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Abstract

Differential item functioning (DIF) indicates the violation of the invariance assump-
tion, for instance, in models based on item response theory (IRT). For item-wise DIF
analysis using IRT, a common metric for the item parameters of the groups that are
to be compared (e.g., for the reference and the focal group) is necessary. In the
Rasch model, therefore, the same linear restriction is imposed in both groups. Items
in the restriction are termed the ‘‘anchor items’’. Ideally, these items are DIF-free to
avoid artificially augmented false alarm rates. However, the question how DIF-free
anchor items are selected appropriately is still a major challenge. Furthermore, vari-
ous authors point out the lack of new anchor selection strategies and the lack of a
comprehensive study especially for dichotomous IRT models. This article reviews
existing anchor selection strategies that do not require any knowledge prior to DIF
analysis, offers a straightforward notation, and proposes three new anchor selection
strategies. An extensive simulation study is conducted to compare the performance
of the anchor selection strategies. The results show that an appropriate anchor
selection is crucial for suitable item-wise DIF analysis. The newly suggested anchor
selection strategies outperform the existing strategies and can reliably locate a suit-
able anchor when the sample sizes are large enough.
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Introduction

Differential item functioning (DIF) is present if test-takers from different groups—

such as male and female test-takers—display different probabilities of solving an item

even if they have the same latent trait. In this case, the test results no longer represent

the ability alone and the groups of test-takers cannot be compared in an objective, fair

way.

Various methods have been suggested to analyze item-wise DIF (see Millsap &

Everson, 1993, for an overview). DIF tests based on item response theory (IRT) such

as the item-wise Wald test (see, e.g., Glas & Verhelst, 1995) rely on the comparison

of the estimated item parameters of the underlying IRT model. For this purpose,

anchor methods are employed to place the estimated item parameters onto a common

scale.

Previous studies showed that a careful consideration of the anchor method is cru-

cial for suitable DIF analysis: If the anchor contains DIF items, which is referred to

as contamination (see, e.g., Finch, 2005; Wang, Shih, & Sun, 2012; Woods, 2009),

the construction of a common scale for the item parameters may fail and seriously

increased false alarm rates can result (see, e.g., Finch, 2005; Kopf, Zeileis, & Strobl,

2013; Stark, Chernyshenko, & Drasgow, 2006; Wang & Su, 2004; Wang & Yeh,

2003; Wang, 2004; Woods, 2009). This means that items truly free of DIF may

appear to have DIF and jeopardize the results of the DIF analysis as well as the asso-

ciated investigation of the causes of DIF (Jodoin & Gierl, 2001). One alternative to

reduce the risk of a contaminated anchor is to employ a short anchor that should be

easier to find from the set of DIF-free items. However, the statistical power to detect

DIF increases with the length of the (DIF-free) anchor (Kopf et al., 2013; Shih &

Wang, 2009; Thissen, Steinberg, & Wainer, 1988; Wang & Yeh, 2003; Wang, 2004;

Woods, 2009).

In the literature, one can find both methods that do and methods that do not require

an explicit anchor selection. While at first sight it may seem that methods that do not

require an anchor selection strategy have an advantage, it has been shown that there

are situations where these methods are not suitable for DIF detection. The all-other

anchor method, for example, uses all items except for the currently studied item as

anchor (see, e.g., Cohen, Kim, & Wollack, 1996; Kim & Cohen, 1998) and requires

no anchor selection strategy. However, the method was shown to be inadvisable for

DIF detection when the test contains DIF items that favor one group (Wang, 2004;

Wang & Yeh, 2003). Excluding DIF items from the anchor by using iterative steps

may not solve the problem when the test contains many DIF items (Wang et al.,

2012). In practice, there is usually no prior knowledge about the exact composition of

the DIF effects, and thus, it is advisable to use an anchor method that relies on an
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explicit anchor selection strategy such as an anchor of the constant length of four

items (used, e.g., by Shih & Wang, 2009; Thissen et al., 1988; Wang, 2004). An

anchor selection strategy then guides the decision which particular items are used as

anchor items.

Several anchor selection strategies have already been proposed, some of which rely

on prior knowledge of a set of DIF-free items or on the advice of content experts, while

others are based on preliminary item analysis (for an overview, see Woods, 2009).

Here, only those strategies that do not require any information prior to data analysis,

such as the knowledge of certain DIF-free items, will be reviewed and presented in a

straightforward notation. The reason for excluding strategies that require prior knowl-

edge about DIF-free items from this review is that in practical testing situations sets of

truly DIF-free items are most likely unknown (as opposed to simulation analysis, where

the true DIF pattern is known) and even the judgment of content experts is unreliable

(for a literature overview where this approach fails, see Frederickx, Tuerlinckx, De

Boeck, & Magis, 2010). New suggestions of anchor selection strategies are often only

compared to few alternative strategies or in situations of only a limited range of the

sample size and ‘‘have not been exhaustively compared for the dichotomous case’’

(González-Betanzos & Abad, 2012, p. 135). In this article, we systematically evaluate

the performance of the existing anchor selection strategies for DIF analysis in the

Rasch model by conducting an extensive simulation study.

Furthermore, we assess the appropriateness of the anchor selection strategies to

find a suitable short anchor (of four anchor items) and also their ability to select a

suitable longer anchor, which ‘‘is a challenging question for researchers and practi-

tioners’’ (Wang et al., 2012, p. 705). For practical research, recommendations how

anchor items can be found appropriately are still required (Lopez Rivas, Stark, &

Chernyshenko, 2009, p. 252). We also provide guidelines how to choose anchor items

for the Rasch model when no prior knowledge of DIF-free items is at hand.

In addition to the existing strategies, new developments of anchor selection strate-

gies have also been encouraged (Wang et al., 2012). Here, we also suggest three new

anchor selection strategies. The new anchor selection strategies are implemented and

the results show an improvement of the classification accuracy in the analysis of DIF

in the Rasch model.

The article is organized as follows. The technical aspects of the anchoring process

in the Rasch model are introduced in the next section. Details of the anchor classes

and of the existing as well as of the newly suggested anchor selection strategies are

given in the third section. The simulation design is addressed in the fourth section,

and the results are discussed in the fifth section. Finally, a concluding summary and

practical recommendations are presented.

Model and Notation

In this section, the model and notation are introduced along with some technical sta-

tistical details about the anchoring process that provide all information necessary for
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the implementation of the anchor methods discussed in this article: (a) how para-

meter estimates under certain restrictions can be obtained and (b) how the associated

item-wise parameter differences between a focal and reference group can be assessed

given a selection of anchor items. In the next section, we provide the information

about the model estimation and the required restrictions for the Rasch model. In

addition, the equations to transform the restrictions, which represent the core of the

anchor methods, are given so that the entire procedure how to assess item-wise para-

meter differences can be outlined in section ‘‘Item-Wise Parameter Differences.’’

Based on the resulting item-wise tests, the subsequent sections will then discuss

how the tests can be combined employing a wide range of classes of anchors and dif-

ferent strategies for selecting the anchor items. In our discussion, we focus on the

Rasch model but the underlying ideas can also be applied to other IRT models.

Model Estimation and Scale Indeterminacy

To fix notation, we employ the widely used (Wang, 2004) Rasch model with item

parameter vector b ¼ ðb1; . . . ;bkÞT 2 R
k (where k denotes the number of items in

the test). It is estimated here using the conditional maximum likelihood (CML)

approach, because of its desirable statistical properties and the fact that it does not

rely on the person parameters (Molenaar, 1995).

To overcome the scale indeterminacy (Fischer, 1995) of the item parameters b,

one linear restriction is typically imposed on them. Hence, only k2 1 parameters can

be freely estimated and the remaining one parameter is determined by the restriction.

Commonly used approaches restrict a set A � f1; . . . ; kg of one or more (or even all)

item parameters to sum to zero
P
‘2A

b‘ ¼ 0 (Eggen & Verhelst, 2006). Conveniently,

the item parameter estimates b̂ under any such restriction can be easily obtained from

any other set of parameter estimates ~b fulfilling another restriction. Without loss of

generality we employ the restriction ~b1 ¼ 0 for the initial CML parameter estimates

and also obtain the corresponding covariance matrix dVarð~bÞ; which consequently has

zero entries in the first row and in the first column. To obtain any other restriction of

the sum type above, the item parameter estimates b̂ and corresponding covariance

matrix estimate can be obtained as follows:

b̂ ¼ A~b; ð1Þ

dVar b̂
� �
¼ AdVar ~b

� �
AT ; ð2Þ

where A ¼ Ik � 1Pk

‘¼1
a‘

1k �aT is the contrast matrix corresponding to an indicator vec-

tor a of elements a‘, such as a ¼ ð0; 1; 0; 0; 0; . . .ÞT for item 2, with Ik denoting the

identity matrix and 1k ¼ ð1; 1; . . . ; 1ÞT a vector of one entries of length k. To empha-

size that the parameter estimates b̂ depend on the set of restricted item parameters,
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we sometimes employ the notation b̂ðAÞ in the following (although the dependence

on A is mostly suppressed).

Item-Wise Parameter Differences

In DIF analysis using IRT models, groups are to be compared regarding their item

parameters. We focus here on the situation of item-wise comparisons between two

groups (reference and focal). To establish a common scale for the item parameters

the same linear restriction X
‘2A

b̂
g

‘ ¼ 0 ðg 2 fref , focgÞ ð3Þ

has to be imposed on the item parameters in both groups (Glas & Verhelst, 1995).

Thus, A is the set of anchor items employed to align the scales between the two

groups g.

More specifically, to assess differences between the two groups for the jth item

parameter bjðj ¼ 1; . . . ; kÞ, the following steps are carried out:

1. Obtain the initial CML estimates ~bg in both groups g (i.e., using the restric-

tion ~bg
1 ¼ 0).

2. Based on the same set of anchor items A, compute b̂g ¼ b̂gðAÞ and corre-

sponding dVarðb̂gÞ using Equations 1 and 2 so that Equation 3 holds in both

groups g.

3. Carry out an item-wise Wald test (see, e.g., Glas & Verhelst, 1995) for the jth

item with test statistic tj ¼ tjðAÞ given by

tj ¼
b̂

ref
j � b̂

foc
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðb̂ref

j � b̂
foc
j Þ

q ¼
b̂

ref
j � b̂

foc
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðb̂ref Þj, j + dVarðb̂focÞj, j

q : ð4Þ

Either the test statistic tj or the associated p-value pj can then be employed as a DIF

index because under the null hypothesis of no DIF the item parameters from both

groups should be equal: b
ref
j ¼ b

foc
j :

Note that this item-wise Wald test is applied to the CML estimates (as in Glas &

Verhelst, 1995) and not the joint maximum likelihood (JML) estimates (as in Lord,

1980). The inconsistency of the JML estimates leads to highly inflated false alarm

rates (Lim & Drasgow, 1990; McLaughlin & Drasgow, 1987). In case other IRT

models are regarded, the recent work of Woods, Cai, and Wang (2013) showed that

an improved version of the Wald test, termed Wald-1 (see Paek & Han, 2013, and

the references therein), also displayed well-controlled false alarm rates if the anchor

items were DIF-free. Since the Wald-1 test also requires anchor items, it can in prin-

ciple be combined with the anchor methods discussed here as well.
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Anchor Methods

Under this null hypothesis of equality between all item parameters, in principle any

set of items could be chosen for the anchor A. However, under the alternative that

some of the k item parameters are actually affected by DIF, the results of the analysis

strongly depend on the choice of the anchor items, as previous studies illustrated. If

the anchor contains at least one DIF item, it is referred to as contaminated (see, e.g.,

Finch, 2005; Wang et al., 2012; Woods, 2009). The scales may then be artificially

shifted apart and the false alarm rates of the DIF tests may be seriously inflated (see,

e.g., Finch, 2005; Stark et al., 2006; Wang & Su, 2004; Wang, 2004; Wang & Yeh,

2003; Woods, 2009). Instructive examples that illustrate the artificial scale shift are

provided by Wang (2004) and Kopf et al. (2013).

For distinguishing between the different approaches, we employ a framework for

anchor methods previously used in Kopf et al. (2013) where the anchor class deter-

mines characteristics of the anchor methods, such as a predefined anchor length, and

the anchor selection strategy guides the decision which items are used as anchor

items. The combination of an anchor class together with an anchor selection strategy

is then termed an anchor method. Different anchor classes are now briefly reviewed.

Anchor Classes

The constant anchor class consists of an anchor with a predefined, constant length.

Usually, it is claimed that a constant anchor of four items assures sufficient power

(cf., e.g., Shih & Wang, 2009; Wang et al., 2012). An anchor selection strategy is

needed to guide the decision which items are used as anchor items. The all-other

anchor class uses all items except for the currently studied item as anchor and the

equal-mean difficulty anchor class uses all items as anchor (see, e.g., Wang, 2004,

and the references therein). These latter two anchor classes do not require an addi-

tional anchor selection strategy. Furthermore, iterative anchor classes build the

anchor in an iterative manner. The iterative backward class (used, e.g., by Candell &

Drasgow, 1988; Drasgow, 1987; Hidalgo-Montesinos & Lopez-Pina, 2002) starts

with all other items as anchor and excludes DIF items from the anchor, whereas the

iterative forward anchor class starts with a single anchor item and then, iteratively,

includes items in the anchor (Kopf et al., 2013). The latter anchor class also requires

an explicit anchor selection strategy.

Wang (2004), Wang and Yeh (2003), and González-Betanzos and Abad (2012)

compared the all-other and the equal-mean difficulty anchor class to different ver-

sions of the constant anchor class regarding various IRT models. All methods from

the constant anchor class were built using prior knowledge about the set of DIF-free

items to locate the anchor items. Methods from the constant anchor class yielded

well-controlled false alarm rates, whereas methods from the all-other and the equal-

mean difficulty anchor class displayed seriously inflated false alarm rates when the

direction of DIF was unbalanced (i.e., the DIF effects did not cancel out between

groups and one group was favored in the test) and it is doubtful whether the situation
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of balanced DIF (i.e., no group has an advantage in the test) is met in practice (Wang

et al., 2012; Wang & Yeh, 2003). This is of utmost importance for practical testing

situations, since items truly free of DIF can display artificial DIF and may be elimi-

nated by mistake.

As a result, all three studies showed that the direction of DIF has a major impact

on the results of the DIF analysis for the all-other and the equal-mean difficulty

anchor class as opposed to the constant anchor class based on DIF-free anchor

items. The constant anchor class is in principle able to yield appropriate results for

the DIF analysis even if DIF is unbalanced. However, since Wang and Yeh (2003),

Wang (2004), and González-Betanzos and Abad (2012) used prior knowledge of the

set of DIF-free items to select the constant anchor items, no information is yet avail-

able on how well anchor selection strategies without prior knowledge perform and

‘‘[f]urther research is needed to investigate how to locate anchor items correctly and

efficiently’’ (Wang & Yeh, 2003, p. 496).

Another anchor class was recently suggested by Kopf et al. (2013). Instead of a

predefined anchor length, the iterative forward anchor class builds the anchor in a

step-by-step procedure. First, one anchor item is used for the initial DIF test. As long

as the current anchor length is shorter than the number of items currently not display-

ing statistically significant DIF (termed the presumed DIF-free items in the follow-

ing), one item is added to the current anchor and DIF analysis is conducted using the

new current anchor. The sequence which item is first included and which items are

added to the anchor is determined by an anchor selection strategy. In a simulation

study, the iterative forward anchor class and the constant anchor class were com-

bined with two different anchor selection strategies and compared to the all-other

class and the iterative backward anchor class. The iterative forward anchor class

was found to be superior since it yielded high hit rates and, simultaneously, low false

alarm rates for sufficiently large sample sizes in any studied condition of balanced or

unbalanced DIF if the number of significant threshold anchor selection strategy (see

section ‘‘Anchor Selection Strategies’’) was employed (Kopf et al., 2013).

To assess the appropriateness of the anchor selection strategies in this article, we

combine them with the constant four anchor class and the iterative forward anchor

class. The reason for this is that both classes require an anchor selection strategy and

it is claimed in the literature that they have a high power when the anchor selection

works adequately (cf., e.g., Shih & Wang, 2009, for an literature overview regarding

the constant four anchor class; Kopf et al., 2013, for the iterative forward anchor

class). Furthermore, both classes are structurally different. The constant four anchor

class always includes four anchor items and, thus, leads to a short anchor, whereas

the iterative forward class allows for a longer anchor that is built in an iterative way.

For a comparison with an anchor class that does not rely on an explicit anchor selec-

tion strategy, the all-other anchor class is included in the simulation as well, even

though it can display seriously inflated false alarm rates when the direction of DIF is

unbalanced (González-Betanzos & Abad, 2012; Kopf et al., 2013; Wang, 2004;

Wang & Yeh, 2003).
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Anchor Selection Strategies

Anchor selection strategies determine a ranking order of candidate anchor items. We

focus on those strategies that are based on preliminary item analysis since these

strategies are most common in practice. This approach has been referred to as the

DIF-free-then-DIF strategy by Wang et al. (2012) because auxiliary DIF tests are

conducted to locate (ideally DIF-free) anchor items before the final DIF tests are car-

ried out.

Auxiliary DIF Tests. For each item j ¼ 1; . . . ; k; auxiliary DIF tests are conducted using

Steps 1 to 3 in section ‘‘Item-Wise Parameter Differences.’’ Typically, there are two

alternative ways to conduct auxiliary DIF tests, which will be referred to as tests of

Type (I) or of Type (II) in the following:

(I) The auxiliary DIF tests of Type (I) are conducted using all-other items

1; . . . ; kf g n j as anchor. This yields one observed test statistic

tj 1; . . . ; kf g n jð Þ for every currently studied item j.

(II) The auxiliary DIF tests of Type (II) are conducted using every other item

‘ 6¼ j as constant single anchor. This results in ðk � 1Þ test statistics per

item tjðf‘gÞ with the corresponding p-values pjðf‘gÞ: Anchor selection

strategies decide how all tests are aggregated to obtain the ranking order

of candidate anchor items. Note that the test statistics and p-values display

the following symmetry properties jtj ‘f gð Þj ¼ t‘ jf gð Þj j and

pj ‘f gð Þ ¼ p‘ jf gð Þ since the constant scale shift of one single anchor item

is reflected in the test statistic of the item currently investigated and vice

versa. Even though the p-values represent a monotone decreasing trans-

formation of the absolute test statistics, the aggregations of both measures

may yield different ranking orders.

Rank-Based Approach. Anchor selection strategies use the information from the aux-

iliary DIF tests of Type (I) or of Type (II) to define a criterion cj for each item j that

ideally reflects how strong the item is affected by DIF. All anchor selection strategies

that are regarded in this article follow a rank-based approach that was first suggested

together with auxiliary tests of Type (I) by Woods (2009). The ranking order of can-

didate anchor items is defined by the ranks of the criterion values rank (cjÞ. The item

displaying the lowest rank is the first candidate anchor item, whereas the item corre-

sponding to the highest rank is the last candidate anchor item.

The ranking order resulting from the anchor selection strategies is used within the

anchor classes to conduct the final DIF analysis. For the constant four anchor class,

the items with the lowest four ranks are selected as the final anchor set Afinal: For

the iterative forward anchor class, items are selected into the anchor as long as the

anchor is shorter than the number of currently presumed DIF-free items. In this

anchor class, anchor items are selected in a step-by-step procedure following the
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ranking order that results from the anchor selection. When the stopping criterion is

reached, the final anchor set Afinal is found.

Final DIF Analysis. The final DIF tests are carried out using the anchor set Afinal. Since

k � 1 parameters are free in the estimation, only k � 1 estimated standard errors

result (Molenaar, 1995), the kth standard error is determined by the restriction and,

hence, only k � 1 tests can be carried out. To overcome the problem that the classifi-

cation of an item as a DIF or a DIF-free item is intended for each of the k items, we

classify the first final anchor item with the lowest rank to be DIF-free—a decision

that may be false if even the item with the lowest rank does indeed have DIF, but in

this case this would be noticeable in the final test results.

The decision to classify the first anchor item as DIF-free is applied only to those

methods that rely on an anchor selection strategy. In the simulation study, the all-

other method will be included as well, for which the anchor varies for each test con-

ducted and we report k test results.

Note that classifying the first anchor item as DIF-free is by no means as drastic as

testing only those items for DIF that have not been selected as anchor, as was done,

for example, by Woods (2009), or as choosing the anchor items only from the set of

items that are known to be DIF-free in a simulation, as was done by Wang and Yeh

(2003) and Wang (2004), but cannot be done in any real study where the true DIF

and DIF-free items are unknown.

In the following, first, the selection strategies that are built on auxiliary DIF tests

of Type (I) are reviewed. Second, the selection strategies that rely on auxiliary DIF

tests of Type (II) are discussed. Third, three new selection strategies are suggested

that also rely on auxiliary DIF tests of Type (II). A summary of all anchor selection

strategies discussed in this article is provided in Figure 1 and in Table 1. Note that the

DIF tests mentioned in the next paragraphs are only used as preliminary steps to

assess the criterion values that determine the ranking order of candidate anchor items.

All-Other Selection

The all-other selection strategy (AO-selection) was proposed by Woods (2009) as

what she called the rank-based strategy. For this strategy a predefined number of

anchor items is chosen according to the lowest ranks of the absolute DIF test statis-

tics resulting from the auxiliary DIF tests of Type (I):

cAO
j ¼ tj 1; . . . ; kf g n jð Þ

�� ��: ð5Þ

(Note that, originally, Woods, 2009, suggested to use the ratios of the test statistics

and the degrees of freedom, that may vary across items if the items display a differ-

ent number of response categories. However, this is not discussed here since the

responses are always dichotomous in the Rasch model that we focus on here.)

The constant anchor method of 20% of the items based on the AO-selection was

found to be superior compared to the all-other anchor method in the majority of the

30 Educational and Psychological Measurement 75(1)



an
ch

or
cl

as
s?

em
pi

ri
ca

l
se

le
ct

io
n?

al
l-
ot

he
r

no

al
l-o

th
er

em
pi

ri
ca

l
se

le
ct

io
n?

pe
rf

ec
t

se
le

ct
io

n
(b

en
ch

m
ar

k)

note
st

ty
pe

?

cr
it
er

io
n?

th
re

sh
ol

d?
M

P
T

-s
el

ec
ti

on

ye
s

–
T

M
P

-s
el

ec
ti

on
no

m
ea

n
p-

va
lu

es
–

M
P

th
re

sh
ol

d?
M

T
T

-s
el

ec
ti

on

ye
s

–
T

M
T

-s
el

ec
ti

on
no

m
ea

n
te

st
st

at
is

ti
cs

–
M

T

th
re

sh
ol

d?
(=

si
gn

ifi
-

ca
nc

e
le

ve
l)

N
ST

-s
el

ec
ti

on
ye

s
–

T

nu
m

be
r

of
si
gn

.
–

N
S

Ty
pe

(II
)

sin
gle

-a
nc

ho
rpu

ri
fic

at
io

n?

A
O

P
se

le
ct

io
n

ye
s

–
P

A
O

se
le

ct
io

n
no

Ty
pe

(I)

all
-o
th

er
–
A
O

ye
s

co
ns

ta
nt

4,

fo
rw

ar
d

F
ig

u
re

1
.

Su
m

m
ar

y
o
f
th

e
ch

ar
ac

te
ri

st
ic

s
o
f
th

e
an

ch
o
r

se
le

ct
io

n
st

ra
te

gi
es

th
at

ar
e

in
ve

st
ig

at
ed

in
th

is
ar

ti
cl

e
.

31



simulated settings and compared to the constant single anchor method based on the

AO-selection (Woods, 2009). Nevertheless, the author claimed that ‘‘[a] study com-

paring the strategy proposed here to the various other suggestions for empirically

selecting anchors is needed’’ (Woods, 2009, p. 53).

All-Other Purified Selection

Recently, Wang et al. (2012) suggested a modification (here referred to as AOP-

selection for all-other purified selection) of the all-other anchor selection strategy

proposed by Woods (2009) by adding a scale purification procedure. First, auxiliary

DIF tests of Type (I) are carried out. Similar to the iterative procedures (used, e.g.,

by Candell & Drasgow, 1988; Drasgow, 1987; Hidalgo-Montesinos & Lopez-Pina,

2002), those items displaying DIF are excluded from the set of anchor items and DIF

tests are conducted using the new anchor set. These steps are repeated until two suc-

cessive steps reach the same results. In the next step, DIF tests are conducted using

the purified anchor Apurified: Here, the first anchor item obtains no DIF test statistic,

Table 1. A Short Summary of the Anchor Selection Strategies That Are Investigated in This
Article.

Selection Description

AO The items are ranked according to the lowest absolute test statistics
tj 1; . . . ; kf g n jð Þ
�� ��:

AOP Beginning with all other items as anchor, DIF items are iteratively excluded
from the anchor until the purified anchor set Apurified is reached; the items

are ranked according to the lowest absolute test statistics tj Apurified

� ��� ��:
NST The items are ranked according to the lowest number of significant test

statistics tjðf‘gÞ:
MT The items are ranked according to the lowest mean absolute test statistics

1
k�1

P
‘2 1;...;kf gnj

tjðf‘gÞ
�� ��:

MP The items are ranked according to the largest mean p-values
1

k�1

P
‘2 1;...;kf gnj

pjðf‘gÞ:

MTT The items are ranked according to the smallest number of test statistics
jtjðf‘gÞj exceeding the 0:5 � kd eÞð -th ordered absolute mean test statistic

1
k�1

P
‘2 1;...;kf gnj

tj ‘f gð Þ
�����

�����:
MPT The items are ranked according to the largest number of p-values pjðf‘gÞ

exceeding the 0:5 � kd eÞð -th ordered mean p-value 1
k�1

P
‘2 1;...;kf gnj

pj ‘f gð Þ:

perfect The perfect ranking consists of randomly permuted DIF-free items followed
by randomly permuted DIF items.
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since only k � 1 test statistics are available, and is omitted in the ranking of candi-

date anchor items. The criterion values of the remaining k � 1 items are defined by

cAOP
j ¼ tj Apurified

� ��� ��: ð6Þ

In a simulation study, Wang et al. (2012) found the modified AOP-selection to be

superior to the AO-selection since both methods displayed comparable results when

DIF was balanced but the AOP-selection yielded more often a DIF-free anchor set

when DIF was unbalanced. Still, there were conditions where the proportions of repli-

cations yielding a DIF-free anchor set were far away from 100%, for example, 13%

for the AO- and 17% for the AOP-selection when the sample size was small (i.e., 250

observations in each group in their most difficult scenarios).

Number of Significant Threshold Selection

An anchor selection strategy that is a simplified version of the proposition of Wang

(2004) is called number of significant threshold (NST) selection strategy here. Now,

auxiliary DIF tests of Type (II) are carried out and the number of significant DIF tests

defines the criterion values

cNST
j ¼

X
‘2 1;...;kf gnj

I pj ‘f gð Þ � a
� �

ð7Þ

that is written as the number of p-values that do not exceed the threshold a, for exam-

ple, a = .05. I denotes the indicator function. The item displaying the least number of

significant DIF tests is chosen as the first anchor item. If more than one item displays

the same number of significant results, one of the corresponding items is selected

randomly.

Originally, Wang (2004) suggested the next candidate (NC) modification: The

item that was selected by the NST-selection strategy functions as the current single

anchor item and DIF tests are again carried out (see Wang, 2004). The next candi-

date is then included in the anchor if it displays ‘‘the least magnitude’’ (Wang, 2004,

p. 250) of (non-significant) DIF and the steps are repeated until either the predefined

anchor length is reached or the candidate item displays significant DIF. Since Kopf

et al. (2013) found the NST-selection superior to the original NC-strategy, only the

former is investigated in this article.

Mean Test Statistic Selection

To reach an ideally pure set of anchor items, Shih and Wang (2009) introduced the

following anchor selection procedure: Every item is assigned the mean absolute DIF

test statistic from the auxiliary DIF tests of Type (II)
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cMT
j ¼ 1

k � 1

X
‘2 1;...;kf gnj

tjðf‘gÞ
�� ��: ð8Þ

We abbreviate this method MT-selection (for mean test statistic selection). Shih and

Wang (2009) found high rates of correctly locating one or four DIF-free anchor items

when the sample size was high (i.e., 1,500 observations in each group in their most

difficult scenarios).

Mean p-Value Selection

In addition to the existing approaches described above, we propose three new anchor

selection strategies. First, we suggest an idea similar to the MT-strategy of Shih and

Wang (2009) (see Equation 8) that we abbreviate MP-strategy (for mean p-value

selection). Instead of the lowest mean absolute DIF test statistic, items are here cho-

sen that display the highest mean p-value from the auxiliary tests of Type (II) and,

for easier comparability with the previous methods, the criterion is defined by nega-

tive mean p-values

cMP
j ¼ � 1

k � 1

X
‘2 1;...;kf gnj

pj ‘f gð Þ: ð9Þ

The next two suggestions were inspired by the threshold approach of the NST-selec-

tion (see Equation 7) where those items are chosen as anchor items that display the

least number of significant DIF test results. Kopf et al. (2013) showed that this strat-

egy was superior to the AO-selection when the DIF direction was unbalanced. The

major drawback using the NST-selection was that it was strongly affected by the

sample size. The reason for this is that the selection is based on the decisions of sta-

tistical significance tests which are strongly influenced by the sample size. The next

two newly suggested anchor selection strategies rely on a different criterion and both

methods assume—similar to the MT- and the MP-selection—that the majority of

items is DIF-free, an assumption that is often found in the construction of anchor or

DIF methods (see, e.g., Magis & De Boeck, 2011; Shih & Wang, 2009).

Mean Test Statistic Threshold Selection

Our second suggestion is the following: For every item the absolute mean of the test

statistics resulting from the auxiliary tests of Type (II) is calculated and the resulting

values are ordered. The threshold for the MTT-selection (for mean test statistic

threshold) is the 0:5 � kd eÞð -th ordered value, which is indicated by the index in par-

enthesis, for an even number of items or the next larger whole number in case of an

odd number of items (indicated by the ceiling function de). The number of absolute

test statistics exceeding this threshold determines the criterion value:
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cMTT
j ¼

X
‘2 1;...;kf gnj

I tj ‘f gð Þ
�� ��. 1

k � 1

X
‘2 1;...;kf gnj

tj ‘f gð Þ

������
������

0
@

1
A
d0:5 � keð Þ

8><
>:

9>=
>;: ð10Þ

The items corresponding to the lowest number of test statistics above the threshold

are chosen as anchor items. Here, we follow an argumentation similar to the argu-

mentation of Shih and Wang (2009). When the anchor item is DIF-free, which is

assumed to be the case for the majority of the items, the DIF tests work appropri-

ately. On the other hand, if a DIF item functions as the anchor, those items with the

same direction of DIF display less DIF (or even no DIF in the most indistinct situa-

tion when the magnitude of DIF is approximately the same for the respective items),

those items with the opposite direction of DIF display on average their original mag-

nitude of DIF plus the artificial magnitude of DIF of the anchor item and the items

truly free of DIF display on average the artificial DIF magnitude of the anchor item.

Thus, those DIF tests where the anchor is truly DIF-free should display the least

absolute mean test statistics. Since the majority of items—that is, at least 50% of all

k items—is assumed to be DIF-free, the d0:5 � keð Þ-th mean test statistic should cor-

respond to a DIF-free item. In order to use the information of every single test statis-

tic as opposed to the mere mean values, we use the indicator function to provide the

information whether the single test statistics exceed the d0:5 � keð Þ-th ordered abso-

lute mean test statistic. Furthermore, in case of unbalanced DIF, the absolute mean

test statistics may be very similar, when the DIF proportion is close to 0.5. The bin-

ary decisions are assumed to yield more accurate classifications of the truly DIF-free

items. The selection strategy is designed for all directions of DIF and intended for all

sample sizes. In contrast to the MT-selection proposed by Shih and Wang (2009), we

use the absolute mean test statistics instead of the mean absolute test statistics. The

reason for this is that all item parameters vary slightly between reference and focal

group due to sampling fluctuation. These differences are expected to cancel out when

the absolute values are taken after the mean statistic and, hence, should yield a better

threshold.

Mean p-Value Threshold Selection

In our third suggestion, similar to the MTT-selection in Equation 10, the threshold of

the MPT-selection (for mean p-value threshold) relies again on auxiliary DIF tests of

Type (II). Now, the d0:5 � keð Þ-th ordered (from large to small) value of the mean of

the resulting p-values pjðf‘gÞ is used as the threshold. The criterion value is defined

by the number of tests per item that yield p-values exceeding the threshold p-value

cMPT
j ¼ �

X
‘2 1;...;kf gnj

I pj ‘f gð Þ. 1

k � 1

X
‘2 1;...;kf gnj

pj ‘f gð Þ

0
@

1
A
d0:5 � keð Þ

8><
>:

9>=
>;: ð11Þ
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In summary, the newly suggested methods (see again Table 1 and Figure 1) are

developed for balanced and unbalanced DIF situations and should outperform not

only the AO-selection that initiates with the potentially biased DIF test results using

the all-other method but also the AOP-selection that may not be able to exclude all

DIF items from the anchor set when the proportion of DIF items is high (Wang

et al., 2012). In comparison with the NST-selection, which uses the binary decisions

of the significance tests (Woods, 2009), the newly suggested methods should be less

affected by sample size. While the MT- and the MP-selection use mere mean values,

the MPT- and the MTT-selection use all individual test results and are, therefore,

expected to better distinguish between DIF and DIF-free anchor items. By employing

a threshold, the new methods should select those items as anchor that display little

artificial DIF which can be caused by contamination (see, e.g., Finch, 2005; Woods,

2009) or by random sampling fluctuation (Kopf et al., 2013).

Simulation Study

To evaluate the performance of the newly suggested anchor selection strategies, we

conducted an extensive simulation study in the free R system for statistical comput-

ing (R Development Core Team, 2013). Parts of the simulation design were inspired

by the settings used by Wang et al. (2012). Each setting from the simulation study is

replicated 1,000 times to ensure reliable results.

Data Generating Processes

One replication corresponds to a data set that contains the information of the test

including the item responses, the group membership and the ability variable.

Test Characteristics. Here, we consider a test length of k = 40 items.

IRT Model. The responses follow the Rasch model

P Uij ¼ 1 uij ;bj

� �
¼

exp ui � bj

� �
1 + exp ui � bj

� � ; ð12Þ

with the difficulty parameters b = (22.522, 21.902, 21.351, 21.092, 20.234,

20.317, 0.037, 0.268, 20.571, 0.317, 0.295, 0.778, 1.514, 1.744, 1.951, 21.152,

20.526, 1.104, 0.961, 1.314, 22.198, 21.621, 20.761, 21.179, 20.610, 20.291,

0.067, 0.706, 22.713, 0.213, 0.116, 0.273, 0.840, 0.745, 1.485, 21.208, 0.189, 0.345,

0.962, 1.592)T used by Wang et al. (2012). The first 10%, 25%, or 40% of the items

are simulated as the DIF items (see section DIF Proportion and DIF Direction below).

Ability Distribution. In the following simulation study, ability differences are simulated

since this case is often found to be more challenging for the methods than a situation
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where no ability differences are present (see, e.g., Penfield, 2001). The ability para-

meters ui follow a standard normal distribution for the reference group uref ;N 0; 1ð Þ
and a normal distribution with a lower mean for the focal group ufoc;N �1; 1ð Þ simi-

lar to Wang et al. (2012).

DIF Magnitude. For those items j affected by DIF, the magnitude of DIF as simulated

is set to the constant value of DDIF
j ¼ b

ref
j � b

foc
j ¼ 0:4: This magnitude has previ-

ously been used by Rogers and Swaminathan (1993).

Manipulated Variables

In addition to the selection strategies investigated by Wang et al. (2012), namely, the

AO- and the AOP-selection, five other empirical anchor selection strategies, the per-

fect selection of DIF-free items that serves as a benchmark method and the all-other

method without an explicit anchor selection strategy are included (for a summary see

again Table 1 and Figure 1).

Sample Size. The sample size is defined by the following pairs of reference and focal

group sizes: nref ; nfoc
� �

2 {(250, 250), (500, 500), (750, 750), (1,000, 1,000), (1,250,

1,250), (1,500, 1,500)}.

DIF Proportion and DIF Direction. The proportion of simulated DIF items is varied

from 0% DIF items—representing the null hypothesis of no DIF—to 10%, 25%, or

40% DIF items (such high proportions of DIF items may actually occur in practical

research; Allalouf, Hambleton, & Sireci, 1999, for example, found 45% DIF items in

their study, and Shih & Wang, 2009, listed further examples of 40% or more DIF

items).

The sign of DDIF
j is set consistent with the intended direction of DIF. The direction

of DIF is either balanced or unbalanced. In case of balanced DIF, the DIF items either

favor the focal or the reference group, and on average, no group has an advantage in

the test. In case of unbalanced DIF, all items favor the reference group.

Anchor Methods
Anchor classes. All anchor selection strategies are combined with two anchor

classes, the constant four anchor class (abbreviated constant4) and the iterative for-

ward class (abbreviated forward). As an example of an anchor class without an

explicit anchor selection strategy the all-other class (abbreviated all-other) is

included as well.

Anchor selections. Eight different anchor selection strategies (for a brief summary

see again Table 1 and Figure 1) are compared across the simulated settings: The AO-,

AOP-, NST-, and MT-selection as well as the newly suggested MP-, MTT-, and MPT-

selection and the perfect-selection that serves as the benchmark condition: The perfect

selection for the four anchor class includes four randomly chosen DIF-free items. For
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the iterative forward anchor class, a random ranking order that includes the DIF-free

items first, followed by the DIF items is handed to the procedure. The remaining steps

of the iterative procedure are carried out as usual. Thus, for the ‘‘perfect’’ forward

method, it may happen that DIF items occur in the anchor because the length of the

iteratively selected anchor may exceed the length of the sequence of DIF-free items,

which is not the case for the perfect four anchor method.

Anchor methods. Seventeen anchor methods result from the combination of the

eight anchor selection strategies with the two anchor classes together with the all-

other method. Their names (constant4-AO, constant4-AOP, constant4-NST, con-

stant4-MT, constant4-MP, constant4-MTT, constant4-MPT, constant4-perfect, for-

ward-AO, forward-AOP, forward-NST, forward-MT, forward-MP, forward-MTT,

forward-MPT, forward-perfect, all-other) include the anchor class (all-other, con-

stant4 or forward) together with the abbreviation of the anchor selection (in cases

where the latter is necessary).

Outcome Variables

In order to evaluate whether the anchor selection strategies locate anchor items that

allow to correctly classify DIF and DIF-free items, the following outcome variables

are recorded in each of the 1,000 replications of one simulated setting:

False Alarm Rate. For a single replication the false alarm rate is defined as the propor-

tion of DIF-free items that are (erroneously) diagnosed with DIF in the final DIF test.

The estimated false alarm rate for each simulated setting is computed as the mean

over all 1,000 replications and represents the type one error rate of the final DIF test.

Hit Rate. The hit rate for a single replication is computed as the proportion of DIF

items that are (correctly) diagnosed with DIF in the final DIF test. Analogously, the

estimated hit rate is again computed as the mean over all 1,000 replications and cor-

responds to the statistical power of the final DIF test.

Average Mean Bias. The recovery of the item parameter differences between the refer-

ence and the focal groups is evaluated by means of the average mean bias. For a sin-

gle replication the mean bias is calculated as the mean of the differences D̂
DIF

j � DDIF
j

over all j items that are tested for DIF. Here, D̂
DIF

j ¼ b̂
ref
j � b̂

foc
j denotes the estimated

DIF-effect measured as the difference between the estimated item parameter of the

reference and of the focal group, whereas DDIF
j represents the simulated DIF-effect

that is either 0.4, if item j is a DIF item, or 0 otherwise. The average mean bias is

computed as the mean over all 1000 replications. This measure identifies how well

effect sizes, such as Raju’s area (Raju, 1988), are expected to cover the true DIF

effects.
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Results

In the following, we present the results of our simulation study. First, the selection of

a short anchor of four anchor items is regarded in the next section. Then, the selec-

tion of a longer anchor by means of the iterative forward anchor class is addressed.

Finally, the best performing anchor selection strategies are compared.

Anchor Selection for the Constant Four Anchor Class

In this section, the anchor selection strategies combined with the constant anchor

class are regarded. Consequently, four anchor items were selected by the respective

strategy, and the results of the final DIF tests are discussed and compared to the all-

other method.

Figure 2 depicts the false alarm rates under the null hypothesis of no DIF. Under

the no DIF condition, all items were truly DIF-free and only the false alarm rate was

calculated. All methods based on empirical anchor selection strategies remained

below the significance level of 5% and were even overconservative. This fact was

also found by Kopf et al. (2013) and is not surprising, since the selection strategies

were designed to select anchor items in a way such that the other items display little

DIF. The all-other method and the benchmark constant4-perfect method (that artifi-

cially selected items from the set of DIF-free items) yielded false alarm rates close to

the significance level.

Figure 3 contains the results of the false alarm rates (top row) and the hit rates

(bottom row) in case of 10%, 25%, or 40% DIF items (from left to right) that did not

systematically favor one group. In this balanced condition, again, the empirical

anchor selection strategies were overconservative and almost all methods displayed

false alarm rates below the 5% level in the observed range of the sample size. The

only exception was the method relying on the NST-selection with the maximum

observed false alarm rate of 0.074, which occurred at the sample size of 1,500 obser-

vations in each group and 40% DIF items. This method also displayed a lower hit

rate compared to the other anchor selection strategies in regions of medium to large

sample sizes. Surprisingly, the perfect anchor selection did not display a substantially

higher hit rate compared to the methods based on empirical anchor selection strate-

gies. In contrast to this, the all-other method (not relying on an explicit anchor selec-

tion) showed a higher hit rate. This reflects the fact that the all-other method uses all

but the studied item as anchor and allows for a higher power due to a longer anchor.

In summary, four anchor items were selected appropriately in the balanced condition

by all selection strategies except for the NST-selection strategy in regions of large

sample sizes.

In the unbalanced condition where all DIF items systematically favored the refer-

ence group (see Figure 41), all previously suggested methods (the constant4-AO, the

constant4-AOP, the constant4-NST, the constant4-MT, and the all-other method) dis-

played several weaknesses: In case of a moderate DIF proportion of 25%, the false

alarm rates of the constant4-AO, the constant4-NST, and the all-other method, that
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was—in accordance with previous results (González-Betanzos & Abad, 2012; Kopf

et al., 2013; Wang, 2004; Wang & Yeh, 2003)—inadvisable in case of unbalanced

DIF, showed inflated false alarm rates. The hit rates of all previously suggested meth-

ods were lower compared to those of the new suggestions (the constant4-MP, the

constant4-MTT, and the constant4-MPT method) when 25% DIF items were present.

In case of 40% DIF items, the false alarm rates of the previously suggested methods

were strongly inflated and even (at least partly) increasing with the sample size,

whereas the new suggestions displayed false alarm rates decreasing with the sample

size as well as higher hit rates and outperformed the previous suggestions. In case of

40% DIF items, the MPT-selection was the best performing method to select four

anchor items empirically.

The bias in the estimation of the item parameter differences is illustrated in Figure

5 for the balanced condition (top row) and for the unbalanced condition (bottom
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row). In the balanced condition, no method showed considerable bias except for the

constant anchor found by the NST-selection and by the AOP-selection when the DIF

proportion was high and the sample sizes were small. In all unbalanced conditions,

the superiority of the new anchor selection strategies (the MP-, the MTT-, and the

MPT-selection) is visible at first sight, since these methods showed a lower and more

rapidly decreasing bias compared to the previously suggested selection strategies and

compared to the all-other method.

In summary, the MPT-selection outperformed the other suggestions in selecting

four anchor items by yielding a low false alarm rate while simultaneously achieving

a high hit rate in any regarded condition. The newly suggested MP-selection yielded

clearly better results than the MT-selection even though both methods were structu-

rally very similar and the MPT-selection slightly outperformed the MTT-selection

when the DIF proportion was high. For this reason, an anchor selection based on

mean p-values instead of mean test statistics is advisable for selecting an anchor of

constant length four in our simulated settings. As expected, the methods based on

threshold comparisons (MPT- and MTT-selection) improved the final DIF test results

in our study compared to the corresponding strategies based on mere mean values

(MP- and MT-selection).

Anchor Selection for the Iterative Forward Anchor Class

In this section, we investigate the combination of the anchor selection strategies with

the iterative forward anchor class, which was designed to specify a longer anchor

(Kopf et al., 2013).

Similar to that in section ‘‘Anchor Selection for the Constant Four Anchor Class,’’

Figure 6 includes the false alarm rates under the null hypothesis of no DIF. Here, all

empirical anchor selection strategies, the perfect selection, and also the all-other

method yielded similar false alarm rates near the significance level of 5%. The itera-

tive forward anchor class allowed for a longer anchor, while the constant four anchor

class consisted of a short anchor what led to overconservative test results in the previ-

ous section (see again Figure 2).

Figure 7 includes the results for the false alarm rates (top row) and the hit rates

(bottom row) in the balanced condition (i.e., the items affected by DIF did not sys-

tematically favor one group). In contrast to the results of the previous section where

the all-other method was superior in case of balanced DIF (see again Figure 3), there

was neither a visible difference in the false alarm rates nor in the hit rates for any of

the investigated methods. Again, all empirical selection strategies yielded test results

similar to the iterative method based on the perfect selection. Hence, all empirical

selection strategies were advisable and the iterative forward anchor class was robust

against the anchor selection strategy employed in this case. Furthermore, the iterative

forward anchor class (see Figure 7) allowed for a higher hit rate compared to the con-

stant four anchor class (see Figure 3).
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Figure 82 includes the results for the false alarm rates (top row) and the hit rates

(bottom row) in the unbalanced condition (i.e., the items affected by DIF systemati-

cally favored the reference group). The differences in this condition were smaller and

the results of the final DIF tests varied notably with the anchor selection strategies

only for 40% unbalanced DIF items. This condition will now be regarded in detail.

Here, the previously suggested methods (the forward-AO, the forward-AOP, the for-

ward-NST, the forward-MT, and the all-other method) were outperformed by the new

suggestions (the forward-MP, the forward-MTT, and the forward-MPT method) that

showed lower false alarm rates and simultaneously reached higher hit rates. Except

for the perfect forward method, the newly suggested forward-MTT method yielded

the lowest false alarm rate together with the highest hit rate.

The bias is indicated in Figure 9. In the balanced condition (top row), only the

AO- and the AOP-selection relying on DIF-tests using all other items as anchor

sample size (reference, focal)
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yielded a slightly higher bias when the sample sizes were low and the DIF-proportion

was high. In case of 10% or 25% unbalanced DIF items (bottom row), the AOP-

selection yielded a slightly lower bias when the sample sizes were small, followed by

the new suggestions. Still, large differences occurred only in case of 40% unbalanced

DIF items, where the new suggestions—especially the MTT-selection—performed

best. Note, however, that the benchmark method based on the perfect selection per-

formed far worse here compared to the previous section, since it was possible that it

included DIF items (see again section ‘‘Manipulated Variables’’).

In summary, the iterative forward anchor class was less affected by the anchor

selection strategy compared to the constant four anchor class. Furthermore, it

allowed for a higher hit rate, but at the expense of a higher false alarm rate. Even

though the AOP-selection had a slight advantage in case of 10% or 25% unbalanced

DIF items when small sample sizes were present, the iterative anchor class is ideally

combined with the newly suggested MTT-selection under similar conditions, because

this combination allowed for a low bias and a low false alarm rate together with a

high hit rate in any regarded condition. The forward-MTT method performed well

also in the extreme setting of 40% unbalanced DIF items, where the differences

between the methods were rather large. Compared to the selection of an anchor of

constant length four, where the MPT-selection based on p-values reached the best

final DIF test results, for the longer, iteratively selected anchor the MTT-selection

that is built on mean test statistics is advisable in case of a high number of DIF items.

A detailed explanation for this finding will be given in the next section. Again, the

methods based on threshold comparisons (MPT- and MTT-selection) outperformed

the corresponding strategies based on mere mean values (MP- and MT-selection).

Comparison of the Mean Test Statistic and Mean p-Value Threshold Selection

To explain the fact that the MPT-selection yielded better results when it was com-

bined with the constant four anchor class, whereas the MTT-selection performed

better combined with the iterative forward anchor class, the ranking order of candi-

date anchor items is now regarded in detail for one balanced and one unbalanced set-

ting (with 40% DIF items and 1,000 observations in each group). Figure 10 contains

the proportions of DIF items in the ranking order of candidate anchor items. In the

regarded setting, 24 items were DIF-free and, ideally, the 24 lowest ranks (from left

to the vertical line) should display low proportions of DIF items.

In the balanced condition (Figure 10, top panel), the first items of the sequence

of anchor candidates—that is, the items to the left of the vertical line—displayed

low proportions of DIF items over the simulation runs for both the MPT-selection

(black bars) and the MTT-selection (gray bars). In contrast to this, the items that

were assigned the highest ranks—that is, the items to the right of the vertical

line—displayed large proportions of DIF items. Thus, both anchor selection strate-

gies yielded appropriate ranking orders that clearly separated DIF and DIF-free

items: The first candidates displayed low proportions of DIF items, whereas the
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last candidates displayed large proportions of DIF items as intended for all ranks

above 24.

In the unbalanced condition (Figure 10, bottom panel), the separation of candi-

dates with low proportions of DIF items for the first ranks and high proportions for

the last ranks was harder for both methods. Now the first anchor candidates displayed

higher proportions of DIF items. Generally, the MTT-selection (gray) yielded lower

DIF proportions for items up to the vertical line compared to the MPT-selection

(black) and was, in consequence, better suited to locate a longer anchor. However,

when an anchor of constant length four was intended, only the first four candidates

were included in the anchor. The first four ranks selected by the MPT-selection dis-

played lower proportions of DIF items compared to the MTT-selection (see very left

of Figure 10, bottom panel). As a result, the MPT-selection was better suited to locate

four anchor items.

Now the question addressed is which of the methods—the constant4-MPT or the

forward-MTT method—can be considered as overall superior. Therefore, we review

the results from section ‘‘Anchor Selection for the Constant Four Anchor Class’’ and

‘‘Anchor Selection for the Iterative Forward Anchor Class’’ where 40% DIF items

were present together with information about the variation of the false alarm and the

hit rate (not shown).

In the balanced and also in the unbalanced condition, the constant4-MPT method

led to a lower false alarm rate compared to the forward-MTT method. The false alarm

rate also fluctuated less when the sample sizes were large. Consequently, the con-

stant4-MPT method should be preferred with respect to the false alarm rate. In con-

trast to this, the forward-MTT method achieved a higher and—for large sample sizes

simultaneously less fluctuating—hit rate and was, accordingly, superior regarding the

hit rate.

In summary, the first anchor candidates were more likely found from the set of

DIF-free items by the MPT-selection, whereas the MTT-selection was better suited

for longer anchors. However, first results show that neither the constant4-MPT nor

the forward-MTT method was clearly superior in the 40% DIF items setting regard-

ing a strictly smaller and less fluctuating false alarm rate and a higher and less fluctu-

ating hit rate.

Discussion and Practical Recommendations

In this article, we introduced three new anchor selection strategies and compared

them to existing methods that do not rely on any prior knowledge of DIF-free items.

Moreover, we introduced a straightforward notation of the anchor selection strategies

to facilitate the implementation and the usage of the newly suggested anchor selection

strategies. An extensive simulation study was conducted to evaluate the performance

of the anchor selection strategies in combination with the constant four anchor class

and the iterative forward anchor class for the Rasch model. The two anchor classes

are structurally different, since the constant four anchor class always uses a short
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anchor of constant length four, whereas the iterative forward class determines the

anchor length in an iterative way and usually yields a longer anchor.

To allow for a comparison with an anchor method that does not rely on an explicit

anchor selection, the all-other method was included in our simulation as well. Our

results were in accordance with previous research, as the all-other method heavily

suffered from an inflated false alarm rate when a large proportion of unbalanced DIF

items was present (González-Betanzos & Abad, 2012; Kopf et al., 2013; Wang,

2004; Wang & Yeh, 2003) and discourage from the usage of the all-other method.

Our analysis was limited to the analysis of differential item functioning in the

dichotomous Rasch model. In our investigated settings, the results of the DIF

tests—evaluated by means of the false alarm rate, the hit rate, and the average

mean bias—strongly depended on the anchor selection strategies employed, when

four anchor items were intended. This highlights the importance of a suitable

anchor selection strategy that allows the researcher to correctly classify DIF and

DIF-free items and to study the underlying causes of DIF (Jodoin & Gierl, 2001).

Consistent with previous results (see, e.g., González-Betanzos & Abad, 2012;

Kopf et al., 2013; Wang & Yeh, 2003; Wang, 2004), seriously inflated false alarm

rates occurred if the anchor method did not work appropriately, especially when

DIF was unbalanced and the DIF proportion was high. This was the case for sev-

eral existing anchor selection strategies in our simulation study. Anchor selections

based on the all-other anchor method (the AO- and the AOP-selection) are inadvi-

sable to select four anchor items, since the estimated item parameter differences

were biased in the unbalanced DIF condition and even additional purification

steps included in the AOP-selection were not able to completely reduce the bias

when the DIF proportion was high. For this reason, we advise against constructing

new anchor selection strategies for the constant four anchor class that use all other

items as anchor. Unsatisfactory results were also found for the MT-selection that

is based on mean absolute test statistics resulting from DIF tests for every item

using every other item as single anchor and the NST-selection that counts the

number of significant results in those particular tests. As a result, the newly sug-

gested anchor selection strategies based on a threshold criterion clearly outper-

formed the existing suggestions. Four anchor items were ideally selected using the

MPT-selection in our simulated settings.

In our study, the iterative forward anchor class was relatively robust against the

anchor selection strategy employed. Only in the case of 40% unbalanced DIF items,

the effects of the anchor selection strategies were clearly visible. In the remaining

investigated settings, all anchor selection strategies performed quite well and

achieved results similar to the benchmark method of the perfect anchor selection.

However, in the case of 40% unbalanced DIF items, all three new anchor selection

strategies outperformed the previously suggested anchor selection strategies by yield-

ing a lower false alarm rate, a higher hit rate, and less biased estimates of the item

parameter differences. Still, since the perfect selection reached better results, the

selection strategies can be further improved.
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Altogether, our results showed that the appropriateness of the anchor selection not

only depended on the sample size, the proportion of DIF items, and the direction of

DIF but also on the intended anchor length.

In case a short anchor of length four is intended, the MPT-selection outperformed

all other investigated empirical anchor selection strategies by yielding a low false

alarm rate and simultaneously reaching a high hit rate in all regarded conditions. As

a result, we recommend using the MPT-selection if a short constant anchor length is

intended under similar conditions.

When the selection strategies were combined with the iterative forward

anchor class, the newly suggested MTT-selection reached the best results in

our extreme setting of 40% DIF items. It is recommended for DIF analysis when

the iterative forward anchor class is used, as well as in general when a longer

anchor length is intended under conditions similar to those investigated in this

article.

Nevertheless, the benchmark method of the perfect anchor selection still

reached lower false alarm rates and higher hit rates in regions of small to medium

sample sizes when DIF was simulated unbalanced. Hence, new developments for

anchor selection strategies that ideally follow the threshold approach are needed

to further improve the classification of DIF and DIF-free items when the sample

sizes are small. When the sample sizes are large, the newly suggested constant4-

MPT and the forward-MTT method reached satisfying results in our simulation

study.

Future research may investigate the adaption of our anchor selection strategies to

other DIF tests and may evaluate modifications of the iterative anchor method, such

as the exclusion of a certain percentage of the first anchor candidates that we found

more likely to have DIF. Moreover, future research may evaluate the performance of

these methods when the data are generated from other IRT models. In the Rasch

model, the items are assumed to have the same discriminatory power. The items are,

thus, characterized by the item difficulty parameters only. Other IRT models include

further parameters for the discriminatory power (2 parameter logistic, 2PL, model) or

for guessing behavior (3 parameter logistic, 3PL, model) or allow for more than two

response categories. For the 2PL or the 3PL model, anchor items that displayed high

discrimination parameters were found to be better suited as anchor items (González-

Betanzos & Abad, 2012; Lopez Rivas et al., 2009). Future research may combine the

strategies introduced in this article with new requirements and other underlying IRT

models. The ranking order of candidate anchor items could, for example, be modified

in a way such that items with a low discriminatory power are less likely to be selected

as anchor candidates.
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Notes

1. Please note that the y-axes in the panels were adjusted to allow for a better visualization of

the results.

2. Please note that the y-axes in the panels were adjusted to allow for a better visualization of

the results.
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