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Abstract

This study examined the performance of a proposed iterative Wald approach for
detecting differential item functioning (DIF) between two groups when preknowledge
of anchor items is absent. The iterative approach utilizes the Wald-2 approach to iden-
tify anchor items and then iteratively tests for DIF items with the Wald-1 approach.
Monte Carlo simulation was conducted across several conditions including the number
of response options, test length, sample size, percentage of DIF items, DIF effect size,
and type of cumulative DIF. Results indicated that the iterative approach performed well
for polytomous data in all conditions, with well-controlled Type I error rates and high
power. For dichotomous data, the iterative approach also exhibited better control over
Type I error rates than the Wald-2 approach without sacrificing the power in detecting
DIF. However, inflated Type I error rates were found for the iterative approach in con-
ditions with dichotomous data, noncompensatory DIF, large percentage of DIF items,
and medium to large DIF effect sizes. Nevertheless, the Type I error rates were sub-
stantially less inflated in those conditions compared with the Wald-2 approach.
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In educational and psychological research, it is important to establish the measure-

ment equivalence (ME) of assessment tools across different groups. This is because
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ME ensures that mean comparisons between groups reflect latent trait differences

rather than measurement bias (Vandenberg & Lance, 2000). Within the item response

theory (IRT) framework, ME is often evaluated by examining differential item func-

tioning (DIF), which tests whether or not the relationship between latent trait and

observed scores is identical between a reference group and a focal group (Drasgow,

1984). Because of the importance of the issue, numerous procedures have been pro-

posed for assessing DIF, including parametric and nonparametric approaches (Raju,

van der Linden, & Fleer, 1995; Sijtsma, 1998; Tay, Meade, & Cao, 2015), and

researchers are continually seeking to improve on DIF statistics and procedures.

Based on one of the earliest proposed DIF statistic—the Lord’s (1980) Wald x2

test—a recent implementation of the Wald x2 test has been shown to be a viable

option for assessing DIF (Langer, 2008; Woods, Cai, & Wang, 2013). The imple-

mentation of the Wald x2 test has been shown to have Type I error rates close to

nominal Type I error rates and substantial power. However, when anchor items are

unknown, the procedure used for the Wald x2 test produces inflated Type I error

rates (Woods et al., 2013). Given that anchor items are often unknown in practice

(Woods, 2008, 2009), there is a critical need to ensure accurate DIF detection (i.e.,

low Type I error rates and high power). To address this issue, an iterative approach

founded upon the prior approach (Cai, Thissen, & du Toit, 2011; Woods et al.,

2013) was suggested and illustrated by Tay et al. (2015). However, the perfor-

mance of the iterative approach has not been rigorously examined using Monte

Carlo simulations. Therefore, in this article, we conducted Monte Carlo simula-

tions comparing the iterative approach to the prior approach in both dichotomous

and polytomous data.

Wald-1 and Wald-2 Approaches

According to Lord (1980), the Wald x2 statistic used for comparing the item para-

meters of two groups is computed as

x2 = vR � vFð ÞT SR + SFð Þ�1
vR � vFð Þ, ð1Þ

where vR, vF represent the vectors of the maximum likelihood item parameter esti-

mators of the reference group and the focal group, and SR, SF denote the asymptotic

variance and covariance matrices for vR and vF, respectively. The test statistic is then

compared with a critical value in a x2 distribution, with the degrees of freedom equal

to the number of item parameters in the IRT model.

There are however several issues with using the Lord’s Wald x2 statistic for DIF

analysis. First, in order to use Equation (1) to generate the test statistic, one needs to

first perform linking to place the item parameters separately estimated in the two

groups on the same scale. An iterative linking approach has been proposed to increase

the accuracy of the linking procedure (Stocking & Lord, 1983), but in practice, the

implementation is cumbersome as different statistical programs are needed to scale

and rescale the item parameters for testing DIF (e.g., Stark, 2002). Second, and more
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important, the Lord’s Wald x2 test does not have accurate standard error estimates,

which results in inaccuracies in statistical testing (Langer, 2008; McLaughlin &

Drasgow, 1987).

To address these issues, Langer (2008) improved on the Lord’s Wald x2 test by

employing the supplemented expectation maximization algorithm to obtain more

accurate standard error estimates (Meng & Rubin, 1991). Langer (2008) also intro-

duced a two-stage procedure to replace ad hoc linking with concurrent calibration

(Kolen & Brennan, 2004). Specifically, the first step is to estimate the latent trait

parameters of the focal group, while fixing the mean and SD of the reference group

to be 0 and 1, respectively, and constraining the item parameters to be equal between

the two groups. The second step is to fix the latent trait distribution of the focal

group at the values obtained in the first step, and freely estimate the item parameters

of the two groups. The item parameters found in the second step can then be used to

compute the chi-square test statistic with Equation (1), as the item parameters are

now placed on the same scale. This is known as the Wald-2 approach (Woods et al.,

2013).

However, a potential problem associated with the Wald-2 approach is that the

latent trait distribution estimated in the first stage occurs under the assumption that

overall there is no DIF at the scale level. If this assumption does not hold, the latent

trait estimation of the focal group will likely be biased, which may lead to inaccurate

DIF detection (Tay et al., 2015). Such proposition was supported by a recent simula-

tion study, which showed that the Wald-2 approach led to unacceptably high Type I

error rates in almost all DIF detection conditions (Woods et al., 2013).

Based on their simulation results, Woods et al. (2013) recommended the Wald-1

approach for detecting DIF (Cai et al., 2011), as it demonstrated superior perfor-

mance over the Wald-2 approach in terms of Type I error rate and power. Unlike the

Wald-2 approach, the Wald-1 approach requires only one stage for testing DIF,

assuming preknowledge of anchor items. Specifically, item parameters are scaled on

the same metric by constraining the item parameters of anchor items to be equal

between groups. All other items are freely estimated between groups and DIF for

each item is tested using the Wald x2 statistic. Although the Wald-1 approach per-

forms better, it requires preknowledge of anchor items. Therefore, in spite for the

better performance, the Wald-1 approach is difficult to implement in cases where

anchor items are unknown.

An Iterative Wald Approach

In order to accurately test for DIF without preknowledge of anchor items, an iterative

approach was proposed by Tay et al. (2015). This approach is analogous to iterative

linking (Stocking & Lord, 1983) in which non-DIF items are identified as anchor

items and used to put the reference and focal groups on the same ‘‘scale.’’ The set of

anchor items are further refined through an iterative procedure. Steps to implement

this iterative approach are outlined below:
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1. The Wald-2 approach is used to identify anchor items. In the presence of DIF,

the Wald-2 approach has high Type I error rates, so that there is a high prob-

ability that non-DIF items are identified as having DIF. However, given that

the Wald-2 approach has good power, when items do not have DIF, there is

greater confidence that these items are likely to be non-DIF items, or anchor

items. This is akin to a fully constrained baseline approach where all items

are used for linking; and because of high Type I error rates, non-DIF items

are subsequently suggested to be used as anchor items (Stark, Chernyshenko,

& Drasgow, 2006).

2. Using anchors, the Wald-1 approach is used to test for DIF in the remaining

items. The Wald-1 approach is known to have good Type I error rates and

substantial power for detecting DIF when anchor items are known.

3. Items that do not have significant DIF are added as anchor items. Given that

Type I error rates are well-controlled for the Wald-1 procedure, items that do

not display DIF are assumed to be anchor items.

4. If no new items are added in Step 3, the DIF procedure ends. Otherwise, the

procedure repeats from Step 2 onward. The procedure ends when all nonan-

chor items exhibit significant DIF based on the Wald x2 test.

The above iterative DIF detection approach utilizes the rationale of the iterative

purification procedure (Candell & Drasgow, 1988; Lord, 1980), which involves itera-

tively relinking the metrics of the parameters and removing DIF items until the same

DIF items are identified in two successive iterations. The iterative purification proce-

dure has been adopted in many DIF detection methods, such as Wald test, Raju’s area

measure, and likelihood ratio test, and has demonstrated better performance than non-

iterative DIF detection methods (Candell & Drasgow, 1988; Cohen & Kim, 1993;

Stark et al., 2006). Compared with the Lord’s Wald test with iterative purification

procedure, the iterative Wald approach outlined in this study is superior in that it con-

currently calibrates the item parameters of the compared groups to avoid linking and

relinking, and that it provides more desirable standard error estimates than the tradi-

tional Lord’s Wald test (Langer, 2008).

In their review article on IRT DIF detection methods, Tay et al. (2015) provided

illustrations on using the iterative Wald approach to detect DIF items in both dichoto-

mous and polytomous data. They found that the iterative approach was successful in

detecting the DIF items as simulated. However, the illustrations were only based on

two simulated samples (i.e., dichotomous and polytomous responses), and thus were

unable to provide information about how well the iterative Wald approach would per-

form in detecting DIF across a variety of conditions. It is important to rigorously

examine this using Monte Carlo simulations.

The Current Study

Our interest is to examine the case where preknowledge of anchor items is absent;

thus, the Wald-1 approach is not applicable. In this case, would the iterative approach
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improve on the previously examined Wald-2 approach? We conducted a simulation

study to determine whether the iterative approach would successfully reduce the

Type I error rates compared with the Wald-2 approach, while maintaining a decent

level of power in detecting DIF.

There are several factors we are interested in. First, different research design fac-

tors may affect the performance of the iterative approach. For example, Woods et al.

(2013) found that sample size, ratio of DIF cases, and percentage of DIF items would

influence the Type I error rate of the Wald-2 method. Second, DIF effect size could

also be a potentially influential factor, as Langer (2008) simulated smaller DIF effect

size than Woods et al. (2013) and did not find severely inflated Type I error rate of

Wald-2. Third, the type of cumulative DIF is another factor that is often overlooked

in simulation studies. Compensatory DIF describes that the direction and effect size

of DIF items compensate with each other at the scale level, whereas noncompensa-

tory DIF denotes that DIF does not cancel out at the scale level (Raju et al., 1995).

Given that the first stage of both the Wald-2 and the iterative approach (given that it

uses the Wald-2 as the first step) may lead to biased estimates of the focal group trait

distribution when there is cumulative DIF at the scale level, it may be that compensa-

tory DIF would reduce the problem of inflated Type I error rates. On the other hand,

noncompensatory DIF may lead to high cumulative DIF at the scale level leading to

more problems with correctly detecting DIF.

Method

Overview of Study Design

We conducted a Monte Carlo simulation study to compare the performance of the

Wald-2 approach and the iterative Wald approach by simulating different conditions

on the following factors:

1. Number of response categories (dichotomous, polytomous)

2. Test length (number of items = 15, 30)

3. Sample size in reference (R) and focal (F) groups (equal smaller [R = 500; F

= 500], equal larger [R = 1,000; F = 1,000], unequal smaller [R = 750; F =

250], unequal larger [R = 1,500; F = 500])

4. Percentage of DIF items (20%, 40%)

5. DIF effect size (0.3, 0.5, 0.7)

6. Type of cumulative DIF (compensatory, noncompensatory)

Altogether, there were 2 3 2 3 4 3 2 3 3 3 2 = 192 conditions. A total of 500

replications were undertaken for each condition. We designed R scripts to automate

the simulation process.
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Data Generation

We followed the simulation procedure in Woods et al. (2013) to generate response

data. Specifically, we drew the latent trait distribution of the reference group (i.e., uR)

from N(0, 1), and the latent trait distribution of the focal group (i.e., uF) from N(20.6,

1), with different sample sizes indicated in the section above.

Consistent with Woods et al. (2013), we used Samejima’s graded response model

(SGRM; Samejima, 1969) to generate polytomous response data. According to the

SGRM, the probability of endorsing response option k on item i is given by

P½Xik = 1juj�=
1

1 + exp �ai uj � bik

� �� �� 1

1 + exp �ai uj � bi k + 1ð Þ
� �� � , ð2Þ

where uj denotes the latent trait of respondent j, ai represent the discrimination para-

meter of item i, and bik refers to the threshold parameter for response option k on item

i. In the current simulation, we drew the discrimination parameters of the reference

group (i.e., aiR) from a U[0.5 3 1.7, 0.8 3 1.7] distribution. The four threshold para-

meters of each item of the reference group (i.e., bi1R2bi4R) were drawn from U[22,

21], U[21, 0], U[0, 1], and U[1, 2], respectively.

Unlike Woods et al. (2013), which only examined polytomous responses, we also

simulated dichotomous data with the two-parameter logistic model (2PLM), which

has been commonly used as an IRT model for noncognitive individual difference

variables (e.g., Chernyshenko, Stark, Chan, Drasgow, & Williams, 2001; O’Brien &

LaHuis, 2011). The 2PLM is stated as

P½Xi = 1juj�=
1

1 + exp �ai uj � bi

� �� � , ð3Þ

where uj denotes the latent trait of respondent j, and ai and bi refer to the discrimina-

tion and difficulty parameters of item i. In the present simulation, we drew the dis-

crimination parameters of the reference group (i.e., aiR) from a N(1.7, 0.6)

distribution, with truncation on the upper end at 4.0, and on the lower end at 0.8. The

location parameters of the focal group were drawn from a U[22, 2] distribution.

DIF Simulation and Detection

To simulate noncompensatory DIF effects, we randomly selected 20% or 40% of the

items as DIF items, and added a constant d to all the parameters of each DIF item.

The constant d was set to equal 0.3, 0.5, or 0.7 for different effect size conditions.

For conditions with compensatory DIF effects, we randomly selected 20% or 40% of

the items as DIF items. For each DIF item, we either added or subtracted the same

constant d for each parameter (i.e., ai and bik). The decision to add or subtract was

made independently for each parameter with equal probability (i.e., P[addition] =

P[subtraction] = .5). The size of the DIF effects and the choice of adding or subtract-

ing a common constant to all the parameters of each DIF items followed the
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procedure by Woods et al. (2013). The difference is that in the Woods et al. (2013)

study, the different effect sizes are independently manipulated for the item slope

(i.e., ai) and the item locations (i.e., bik).

After the response data were generated, two methods were used to detect DIF.

The Wald-2 method was implemented in IRTPRO (Cai et al., 2011). For the iterative

DIF detection method, we followed the aforementioned four steps, using the non-

DIF items found with the Wald-2 method as anchor items, and iteratively performed

the Wald-1 procedure to detect DIF in the remaining items.

Criteria

For each simulation conditions, we evaluated the performance of the two DIF detec-

tion methods in terms of Type I error rate and statistical power. Type I error rate was

computed as the number of non-DIF items incorrectly identified as DIF items divided

by the total number of non-DIF items in the scale. Statistical power was calculated as

the number of DIF items correctly detected by each method divided by the total num-

ber of DIF items in the scale. Type I error rates well-controlled at the nominal Type I

error rate of .05 and higher statistical power indicate better performance of a DIF

detection method.

Results

Type I Error Rate

Table 1 presents the Type I error rate for polytomous data. In general, the iterative

method (on the left; M = .04) led to lower Type I error rates than did the Wald-

2 method (on the right; M = .08). Specifically, the Type I error rates of the iterative

method were close to the nominal rate of .05 for all conditions, whereas the Wald-2

method resulted in Type I error rates above .05 for most conditions, consistent with

results in previous simulation studies (Woods et al., 2013). Moreover, the Wald-2

method appeared to generate more Type I errors when there were more DIF items in

the scale, when DIF effect size was larger, or when noncompensatory DIF rather than

compensatory DIF was simulated. In contrast, the Type I error rates of the iterative

method were always well controlled regardless of those factors.

As shown in Table 2, the iterative method (M = .07) also produced substantially

lower Type I error rates—and closer to the nominal Type I error rate—for dichoto-

mous data than did the Wald-2 method (M = .15). Unlike the results for the polyto-

mous case, the iterative method seemed to be influenced by a few factors in the

dichotomous case, such that the Type I error rates were above the nominal rate of .05

in several conditions. Type I error rates slightly increased as sample size increased.

Even so, the Type I error rates of the iterative method were below .10 on most occa-

sions except when noncompensatory DIF was simulated, and when there were 40%

DIF items with medium (i.e., 0.5) or large (i.e., 0.7) effect sizes. The Wald-2 method,

however, led to Type I error rates over .05 in most conditions. Similar to the results
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with polytomous data, the Type I error rates of the Wald-2 method increased as per-

centage of DIF items and DIF effect sizes increased. Compared with the iterative

method, the Wald-2 method had substantially worse performance in controlling Type

I error rates when examining noncompensatory DIF with medium or large DIF effect

sizes.

Power

As presented in Table 3, the power of detecting DIF is close to 1.0 in most conditions

with polytomous data, suggesting that both the iterative and the Wald-2 methods can

successfully detect DIF, regardless of sample size, percentage of DIF items, and type

of cumulative DIF. The only conditions that possessed nonperfect power were those

with small DIF effect sizes (i.e., 0.3). There was no noticeable difference in power

between the two DIF detection methods (both Ms = .98).

Table 4 shows the DIF detection power for dichotomous data. In general, both the

iterative method and the Wald-2 method exhibited low power in most conditions

compared with results for polytomous data, especially when DIF effect sizes were

small and when the sample sizes of reference and focal groups were unbalanced.

Comparing the two DIF detection methods, the power of the iterative method (M =

.62) was slightly lower than that of the Wald-2 method (M = .65). However, the dif-

ferences in power were always below .05 and were negligible in most condition con-

sidering the relatively large values of power.

Discussion

An iterative approach has been proposed to improve the Wald-2 approach in detect-

ing DIF when preknowledge of anchor items is absent (Tay et al., 2015). In the pres-

ent study, we conducted Monte Carlo simulation to compare the performance of the

proposed iterative approach with the Wald-2 approach (Langer, 2008). In general, the

iterative Wald approach exhibited satisfactory performance in DIF detection. The

Type I error rates of the iterative approach were well-controlled in most conditions,

indicating a substantial improvement over the Wald-2 approach. Moreover, the reduc-

tion in Type I error rates was not at the expense of sacrificing the power in detecting

DIF.

The performance of the iterative approach was also found to be influenced by sev-

eral factors. Foremost, the number of response was an influential factor. For polyto-

mous data, the iterative approach exhibited low Type I error rates (i.e., below the

nominal rate of .05) and high power (i.e., close to unity) in all conditions, whereas

for dichotomous data, inflated Type I error rates and low power were found in a few

conditions. This shows that iterative approach works better in the polytomous condi-

tion than in the dichotomous condition. Additionally, as we expected, the iterative

approach performs poorly when a noncompensatory DIF is present, as it leads to

inaccurate identification of anchor items in the first stage. An important caveat is that
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the performance of the iterative approach was found to be worse for noncompensa-

tory DIF than for compensatory DIF only when a large percentage of DIF items was

simulated.

In general, our simulation results suggests that the iterative approach performs

better than the Wald-2 approach in absence of anchor items for both the polytomous

and dichotomous conditions. Practically, the iterative approach can also be easily

and efficiently implemented with modern IRT software, such as IRTPRO (Cai et al.,

2011) and flexMIRT (Cai, 2012). Readers are referred to Tay et al. (2015) for several

illustrations of the iterative approach.

Limitations and Future Research

There were several limitations to this study. First, we only focused on DIF analysis

between two groups, which is the most frequently observed scenario in DIF studies

(Tay et al., 2015). As shown in Woods et al. (2013), the Wald test can be easily

extended to detect DIF in more than two groups by utilizing the generalization of

Lord’s statistics (Kim, Cohen, & Park, 1995). Future simulation studies can focus on

investigating the performance of the new iterative approach in detecting DIF among

three or more groups. Second, to keep the simulation study manageable, we fixed the

mean difference in latent trait distribution at 0.6, and did not examine the magnitude

of mean difference as a potential factor. This is because past research has shown that

the Wald test and associated approaches seems to be robust to varying levels of

latent mean differences. Third, we did not examine the iterative Wald approach with

respect to other DIF procedures as we wanted to focus on whether the iterative Wald

approach improves on the Wald-2 approach. Future research can examine whether

the iterative Wald approach fares as well compared with other DIF procedures in

which the pre-knowledge of anchor items is unknown.

Conclusion

To conclude, the simulation study shows that iterative Wald approach performs as

well if not better than the Wald-2 approach. We encourage researchers to use this

procedure as compared with the Wald-2 approach when anchor items are unknown.

Future research can also build on iterative procedure to potentially improve on it.
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