticosteroids.88

Longitudinal quantification of air trapping extent by CT has been 
used as biomarker to assess response to treatment,134–136 further-
more, it was associated with vascular conspicuity in proximal 
airway wall.94

This evidence and its logarithmic technical development foster 
readily available quantitative metrics to assess personalized 
asthma care in clinical trials and potential translation to clinical 
use of imaging-based asthma phenotypes.

interstitiAl lunG DiseAse
The variability in clinical evaluation of ILD is a reason for auto-
mation, CAD, and quantitative image analysis.137 Several studies 
showed that QCT is an objective analysis that may overcome the 
issue of the interobserver variability and could provide more 
consistent prognostic indexes.138–142 Furthermore, QCT has 
the potential ability to identify CT features that are not visually 
recognizable and to objectively monitor the disease progression 
on serial CT scans.

State of the art
There are several quantitative CT systems of varying degrees 
of sophistication for the assessment of ILD. As opposed to 
pulmonary emphysema, ILD patterns are quite heterogeneous 
in morphologic characteristics and lack a standard density 
threshold that can dichotomize the visualized lung tissue into 
normal and diseased.143 Nevertheless, the global histogram of 
density metrics of CT images—skewness, kurtosis and mean 
lung density—are helpful to estimate the ILD extent.144–146 For 
instance, in pulmonary fibrosis, collagen deposition increases 
lung density, causing a rightward shift of the CT frequency 
histogram and reducing its peak (i.e. increasing skewness and 
kurtosis, respectively).147 Furthermore, such metrics are suffi-
ciently reproducible and not substantially affected by the reduc-
tion in radiation dose in subjects with ILD.148–150

Lung volume variation due to different levels of inspiration may 
represent a major limitation of any density-based analysis of the 
lungs. Such a noise may be attenuated by evaluating the lung 
weight, which takes into account both lung volume and lung 
density.151

QCT was reported to enable objective tracking of the changes in 
lung weight and air-space inflation produced by a standard inter-
vention, as in pulmonary alveolar proteinosis, suggesting lung 
weight could be a reliable metric to assess longitudinal change in 
ILDs (e.g. diffuse acute lung disorders).152 The density histogram 
parameters have also been used to quantify the extent of indi-
vidual patterns of ILD (e.g. ground glass opacity, honeycombing, 
reticulation etc.).153 This approach is not sufficient to achieve 
that goal, and more sophisticated textural analyses have been, 
therefore, implemented.2 Parenchymal classification is applied to 
voxel volume unit (e.g. discrete volume that allows detailed char-
acterization of local parenchymal features) using TA, computer 
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Figure 6. (a–j) Longitudinal quantitative analysis of fibrotic 
interstitial lung disease. Automatic volumetric segmentation 
of parenchymal abnormalities in a patient with idiopathic 
pulmonary fibrosis at baseline (top row: a−e) and 1-year fol-
low-up (bottom row: f−j). The colour-coded overlay on native 
high resolution computed tomography (HRCT) images shows 
the distribution of parenchymal abnormalities on axial, cor-
onal and sagittal reconstruction at baseline (a−c) and 1 year 
(f−h). The data are also provided in a volumetric model that 
shows both lungs with colour-coded characterization of 
parenchyma volume. Furthermore, a synthetic 2D graph (the 
so-called Glyph) is built that provides comprehensive display 
of abnormal parenchyma and its distribution between lobes 
(baseline Glyph in e, 1-year Glyph in j). 2D, two-dimensional.

vision-based image understanding of volumetric histogram 
signature mapping features and three-dimensional-morphology. 
Textural analysis is based on ROIs selected by trained observers 
in the lung, according to a set of specific patterns (normal, retic-
ular, honeycombing etc.)  (Figure 6). The histogram or textural 
features of each volumetric ROI are extracted, and a machine-
learning algorithm is used to develop a predictive model for 
specific patterns.137,154–156 Given the well-known interobserver 
variability for the assessment of honeycombing, the devel-
opment of an objective quantitative CT tool that can quantify 
honeycombing with prognostic value is of utmost importance. 
However, this kind of software analysis is limited by inbuilt 
subjectivity (e.g. owed to the expert observers pretraining), and 
other objective methods are currently being developed.2,157

Most textural-based software is still not commercially avail-
able on CT vendors’ diagnostic workstations and such software 
requires high-resolution images, preferably reconstructed with 
parameters that reduce image noise. Such multidimensional 
analysis demands considerable computational power that 
usually requires a dedicated workstation outside of the clinical 
radiology workflow.154

There are still some important topics that need to be addressed 
in the future. First, it’s not fully clear if (and to what extent) CT 
technique optimization and standardization should be pursued 
for the quantitative analysis of ILD. This may have important 
implications for multicentre clinical trials that rely on accurate 
and reproducible quantitative analysis of CT images collected 
under varied conditions across multiple sites, scanners and 
time points.157 Second, most QCT metrics of ILD severity are 
given as continuous data and are not, therefore, user-friendly 
for clinical practice. A staging system that defines ILD severity 
in categories (e.g. mild, moderate or severe) would be helpful 
for implementing QCT in clinical practice.138

Application in scientific investigation and clinical 
trials
Most investigations have tested QCT tools in subjects with 
either idiopathic pulmonary fibrosis (IPF), or connective tissue 
disease (e.g. systemic sclerosis).141,142,145,146,150,156,158 At present, 
automated image analysis of ILD is still confined to the research 
setting.

A large number of studies demonstrated that various QCT metrics 
correlated with several clinicofunctional indexes.139,140,146,150,159,160 
However, data on their prognostic value is of outmost importance. 
Best et al161 showed both kurtosis and visual scoring of the extent 
of fibrosing pattern as the only predictors of mortality in a retro-
spective study of 167 subjects with IPF recruited in a clinical trial. 
Recently, in a study of 46 subjects with IPF the histogram metrics 
correlated with PFT and were associated with transplant free 
survival similarly to the visual scoring performed by two experts.153 
Likewise, the histogram metrics can discriminate between well-de-
fined different mortality risk categories in subjects with systemic 
sclerosis-related ILD.142

Jacob showed that baseline texture-based CT quantification 
of total disease extent or individual patterns were superior 
to visual scoring in increasing the accuracy of clinicofunc-
tional models predictive of outcome in IPF.138 Intriguingly, 
the authors showed that the pulmonary vessels volume (PVV), 
was the individual QCT metric more strongly associated with 
mortality. Several hypotheses have been suggested, though 
the pathophysiological mechanism is not yet understood and 
further validation is required. Furthermore, they subsequently 
demonstrated that the PVV was also an independent predictor 
of mortality across patients with various connective tissue 
diseases.162

The visual scoring of serial CTs is not fully standardized and 
QCT analysis may be particularly attractive for objectively moni-
toring IPF.2 Maldonado showed that short-term (3–15 months) 
changes in CT patterns as assessed by the software was predictive 
of survival.141 Likewise, two recent studies using another software, 
showed that automatic quantification of lung fibrosis at CT yields 
an index of severity that correlates with visual assessment and func-
tional change in subjects with IPF.156,158

However, the assessment of the severity of traction bronchiecta-
sis—a major determinant of prognosis as visually quantified in 
subjects with either IPF or connective tissue disease—is still not 
allowed by any QCT tool.

conclusion
There is a large amount of data that support the potential of 
QCT in pulmonary medicine. The fast technological devel-
opment of such tools already brought to their clinical appli-
cation, especially for the assessment of lung nodule and its 
management standardization. Furthermore, the prognostic 
yield of QCT in diffuse lung diseases is challenging the tradi-
tional approach based on clinical and functional assessment. 
Notably, QCT analysis has its strength in detailed volumetric 
characterization of lung parenchyma, and thus the potential 
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The future of QCT is granted by the logarithmic technological 
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