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Abstract

Several researchers have recommended that level-specific fit indices should be
applied to detect the lack of model fit at any level in multilevel structural equation
models. Although we concur with their view, we note that these studies did not suffi-
ciently consider the impact of intraclass correlation (ICC) on the performance of
level-specific fit indices. Our study proposed to fill this gap in the methodological lit-
erature. A Monte Carlo study was conducted to investigate the performance of (a)
level-specific fit indices derived by a partially saturated model method (e.g., CFIPS B

and CFIPS W ) and (b) SRMRW and SRMRB in terms of their performance in multile-
vel structural equation models across varying ICCs. The design factors included
intraclass correlation (ICC: ICC1 = 0.091 to ICC6 = 0.500), numbers of groups in
between-level models (NG: 50, 100, 200, and 1,000), group size (GS: 30, 50, and
100), and type of misspecification (no misspecification, between-level misspecifica-
tion, and within-level misspecification). Our simulation findings raise a concern
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regarding the performance of between-level-specific partial saturated fit indices in
low ICC conditions: the performances of both TLIPS B and RMSEAPS B were more
influenced by ICC compared with CFIPS B and SRMRB. However, when traditional
cutoff values (RMSEA� 0.06; CFI, TLI� 0.95; SRMR� 0.08) were applied, CFIPS B

and TLIPS B were still able to detect misspecified between-level models even when
ICC was as low as 0.091 (ICC1). On the other hand, both RMSEAPS B and SRMRB

were not recommended under low ICC conditions.

Keywords

intraclass correlation, level-specific fit index, model evaluation, multilevel structural
equation modeling

Introduction

Multilevel structural equation modeling (MSEM) has recently gained more attention

from researchers because of its flexibility for modeling relationships between

observed and latent variables with multilevel data (e.g., students nested within

schools; patients nested within clinics). A general model specification approach to

MSEM is between-and-within specification (Bollen, Bauer, Christ, & Edwards,

2010), which can be traced back to the work of Goldstein and McDonald (see,

Goldstein & McDonald, 1988; McDonald & Goldstein, 1989). By applying this

model specification method, the observed score covariance matrix for individual-

level variables is decomposed into between-level and within-level variance-covar-

iance matrices, which are then simultaneously described by hypothesized between-

level and within-level models formulated based on theory or previous studies,

respectively (Bollen et al., 2010; Hox, 2010; B. O. Muthén & Asparouhov, 2009;

Rowe, 2003). Although MSEM specification can be implemented in several major

SEM statistical packages such as EQS, Lisrel, and Mplus, there are still unresolved

issues related to model evaluation which need more attention (Ryu, 2014).

Previous studies show that traditional single-level tests of exact fit (i.e., chi-square

[x2] test statistics) and fit indices (e.g., root mean square error of approximation

[RMSEA], comparative fit index [CFI], and Tucker–Lewis Index [TLI]) fail to detect

misspecifications in the between-level model (Hsu, Kwok, Acosta, & Lin, 2015; Ryu

& West, 2009). Hence, some researchers advocate for greater use of level-specific x2

and fit indices, in particular for detecting misspecifications at between level (Ryu,

2011; Ryu & West, 2009; Schermelleh-Engel, Kerwer, & Klein, 2014). While we

concur with these researchers’ recommendations, we also note that these previous

simulation studies did not sufficiently consider the impact of intraclass correlation

(ICC; also referred to as observed variable ICC or latent factor ICC; we describe the

two types of ICC in Appendix A). For example, Ryu (2011) and Ryu and West

(2009) used an identical two-level two-factor measurement model as a population

model to generate simulation data with the latent factor ICC fixed to 0.50, which is
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not realistic, especially in educational settings with relatively lower ICC in cross-

sectional multilevel studies (Hox, 2010). In another example, Schermelleh-Engel et

al. (2014) used a population model comprising nonlinear latent interaction effects to

generate simulation data without manipulating ICC. These aforementioned studies

tend to overlook the impact of ICC on the effectiveness of level-specific fit indices

(especially for between-level model). Hsu et al.’s (2015) study is the only one which

considers the impact of a wider range of ICC. However, they only considered the

impact of ICC on ‘‘traditional’’ (single-level) fit indices including RMSEA, CFI, and

TLI in MSEM and their simulation results showed a negligible effect of ICC on the

effectiveness of traditional fit indices. The reason of this finding is due to the focus

of the single-level fit indices and the performances of these fit indices can be over-

powered by the within-level model misspecification. Hsu et al. did not extend their

investigation to the assessment of the potential impact of ICC on the performance of

level-specific fit indices.

The association between lower ICC and greater biased parameter estimates in the

between-level model (Hox & Maas, 2001; Lai & Kwok, 2015; Lüdtke et al., 2008;

Preacher, Zhang, & Zyphur, 2011) as well as the association between lower ICC and

lower convergence rates (Kim, Kwok, & Yoon, 2012; Lüdtke et al., 2008) are well

documented in the literature. Given these findings, we believe that ICC might be cru-

cial to the performance of between-level–specific fit indices. This argument can be

justified by recalling the features of x2 in structural equation modeling. The overall

model x2 value reflects the discrepancy between the observed and model-implied

variance–covariance matrices. Theoretically, given data with larger relations (or cov-

ariances) among observed variables, a misspecified model tends to have poorer

model fit (e.g., larger x2 value). The reason is that stronger relations among observed

variables lead to larger values in the observed variance–covariance matrix, which

allows greater possible discrepancies between itself and the model-implied variance–

covariance matrix to be estimated (Bowen & Guo, 2011; Kenny, 2015; Kline, 2011).

Similarly, data with a higher level of ICC imply larger relations in between-level

variables including observed variables and latent components of lower-level vari-

ables, compared with data with a lower level of ICC. Therefore, fitting a misspecified

between-level model using data with higher ICC should result in a larger between-

level–specific x2 value (see Appendix B for more information). Because between-

level–specific RMSEA, CFI, and TLI are a function of between-level–specific x2, the-

oretically, we anticipate that the performance of these fit indices will be influenced

by ICC as well (i.e., better performance with high ICC while worse performance with

low ICC).

As stated above, previous studies investigating the performance of level-specific

x2 and level-specific fit indices (Ryu, 2011; Ryu & West, 2009; Schermelleh-Engel

et al., 2014) did not sufficiently consider the impact of ICC. Our study extended this

line of research specifically by furthering Hsu et al.’s (2015) study with the focus on

how the effectiveness of ‘‘level-specific’’ fit indices is affected by varying ICC val-

ues. We aim to provide better understanding of the utilization of level-specific fit
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indices in MSEM given data with different levels of ICC, which has not yet been

thoroughly investigated in previous level-specific fit index studies.

To bridge this literature gap, we conducted a Monte Carlo study to evaluate the

effectiveness of level-specific fit indices derived from the partially saturated model

method (PS-level–specific fit indices; Ryu & West, 2009) with the consideration of a

more comprehensive range of ICCs in MSEM. Additionally, we also attempted to

extend the understanding of model evaluation in MSEM by examining the perfor-

mance of alternative level-specific fit indices obtained from Mplus, namely standar-

dized root mean square residual for within-level model (SRMRW) and for between-

level model (SRMRB), which have not yet been compared with other PS-level–spe-

cific fit indices under various ICCs in the previous literatures.

Our study addressed the following research questions:

1. Can the PS-level-specific fit indices (RMSEAPS B, RMSEAPS W , CFIPS B,

CFIPS W ,TLIPS B, and TLIPS W ) consistently detect the lack of model fit at

different data levels under various ICCs?

2. What is the performance of both SRMRW and SRMRB compared with other

PS-level-specific fit indices under various ICCs?

Literature Review

Multilevel Structural Equation Model

Using similar notations as B. O. Muthén (1994) and Pornprasertmanit, Lee, and

Preacher (2014), we outline a two-level confirmatory factor analysis (CFA) model

with continuous indicators, which has also been the population model for data gener-

ation in this study. Let yig denote p-dimensional response vector for student i in

school g In MSEM, yig is decomposed into means, within-, and between-level com-

ponents as shown in Equation (1):

yig = n + LW hWig
+ LBhBg

+ eWig
+ eBg

ð1Þ

where n is a p-dimensional vector of grand means, LW is a p3m within-level factor

loading matrix, where m indicates the number of within-level factors, hWig
is a m-

dimensional vector of within-level factor scores for student i in school g, LB is a p3h

between-level factor loading matrix, where h indicates the number of between-level

factors, hBg
is a h-dimensional vector of between-level factor scores for school g, eWig

is a p-dimensional vector of within-level unique factors, and eBg
is a p-dimensional

vector of between-level unique factors. Based on Equation (1), the covariance struc-

ture of yig can be decomposed into two orthogonal and additive components (Hox,

2010):

Cov(yig) = ST = SW + SB ð2Þ
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where ST is the total covariance matrix, SW is the within-level covariance matrix

representing within-school, student-level variation, and SB is the between-level cov-

ariance matrix representing across-school variation (B. O. Muthén, 1994). Finally,

the within- and between-level covariance structures of a two-level CFA model can

be written as

SW = LW cW L0W +YW ð3Þ

SB = LBcBL0B +YB ð4Þ

where cW and cB are the factor covariance matrices for the within- and between-

level components, respectively, and YW and YB are covariance matrices of unique

factors for the within- and between-level components, respectively.

In the current study, we used a multilevel full information maximum likelihood

(ML) estimator, which is commonly adopted by substantial studies for analyzing mul-

tilevel data (Kaplan, 2009; Liang & Bentler, 2004; Ryu & West, 2009). Assuming (a)

multivariate normality for each of the within- and between-level component and (b)

perfectly balanced case in which each group had equal individuals, the fitting func-

tion to obtain ML solution is expressed as

FML = Fbetween uð Þ + Fwithin uð Þ=
XJ

j = 1

tr SSB
�1

uð ÞSB

h i
+ log SSB uð Þj j

n o

+ N � Jð Þ tr SW
�1

uð ÞSW

h i
+ log SW uð Þj j

n o ð5Þ

The fitting function involved between-level fitting function, Fbetween uð Þ, and

within-level fitting function, Fwithin uð Þ, where u is defined in terms of the vector of

the estimated parameters that correspond to a specified model. In FML, J is the

between-level sample size (number of group); SSB is the scaled between sample cov-

ariance matrix; SSB uð Þ is the implied scaled between covariance matrix; N is the

within-level total sample size. SW is the within-level sample covariance matrix, and

SW uð Þis the implied within-level covariance matrix.

This full information ML estimator is implemented in Mplus (L. K. Muthén &

Muthén, 1998-2015) by using the command ‘‘ESTIMATOR=MLR’’ in the current

study. MLR and ML share the same fitting function and produce the same parameter

estimates (Hox, Maas, & Brinkhuis, 2010), but MLR produces robust x2 test statistic

instead of traditional asymptotic x2 test statistic. All the fit indices in the present

simulation study were derived by using the robust x2 value in the corresponding fit

indices formulas as shown in Appendix B.

Level-Specific Fit indices

Two alternative methods can be applied for obtaining level-specific x2 test statistics

or fit indices: Yuan and Bentler’s (2007) segregating approach (YB method), and the
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PS model method. Note that only the PS method was considered in the current study

because Ryu and West (2009) have demonstrated that the PS method outperforms the

YB method in terms of convergence rates and Type I error rates. Furthermore, the

performance of YB-level–specific fit indices has been evaluated in Schweig’s (2014)

study.

In the PS method, a saturated model at a particular data level can be obtained by

correlating all the observed variables and allowing all the covariances (or correla-

tions) to be freely estimated. A saturated model can be treated as a just-identified

model with zero degrees of freedom and the x2 test statistic equals zero. Therefore, a

saturated within-level or between-level model contributes nothing to the fitting func-

tion (Hox, 2010). This feature allows us to compute different fit indices at each level.

For example, if one intends to evaluate the hypothesized between-level model, a satu-

rated within-level model should be specified so that any misfit can be attributed to

the possible misspecification at the between level. In other words, the fitting function

only reveals between-level model misfit (i.e., FML uð Þ= Fbetween uð Þ + 0), which then

can be used to compute x2 for a between-level model (x2
PS B). In the same manner,

x2 for a within-level model (x2
PS W ) can be obtained by specifying the hypothesized

within-level model and a saturated between-level model.

Few simulation studies have evaluated the promising sensitivity of PS-level–spe-

cific fit indices (Ryu, 2011; Schermelleh-Engel et al., 2014). Consequently, some

researchers have recommended using PS-level–specific fit indices to evaluate the

plausible misspecifications present in the specific level (Pornprasertmanit et al.,

2014; Ryu, 2014). Nevertheless, it should be noted that previous simulations did not

sufficiently consider the impact of ICC. The present study aims to fill this gap in the

literature by investigating performance of PS-level–specific fit indices across a vari-

ety of ICC levels. The equations of the PS-level–specific fit indices as well as

SRMRW and SRMRB are presented in Appendix B.

The Role of ICC in the Performance of Traditional and Level-Specific Fit
Indices

The impact of ICC on the performance of ‘‘traditional’’ (single-level) fit indices,

including RMSEA, CFI, and TLI in MSEM has been investigated in Hsu et al.’s

(2015) study, where ICC was manipulated by varying the variation at the between

level and fixing variation at the within level (three conditions: 0.16, 0.33, and 0.50).

Hsu et al. (2015) found ICC had no substantial impact on the effectiveness of tradi-

tional fit indices. The major reason that Hsu et al. (2015) did not find ICC as an

important factor is that the traditional single-level fit indices were the main focus

and the performance of these traditional fit indices was in general overpowered by

the within-level model misspecification.

On the other hand, the actual performance of the ‘‘level-specific’’ fit indices and

the potential impact of ICC on the sensitivity of these level-specific fit indices have

never been thoroughly studied. As we argued above, the between-level–specific x2 is
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affected by the magnitude of the relations among the variables in the model (Bowen

& Guo, 2011; Kenny, 2015). When a between-level model is misspecified, data with

stronger relations among the variables at between-level (i.e., higher ICC condition)

allow for possibly ‘‘greater’’ discrepancies between the model-implied and observed

variance–covariance matrices (Kline, 2011). Hence, with an identical type of misspe-

cification and sample size in the between-level model, x2
PS B would likely increase

(i.e., more likely to reflect the misspecification) when ICC increased. The change in

x2
PS B would lead to a change in the performance of between-level–specific fit

indices. On the other hand, all the within-level–specific fit indices (e.g., RMSEAPS W ,

CFIPS W , and TLIPS W ) would generally not be influenced by the ICC given that the

variation at the within level was held constant across the ICC conditions.

Regarding the performance of SRMR in MSEM, we hypothesized SRMRB would

also be influenced by ICC. Note that SRMR is solely derived from the deviation

between the observed variance–covariance matrix and the model-implied variance–

covariance matrix. Given an identical type of misspecification and sample size in the

between-level model, we suspected that the deviation between these two matrices

would decrease when ICC decreased, which would lead to a less sensitive SRMRB.

Alternatively, SRMRW was expected to be independent of ICC given our manipula-

tion of the ICC conditions (with fixed variances and covariances at the within level).

Method

Following the protocol developed by Ryu and West (2009), we conducted a Monte

Carlo study to evaluate the performance of level-specific fit indices produced by the

PS method (RMSEAPS B, RMSEAPS W , CFIPS B, CFIPS W , TLIPS B, and TLIPS W ) for

detecting misspecification in two-level models with varying levels of ICC. In addi-

tion, the effectiveness of SRMRW and SRMRB was also examined and compared with

that of level-specific fit indices.

Data Generation

In the current study, the population model (see Figure 1) for simulation data genera-

tion was based on the population model presented in Ryu and West’s (2009) study.

The population model was a two-level measurement model with two factors (hW1

and hW2) at the within level and two factors (hB1 and hB2) at the between level. In

the within-level model, three continuous observed indicators were loaded on hW1,

while the other three indicators were loaded on hW2. Parameters in the within-level

model for generating data were as follows: factor loadings = 0.70, residual variances

= 0.51, factor variances = 1.00, and factor covariance = 0.30. Factors and residual

variances were uncorrelated with each other. Note that the covariance and correlation

of two within-level factors were identical (.30) because variances of within-level fac-

tors were fixed at 1.00.

Hsu et al. 11



The between-level model had an identical factorial structure with the within-level

model. Between-level parameters for data generating are presented as follows: factor

loadings = 0.70, residual variances = 0.51. Factors and residuals were uncorrelated

with each other. To create different ICC conditions, variance of between-level fac-

tors (‘‘a’’ shown in Figure 1) was set to 1.00 and varied within the range of 0.10 to

0.50 (six conditions). More detail regarding the manipulation of ICC is presented in

the following subsection.

The present study applied the Monte Carlo procedure in Mplus 7.0 (L. K. Muthén

& Muthén, 1998-2015). Data sets were generated from a standard multivariate normal

distribution using a randomly chosen seed. The MLR was applied to obtain the model

solutions. The simulation design factors are defined next.

Simulation Design Factors

Four design factors were considered in this study. These comprised (a) intraclass cor-

relation, (b) number of groups, (c) group size, and (d) misspecification type. The

details of these design factors are described below.

Figure 1. The population model (true model; ModelC) for generating simulation data
sets. In the within-level model, factor loadings = 0.7, residual variances = 0.51, factor
variances = 1.0, and correlation between factors = 0.3. The between-level model shared the
same factor structure and parameter settings as the within-level model, except that the factor
variance a was set to 1.00 and varied from 0.10 to 0.50 and factor covariances b were equal
to 0.30 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var hB1ð Þ

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var hB2ð Þ

p
given the intention to retain the magnitude of between-

level factor correlation to be the same (0.3) across different ICC conditions.
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Intraclass Correlation (ICC). We took the potential impact of ICC into account when

designing the current simulation study (see Table 1). Note that the population model

in the present simulation study had exactly the same model structure applied to both

between-level and within-level models. Therefore, following the common practice in

previous simulation studies, we constrained the variance of the within-level latent

factors to 1.00 while varied the variance of the between-level factors to create differ-

ent ICC conditions (i.e., latent factor ICC; Bollen et al., 2010; B. O. Muthén, 1991),

which has also been considered in prior MSEM simulation studies (e.g., Hox &

Maas, 2001; Kim et al., 2012; Wu & Kwok, 2012). In our simulation, the variances

a of the between-level factors (see Figure 1) were 0.10, 0.20, 0.30, 0.40, 0.50, and

1.00, which resulted in six different ICC levels: 0.091 (ICC1), 0.167 (ICC2), 0.231

(ICC3), 0.286 (ICC4), 0.333 (ICC5), and 0.500 (ICC6). These latent factor ICCs

could be converted to observed variable ICCs (see Appendix A). Ryu and West’s

simulation study only considered the ICC6 condition, which limited the generaliza-

tion of their research findings. The influence of ICC discussed in the current study

referred to latent factor ICC rather than observed variable ICC.

Number of Groups (NG). Hox and Maas (2001) concluded that a large NG (i.e., larger

than 100 groups/clusters) would be needed for an acceptable estimate of a between-

level model with low ICC conditions. Moreover, based on traditional single-level

SEM literature, a recommended minimum sample size for obtaining unbiased and

consistent estimates is 200 when using the ML estimation method (Boomsma, 1987;

Loehlin, 2004). Ryu and West (2009) considered NG = 50, 100, 200, and 1,000 in

their simulation study: however, more serious and common nonconvergence prob-

lems occurred with NG = 50, which was consistent with Hox and Maas’s findings.

Considering that NG = 1,000 might be unrealistic for practical studies, we adopted

three NG conditions (i.e., 100, 200, and 500 groups) to evaluate whether NG affected

the performance of level-specific fit indices when detecting model misspecification.

Table 1. Parameters for Data Generating in Between-Level Population.

ICC condition Factor variance Latent factor ICC Factor covariance

ICC1 0.1 0.091 0.03
ICC2 0.2 0.167 0.06
ICC3 0.3 0.231 0.09
ICC4 0.4 0.286 0.12
ICC5 0.5 0.333 0.15
ICC6 1.0 0.500 0.30

Note. ICC = intraclass correlation. We manipulated the between-level factor variance to create different

levels of latent factor ICC (ICC1-ICC6). In order to confine the factor correlation to 0.30 across

different ICC models, the factor covariance was adjusted in corresponding to the magnitude of factor

variance.
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Group Size (GS). Ryu and West (2009) considered GS = 30, 50, and 100 in their

simulation study. Hox and Maas’ (2001) study adopted three levels of GS (i.e., 10,

20, and 50) and discovered that GS was not an influential design factor for the

accuracy of the parameter estimates and standard errors in MSEM. Considering

the complexity of simulation design, our simulation study adopted three GS levels

(30, 50, and 100).

Misspecification Type (MT). Three model misspecification conditions were considered

by Ryu and West (2009): correct (non-misspecified) model (ModelC), misspecifica-

tion in between-level model only (ModelB), and misspecification in within-level

model only (ModelW). ModelC was the same as the population model (see Figure 1).

ModelB as shown in the top of Figure 2 indicated that the between-level model was

misspecified as a single-factor model, while the within-level model was correctly

specified as a two-factor model. ModelW as shown in the bottom of Figure 2 indi-

cated that the within-level model was misspecified as a single-factor model, while

the between-level model was correctly specified as a two-factor model.

Other Considerations

As previously mentioned, we manipulated the variances of between-level factors to

create different levels of latent factor ICC (ICC1-ICC6). Yet the manipulation of

between-level variances would also alter the correlations of between-level factors.

Given our intention to retain the magnitude of between-level factor correlation to be

the same (0.3) across different ICC conditions, we adjusted the between-level factor

covariance (see ‘‘b’’ shown in Figure 1) based on the formula: 0.30

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var hB1ð Þ

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var hB2ð Þ

p
. For example, in the ICC1 condition, the adjusted

between-factor covariance in the population model can be obtained by 0.30

3
ffiffiffiffiffiffiffi
0:1
p

3
ffiffiffiffiffiffiffi
0:1
p

, which was 0.03. Table 1 explicitly presents the values of between-

level factor variance for manipulating: (a) ICC, (b) the corresponding latent factor

ICC, and (c) the adjusted factor covariances under different ICC conditions.

Analysis

The four design factors included in this study were intraclass correlation (ICC: ICC1

to ICC6), number of group in between levels (NG: 100, 200, and 500), group sizes

(GS: 30, 50, and 100), and misspecification type (MT: ModelC, ModelB, and

ModelW). Factors were integrated into 162 conditions (6 ICC 3 3 NG 3 3 GS 3 3

MT). For each condition, replications with convergence problems were excluded

until at least 1,000 replications were generated. The parameter estimates, conver-

gence information, and corresponding fit indices were saved for subsequent analyses.

Means and standard deviations of each fit index were reported. If needed, factorial

ANOVAs were conducted to determine the impact of the design factors on the effec-

tiveness of the targeted fit indices. The total sum of squares (SOS) of each fit index
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showed the variability of the corresponding fit index across all replications under

specific simulation conditions while eta-square (h2) indicated the proportion of

the variance accounted for by a particular design factor or the interaction effect

Figure 2. An illustration of mispecified two-level model (ModelW and ModelB).
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terms. Notably, h2 was obtained by dividing the Type III SOS of a particular predic-

tor or the interaction effect by the corrected total SOS.

Results

Convergence Rates

Table 2 shows the results of convergence rates for each simulation scenario except

for ICC5 and ICC6 with convergence rates equal to 100%. Generally speaking, con-

vergence rates were positively associated with ICC. Convergence rates were close to

95% or higher when ICC was as large as 0.286 (ICC4). In ICC1, ICC2, and ICC3

conditions, sample size in the between-level model (number of groups, NG) was a

more influential factor on convergence rates, compared with sample size in the

within-level model (group size, GS). Note 1,000 replications without convergence

problems were included for the analyses.

Means of x2 Test Statistic and Model Fit Indices
Correct Model (Modelc). Table 3 shows: (a) traditional x2 test statistics, CFI, TLI, and

RMSEA for the entire model; (b) x2 test statistics and fit indices derived by the PS

method; and (c) SRMR for between-level and within-level models obtained from

Mplus. The pattern of the results was consistent through all sample size combinations

in terms of the performance of x2 test statistics and model fit indices. Therefore, we

present the means of x2 test statistics and model fit indices under the condition NG =

500 and GS = 100 across six levels of ICC conditions.

In the Modelc condition, the mean of x2 test statistic approximated the degrees of

freedom across different ICC conditions (df = 16 for the entire model [T]; df = 8 for

the between-level model [B] and within-level model [W], respectively). For each

ICC condition, it should be noted that the value of x2
T was approximately equal to

the sum of x2
PS B, and x2

PS W . For example, when ICC = 0.500 (ICC6), the value of

x2
T was 15.947, which was nearly the sum of x2

PS B (8.124), and x2
PS W (7.765). The

rejection rate (i.e., Type I error rate) of x2
T was close to 5.0% (ranged from 4.7% to

5.6%) across ICC2 to ICC6 conditions, but was slightly inflated (7.5%) in ICC1.

Additionally, Type I error rates of x2
PS W were satisfied (ranged from 3.9% to 4.2%)

across various ICC conditions, while Type I error rates of x2
PS B exceeded 6.0%

across ICC1 to ICC3 conditions.

Considering different ICC conditions, the mean CFI and TLI values for the entire

model were approximately 1.000 with trivial SDs, while the mean RMSEA values for

the entire model were close to 0.001 with trivial SDs. These three global fit indices

correctly indicated good overall model fit. Moreover, the within-level specific fit

indices, CFIPS_W, TLIPS_W, and RMSEAPS_W, also correctly indicated good within-

level model fit across all ICC conditions

Regarding the between-level specific fit indices, we found the mean RMSEAPS_B

varied slightly (range from 0.012 to 0.014) across ICC conditions. However, mean
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CFIPS_B, and TLIPS_B varied associated with the level of ICC. The mean of CFIPS_B

was 0.998 in ICC6 and 0.919 in ICC1 and the change rate was 7.92% [= (0.998 2

0.919)/0.998)]. Alternatively, the mean of TLIPS_B was 0.995 in ICC6 and 0.851 in

ICC1 and the change rate was 14.47% [= (0.995 2 0.0.851)/0.995)]. Both CFIPS_B,

and TLIPS_B were less promising for correctly identifying good between-level model

fit especially when ICC was 0.091 (ICC1). Finally, the means of SRMRB (ranged

from 0.020 to 0.025) and SRMRW (0.002) were capable of indicating good between-

level and within-level model fit, respectively.

Misspecified Between-Level Model (ModelB). Table 3 presents the values of traditional

x2
T and between-level-specific x2

PS B across various ICC scenarios under ModelB con-

dition. Note the values of x2
T and x2

PS B decreased (i.e., less likely to detect the mis-

specified between-level model) when ICC became smaller. The statistical power of

x2
T was more than 99% in ICC3 through ICC6 and dropped down to 85.00% and

27.80% in ICC2 and ICC1, respectively. On the other hand, the statistical power of

x2
PS B was 100% in ICC 3-ICC6, shrank a little to 94.8% in ICC2, and became very

low (41.1%) in ICC1. The means of traditional CFIT and TLIT were close to 1.000

and the means of traditional RMSEAT ranged from 0.002 to 0.018 across various ICC

scenarios, which incorrectly indicated goodness-of-fit for the between-level model.

In terms of the performance of between-level-specific fit indices, we found

RMSEAPS B (ranged from 0.031 to 0.265), CFIPS B (ranged from 0.532 to 0.754),

and TLIPS B (ranged from 0.222 to 0.592) did vary associated with the level of ICC.

Similarly, mean SRMRB also changed in different ICC conditions. We present the

means of CFIPS B, TLIPS B, and RMSEAPS B as well as SRMRB across various ICC

conditions in Figure 3 for comparison. Generally speaking, these level-specific fit

Figure 3. The mean RMSEAPS B, CFIPS B, TLIPS B and SRMRB in different ICC conditions under
Misspecified between-level model (ModelB) condition.
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indices were less promising for detecting misspecified between-level models as ICC

decreased. Among these fit indices, TLIPS B changed most dramatically, followed by

RMSEAB. The value of TLIPS B was 0.222 in ICC6 and 0.592 in ICC1 and the

change rate was -166.67% [= (0.222 2 0.592)/0.222)]. RMSEAB was 0.265 in ICC6

and 0.031 in ICC1 and the change rate was 88.30% [= (0.265 2 0.031)/0.265)]. The

change rates between ICC6 and ICC1 for SRMRB (77.33%) and CFIPS B (241.73%)

were relatively small among targeted fit indices.

Since ICC was found to be an influential factor on the performance of between-

level-specific fit indices, we further conducted factorial ANOVAs to compare the

impact of the ICC with other design factors, number of groups (NG) and group size

(GS). We first found that design factors had similar impacts on TLIPS B and CFIPS B.

For TLIPS B, the eta-squares (h2s) of ICC, NG, GS, and all interaction terms were

17.48%, 3.74%, 0.01%, and 0.46%, respectively. For CFIPS B, the h2 of ICC and

NG was 17.96% and 3.92%, respectively and other h2s were less than 0.30%.

Furthermore, we found ICC accounted for around 80.00% of total SOS of

RMSEAPS B (h2= 80.65%) and SRMRB (h2= 80.29%), whereas other factors and

interaction terms jointly accounted for less than 2.00% for both fit indices. The

results indicated ICC was a most influential factor for all between-level-specific fit

indices.

Misspecified Within-Level Model (ModelW). The empirical power (rejection rate) of x2
T

and x2
PS W were equal to 100% across different ICC conditions. The means of CFIT

(range 0.536 to 0.550) and CFIPS W (0.481 to 0.482) varied slightly across various

ICC conditions. Results suggested CFIT and CFIPS W correctly indicated poor model

fit and ICC had trivial impact on them. These findings can also be applied to TLIT

(and TLIPS W ) and RMSEAT (and RMSEAPS W ). In short, the traditional fit indices

performed similarly as level-specific fit indices in terms of the sensitivities to mis-

specified within-level models. Moreover, the means of SRMRW was 0.153 with small

SDs across all ICC scenarios, which correctly indicated poor model fit.

Summary

This study investigated the performance of (a) PS-level-specific fit indices

(RMSEAPS B, RMSEAPS W , CFIPS B, CFIPS W , TLIPS B, and TLIPS W ) and (b)

SRMRW and SRMRB in terms of their performance in MSEM across varying ICCs.

The design factors for the Monte Carlo study were type of misspecification (no mis-

specification, between-level misspecification, and within-level misspecification),

numbers of groups in between-level models (NG: 50, 100, 200, and 1000), group size

(GS: 30, 50, and 100), and intra-class correlation (ICC: ICC1 = 0.091 to ICC6 =

0.500). Under the ModelC scenario (correct model), simulation results showed that

all within-level–specific fit indices (RMSEAPS W , CFIPS W , TLIPS W and SRMRW )

were barely influenced by ICC. Therefore, we concluded within-level–specific fit

indices were promising for correctly indicating good model fit regardless of ICC
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level. Considering the performance of between-level-specific fit indices, we found

RMSEAPS B and SRMRB were only slightly affected by ICC and capable of correctly

indicating good model fit across various ICC conditions. Conversely, the impact of

ICC on CFIPS B and TLIPS B was relatively larger. Both indices tended to be less

promising for indicating good model fit when ICC decreased. Based on the tradi-

tional cutoff values (CFI, TLI� 0.95; Hu & Bentler, 1999), CFIPS B and TLIPS B are

not recommended if ICC is small as 0.091.

Furthermore, under the ModelB scenario (misspecification in between-level model

only), the means of between-level-specific fit indices, such as CFIPS B, TLIPS B,

RMSEAPS B, and SRMRB, varied with the level of ICC. As shown in Figure 3, we

found that those fit indices were less promising in correctly indicating poor model fit

of the between-level model as ICC decreased (i.e., from ICC6 to ICC1). Among these

between-level-specific fit indices, TLIPS B had the greatest change associated with

ICC, followed by RMSEAPS B, CFIPS B, and SRMRB. Based on the traditional cutoff

values (RMSEA� 0.06; CFI, TLI� 0.95; SRMR� 0.08; Hu & Bentler, 1999),

TLIPS B and CFIPS B are still recommended even though they were dramatically

influenced by ICC. However, RMSEAPS B and SRMRB should be interpreted care-

fully if ICC is as low as 0.091 (ICC1 for RMSEAPS B) and 0.231 (ICC 3 for SRMRB),

respectively.

Finally, under the ModelW scenario (misspecification in within-level model only),

we found the performance of within-level-specific fit indices, such as CFIPS W ,

TLIPS W , RMSEAPS W , and SRMRW , was barely influenced by ICC. All these level-

specific fit indices are recommended for detecting misspecified within-level models

in MSEM.

Discussion

Based on our simulation results, this article raises concerns about the performance of

between-level–specific fit indices especially under low ICC conditions. Figure 3 pre-

sents the means of between-level–specific fit indices related to ICC. The results indi-

cated that between-level-specific fit indices became less promising for detecting

misspecifications in between-level models when ICC decreased. Apparently, TLIPS B

and RMSEAPS B were more sensitive to ICC compared to CFIPS B and SRMRB, which

showed a relatively large rate of change from ICC6 to ICC1. Yet, if traditional cutoff

values (RMSEA� 0.06; CFI, TLI� 0.95; SRMR� 0.08; Hu & Bentler, 1998) are

applied, practitioners would still consider both CFIPS B and TLIPS B being capable of

detecting the misspecified between-level models even when ICC is as low as 0.091

(ICC1). On the other hand, RMSEAPS B and SRMRB are not favored if ICC is too

low. More specifically, RMSEAPS B would not be recommended if ICC is as low as

0.091 (ICC1); SRMRB would not be recommended if ICC is as low as 0.231 (ICC3).

In particular, practitioners should not overlook the plausible misleading interpretation

of SRMRB if traditional cutoff values were applied in educational studies, where

ICCs are typically low (such as 0.220; Hedges & Hedberg, 2007).
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The pattern of change in mean CFIPS B and TLIPS B across difference levels of

ICC are expected. Both CFIPS B and TLIPS B are incremental fit indices (see their

formulas in Appendix B) used for evaluating the between-level model fit by compar-

ing the between-level hypothesized model with the between-level independence (or

baseline) model. The more discrepancy between x2 values of the between-level

hypothesized model (x2
PS B) and the independence model (x2

I B, S W ), the larger

CFIPS B and TLIPS B are (i.e., between-level model fit is reasonable). As previously

discussed, x2 values, including x2
PS B and x2

I B, S W , are influenced by ICC—stron-

ger relations among the variables at between-level (i.e., higher ICC condition) allow

for possibly ‘‘greater’’ discrepancies between the model-implied and observed

variance–covariance matrices (Kline, 2011). In our simulation scenarios where the

between-level model was misspecified, we found the value of mean x2
PS B decreased

when ICC got smaller. For instance, with NG = 500 and NS = 100, mean x2
PS B was

331.263 under ICC6 and diminished to 20.464 under ICC1 (see Table 3). In the same

manner, we found mean x2
I B, S W also decreased when the ICC became smaller

(695.164 under ICC6 and 39.573 under ICC1). Lower ICC not only leads to smaller

values of x2
PS B and x2

I B, S W , but also results in smaller discrepancies between

x2
PS B and x2

I B, S W . Therefore, researchers should be aware that CFIPS B and

TLIPS B are less likely to detect misspecified between-level models when ICC is low.

Unlike CFIPS B and TLIPS B, RMSEAPS B is not comparing with a baseline model

but a function of the overall model chi-square value (x2
PS B) while taking the model

complexity into account (i.e., including the model degrees of freedom in the formula,

see Appendix B for more information). As previously mentioned, in the simulation

scenarios where the between-level model was misspecified, the mean x2
PS B decreased

when ICC got smaller. Hence, it is easy to see a similar pattern of change in the mean

RMSEAPS B given the change in the mean x2
PS B: from 0.265 under ICC6 to 0.031

under ICC1 with NG = 500 and NS = 100. Thus, RMSEAPS B shows less promise for

detecting misspecification at the between-level when ICC is low. Similarly, SRMRB

was less effective on detecting misspecified between-level models when ICC was as

low as 0.231 (ICC3). These results supported our hypothesis that given identical type

of misspecification and sample size, the deviation between the model-implied and

observed variance–covariance matrices would become smaller under the low ICC

conditions.

The utilization of between-level–specific fit indices was discussed as follows.

Previous simulation studies (e.g., Hsu et al., 2015; Hu & Bentler, 1998) have sug-

gested that SRMR is more sensitive to misspecification in factor covariance (i.e.,

incorrectly constrain factor covariance as 0), while CFI, TLI, and RMSEA are more

sensitive to misspecification in factor pattern (i.e., incorrectly constrain factor pattern

to 0). Therefore, being unable to detect the misspecified factor covariance in MSEM

in low ICC conditions continues to be a concern. Future studies are needed to inves-

tigate whether CFIPS B and TLIPS B are capable of detecting different types of mis-

specification in the between-level model. Moreover, considering the influence of

ICC on the within-level-specific fit indices, we found that RMSEAPS W , CFIPS W ,
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TLIPS W and SRMRW were barely affected by the level of ICC. Therefore, we agree

with Ryu and West (2009) in thinking that within-level–specific fit indices can only

be used to assess the goodness of fit of within-level models. For practitioners, eva-

luation of within-level models in MSEM is not problematic because previous studies

have shown that both within-level–specific and traditional fit indices reveal goodness

of fit for within-level models regardless of ICC levels (Hsu et al., 2015). Our find-

ings suggest that practitioners can rely on either within-level–specific or traditional

fit indices to detect misspecifications in within-level models even when ICC is as

low as 0.091.

Consistent with Kim et al. (2012) and Lüdtke et al. (2008), we found that ICC

played an important role in the convergence problem occurring in our simulation and

should be discussed. One may consider that the low convergence rate could be the

result of the actual magnitude of the between-level and within-level variances (e.g., B

= 0.1 and W = 1.0 which might seem to be small) we have manipulated in our simula-

tion study rather than ICCs. We have done a further investigation on this issue and

found that, regardless of the actual magnitude of the between-level and within-level

variances, the convergence pattern was basically the same when ICC was the same

across different combinations of W and B. Hence, we concluded that, rather than the

magnitude of the between-level and within-level variances, ICC is the key to the con-

vergence rate and performance of the level-specific fit indices. Based on convergence

rates shown in Table 2, satisfied convergence rate (close to or higher than 95%) was

achieved under high ICC conditions (i.e., ICC4 [0.286], ICC5 [0.333], and ICC6

[0.500]). On the other hand, when the latent factor ICC was low (i.e., ICC1, ICC2,

and ICC3 conditions), using larger sample size in the between-level model (NG)

seemed to compensate for the convergence problem. More specifically, NG = 200 is

needed under ICC2 and ICC3 conditions, while for ICC1 condition, even NG = 500

seems insufficient. These findings were in line with Hox and Maas’s (2001) study

findings where larger NG was related to admissible parameter estimates when ICC

was low.

Limitations and Future Research Direction

This study has limitations that should be addressed. First, we adopted a multilevel

CFA model as shown in Figure 1 for data generation. Therefore, findings should only

be generalized to studies that apply multilevel CFA models. Further studies are

needed to determine whether the current findings can also be replicated using differ-

ent models (e.g., structural models). Second, we considered a limited number of

design factors in the current study. Additional scenarios created by using different

design factors such as unequal factor loadings, unbalanced designs (unequal group

condition), and the number of observed indicators per latent factor are needed in

future studies. Additionally, the ICC manipulated in the current simulation study is

the latent factor ICC, which can be reasonably computed when the exact same model

structure is applied to both between-level and within-level models. The aforesaid
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simulation findings and discussion provided insights into how latent factor ICC influ-

enced the effectiveness of between-level-specific fit indices. Note that identical

model structure can be a reasonable assumption in the simulation but may not be

always true in real data. Thus, the generalizability of the findings based on this

manipulation approach should be more conservative. Future research may also con-

sider manipulating ICC for each observed variable (e.g., Pornprasertmanit et al.,

2014) to validate our findings.

Concluding Remarks

In a recent review article written by Ryu (2014), she readdressed the importance of

using level-specific fit indices to detect the lack of model fit in MSEM. However,

based on our simulation results, we do not fully concur with her recommendation

especially in terms of the performance of between-level–specific fit indices (e.g.,

CFIPS B, TLIPS B, RMSEAPS B, and SRMRB) under low ICC conditions. More specifi-

cally, the performance of TLIPS B and RMSEAPS B are more likely influenced by ICC

compared with CFIPS B and SRMRB. Nevertheless, when traditional cutoff values

(RMSEA� 0.06; CFI, TLI� 0.95; SRMR� 0.08; Hu & Bentler, 1998) are applied,

both CFIPS B and TLIPS B can still detect the misspecified between-level models even

under low ICC conditions (i.e., ICC1 = 0.091). On the other hand, both RMSEAPS B

and SRMRB are not recommended especially under low ICC conditions (i.e., ICC1 to

ICC3). Based on our simulation results, we recommend that substantive researchers

should carefully evaluate and interpret the between-level specific fit indices under

low ICC condition. Meanwhile, we also call for more attention to the question of

how to appropriately evaluate between-level model with low ICC in MSEM.

Appendix A

Intraclass Correlation

Two types of ICC can be computed: latent factor ICC and observed variable ICC.

Latent factor ICC is of more interest in multilevel CFA models (Heck & Thomas,

2009; B. O. Muthén, 1994) and has been considered in many prior MSEM simulation

studies (e.g., Hox & Maas, 2001; Kim et al., 2012; Wu & Kwok, 2012). ICC for a

latent factor in a multilevel CFA model is the proportion of the latent factor variance

at the between-level (B) to the sum of the latent factor variances at both between-

(B) and within-level (W):

Latent factor ICC = B= B + Wð Þ: ðA1Þ

Note that latent factor ICC can only be computed when the exact same model

structure is applied to both between-level and within-level models (i.e., identical

model structure assumption). As shown in previous simulation studies, manipulation

of latent factor ICC is straightforward: fixing factor variance at within level as con-

stant and varying factor variance at between level.
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On the other hand, observed variable ICC can be understood as the proportion of

an observed variable’s variance that is attributed to the between-group differences

(Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). Under a multilevel CFA

modeling framework, the value of an observed variable ICC can be calculated as the

proportion of between-level variance (b) to the sum of between-level variance and

within-level variance (w) of that observed variable:

Observed variable ICC = b= b + wð Þ, ðA2Þ

where b = (between-level factor loading)23 between-level factor variance +

between-level residual variance and w = (within-level factor loading)23 within-level

factor variance + within-level residual variance.

Given the between-level factor variance values manipulated in our simulation, the

ICC values of the observed variables can be also calculated. For instance, under the

ICC1 condition, the variance of the between-level factors (see Figure 1) was con-

strained to 0.10, resulting in a latent factor ICC equal to 0.091. The corresponding

ICC for indicators y1 through y6 in ICC1 condition is 0.359 (B = 0.559; W = 1.000).

The magnitudes of observed variable ICC under ICC2 to ICC6 conditions are 0.378,

0.397, 0.414, 0.430, and 0.500, respectively.

Appendix B

The Equations of the Partially Saturated Model Fit Indices1

Chi-Square Statistic. We first consider applying the PS method to obtain the x2
PS B:

x2
PS B = FML SB û

� �
, SW ûS

� �� �
� FML SB ûS

� �
, SW ûS

� �� �
ðB1Þ

where FML SB û
� �

, SW ûS

� �� �
is the fitting function value for the saturated within-level

model; FML SB ûS

� �
, SW ûS

� �� �
is the fitting function value when both within-level

and between-level levels are saturated (the fully saturated model). The degrees of

freedom of x2
PS B (denoted by dfPS B) are equal to the difference between the number

of parameters in the partially saturated model and the fully saturated model:

dfPS B = dfB, Saturated � dfB, Hypothesized ðB2Þ

where dfB, Saturated and dfB, Hypothesized represent number of parameters in the saturated

within-level model and fully saturated model, respectively.

The x2
PS W and its corresponding degree of freedom dfPS W can be obtained

through the Equations (B3) and (B4), respectively:

x2
PS W = FML SB ûS

� �
, SW û

� �� �
� FML SB ûS

� �
, SW ûS

� �� �
ðB3Þ

dfPS W = dfW , Saturated � dfW , Hypothesized ðB4Þ
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Root Mean Square Error of Approximation. Given x2
PS B and its corresponding df, the

RMSEA for the between-level model (RMSEAPS_B) can be derived by the equation:

RMSEAPS B =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Max

x2
PS B � dfPS B

dfPS B Jð Þ , 0

� �s
ðB5Þ

In Equation (B5), J is between-level sample size (number of groups). To eliminate

the random error component of FML, the noncentral parameter dfPS B is subtracted

from the x2
PS B (Rigdon, 1996). Thus, x2

PS B � dfPS Bis an unbiased estimator of FML.

The denominator J in Equation (B5) functions as a penalty for large sample size,

which will cause inflated effects on estimating x2
PS B. The dfPS B in the denominator

transfers (x2
PS B � dfPS B)=J into a measure of lack of fit per df. The RMSEAPS B is

is set to zero providing x2
PS B is smaller than dfPS B. The RMSEAPS_W can be obtained

by the Equation (B6), where N denotes the within-level total sample size:

RMSEAPS W =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Max

x2
PS W � dfPS W

dfPS W N � Jð Þ , 0

� �s
ðB6Þ

Comparative Fit Index. CFI is an incremental fit index used to evaluate the goodness

of fit by comparing the hypothesized model to the independence model (Bentler,

1990). According to Ryu and West (2009), the CFI for the between-level model

CFIPS Bð Þ can be defined as:

CFIPS B = 1�
Max x2

PS B � dfPS B

� �
, 0

� �
Max x2

I B, S W � dfI B, S W

� �
, 0

� � ðB7Þ

where x2
PS B and dfPS B can be obtained by Equations (B1) and (B2), respectively.

x2
I B, S W represents the x2 test statistics with an independence (or null) between-

level model and a saturated within-level model:

x2
I B, S W = FML SB ûI

� �
, SW ûS

� �� �
� FML SB ûS

� �
, SW ûS

� �� �
: ðB8Þ

Note that an independence model can be obtained by correlating all the observed

variables and constraining all the correlation coefficients to zero. The corresponding

dfI B, S W is defined as:

dfI B, S W = dfB, Saturated � dfB, independent ðB9Þ

In sum, the CFIPS B is a criterion for testing exactly the goodness fit comparing the

hypothesized model with the independence model at the between level, while the

within-level model is saturated. Likewise, the CFIPS W can be computed by Equation

(B10).
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CFIPS W = 1�
Max x2

PS W � dfPS W

� �
, 0

� �
Max x2

S B, I W � dfS B, I W

� �
, 0

� � ðB10Þ

x2
S B, I W , shown in Equation (B11), represents the x2 test statistics with a saturated

between-level model and an independence within-level model. The corresponding

df 2
S B, I W can be computed by Equation (B12).

x2
S B, I W = FML SB ûS

� �
, SW ûI

� �� �
� FML SB ûS

� �
, SW ûS

� �� �
: ðB11Þ

df 2
S B, I W = dfW , Saturated � dfW , independent ðB12Þ

Tucker–Lewis Index. The TLI is a nonnormed fit index which penalizes for adding

parameters in the model (Tucker & Lewis, 1973). The TLIPS_B can be used to evalu-

ate the between-level model by comparing the hypothesized between-level model

and the independence between-level model under the condition that the within-level

model is saturated. On the other hand, the TLIPS_W can be used to evaluate the

within-level model by comparing the hypothesized within-level model and the inde-

pendence within-level model under the condition that the between-level model is

saturated. The equations for TLIPS B and TLIPS W are presented in the following

(Equations B13 and B14).

TLIPS B =

x2
I B, S W

dfI B, S W
� x2

PS B

dfPS B

x2
I B, S W

dfI B, S W
� 1

ðB13Þ

TLIPS W =

x2
S B, I W

dfS B, I W
� x2

PS W

dfPS W

x2
S B, I W

dfS B, I W
� 1

ðB14Þ

Standardized Root Mean Square Residual. SRMR can be computed for the within-level

(SRMRW ) and the between-level models (SRMRB), respectively. Note SRMR is not a

function of x2 test statistics and can be derived from the deviation between the sam-

ple variance–covariance matrix and the reproduced variance–covariance matrix.

Regular statistical packages like Mplus can now report SRMRW and SRMRB for

model evaluation. More specifically, SRMRB reflects the normed average distance

between the sample variance matrix of p observed variables and model-implied var-

iance matrix at the between level. The SRMRB can represent as follows:

SRMRB =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Pp
i = 1

Pi

j = 1

SBij�SB(u)ijð Þ
SBiiSBjj

	 
2

p p + 1ð Þ

vuuuut ðB15Þ
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Likewise, SRMRW reflects the normed average distance between the sample variance

matrix and model-implied variance matrix at the within level. The SRMRW can be

represented as follows:

SRMRW =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Pp
i = 1

Pi

j = 1

SWij�SW (u)ijð Þ
SWiiSWjj

	 
2

p p + 1ð Þ

vuuuut ðB16Þ

1In the current study, all the x2 values in the fit indices equations are robust x2 values from

MLR (maximum likelihood robust).
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