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Abstract

In this article, an overview is given of four methods to perform factor score regres-
sion (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal
and Laake, and the bias correcting method of Croon. The bias correcting method is
extended to include a reliable standard error. The four methods are compared with
each other and with structural equation modeling (SEM) by using analytic calculations
and two Monte Carlo simulation studies to examine their finite sample characteris-
tics. Several performance criteria are used, such as the bias using the unstandardized
and standardized parameterization, efficiency, mean square error, standard error bias,
type I error rate, and power. The results show that the bias correcting method, with
the newly developed standard error, is the only suitable alternative for SEM. While it
has a higher standard error bias than SEM, it has a comparable bias, efficiency, mean
square error, power, and type I error rate.

Keywords

factor score regression, bias, standard error, standardized parameterization, unstan-
dardized parameterization

Introduction

In the social and behavioral sciences, the aim of applied researchers is often to exam-

ine the relationships between latent variables. Latent variables are variables that are
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not directly observable, such as intelligence, skill, or motivation. To measure these

latent variables, observable indicators are used (Bollen & Hoyle, 2012). Structural

equation modeling (SEM) can be used to simultaneously and consistently estimate

both the measurement models and the structural relations between these latent vari-

ables (Bentler & Chou, 1987; Jöreskog, 1973). Despite the increasing popularity of

SEM, many applied researchers prefer to use the factor score regression (FSR)

method, which is more intuitive and consists of two steps. In a first step, the scores

on the latent variables are predicted using factor analysis (FA). In this article, we will

refer to these predicted scores as factor scores. In a second step, the factor scores are

used in a linear regression (ordinary least squares; Lu, Thomas, & Zumbo, 2005).

Unfortunately, there are an infinite number of ways to compute these factor scores,

all of which are consistent with the FA performed (Grice, 2001), meaning they are

all equally viable. The two most commonly used predictors are the regression predic-

tor (Thomson, 1934; Thurstone, 1935) and the Bartlett predictor (Bartlett, 1937;

Thomson, 1938). The factor scores will be different depending on which predictor is

used. This phenomenon is referred to as factor indeterminacy (Maraun, 1996;

Mulaik, 1972; Steiger, 1979). The degree of indeterminacy is small if the relation-

ship between the indicators and the latent variable is strong or if the number of indi-

cators is high (Acito & Anderson, 1986). When there is a high degree of factor

indeterminacy, it is even possible for an individual to score high according to the fac-

tor scores calculated by one method and score low according to the factor scores of

another method (Grice, 2001). Lastovicka and Thamodaran (1991) conclude that

indeterminacy implies that factor scores cannot be measured and researchers have to

accept that FA means it is impossible to obtain an unambiguous prediction or com-

putation of the latent variable scores. In other words, a degree of uncertainty is inher-

ent to factor scores, which is no longer accounted for when using factor scores in

linear regression. This uncertainty causes the regression coefficient to be biased, as

has been discussed extensively in the literature (e.g., Bollen, 1989; Lastovicka &

Thamodaran, 1991; Lewis & Linzer, 2005; Shevlin, Miles, & Bunting, 1997).

Despite its obvious drawbacks, FSR remains a popular method among applied

researchers (Lu & Thomas, 2008).

For this reason, improved methods to perform FSR have been developed, which

result in an unbiased regression coefficient (Croon, 2002; Skrondal & Laake, 2001).

Skrondal and Laake (2001) developed a method which avoids bias altogether, while

Croon (2002) found a method to correct for the bias. We will refer to these methods

as the bias avoiding and bias correcting method, respectively. Both methods indeed

result in an unbiased parameter estimate, but are hardly ever used in practice. This is

partly due to the highly technical and mathematical level of the articles describing

the methods. Lu, Kwan, Thomas, and Cedzynski (2011) tried to remedy this by giv-

ing an overview of both methods. The statistical performance of both methods was

also compared in a simulation study, with regard to accuracy and power. However,

the methods remain unused by applied researchers. This could be due to some practi-

cal issues. First of all, it is only described how to obtain an unbiased estimate for the
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regression coefficient, but for the bias correcting method, there is no standard error

available. This means that this method cannot be used yet to test hypotheses. Second,

the results of the methods have only been described for the unstandardized parame-

terization. Neither Skrondal and Laake (2001), Croon (2002), or Lu et al. (2011)

describe what happens when the standardized parameterization is used. In conclu-

sion, the methods are not directly usable for the applied researchers.

The goal of this article is to compare various methods for performing FSR, namely

FSR using the regression predictor (regression FSR), FSR using the Bartlett predictor

(Bartlett FSR), the method of Skrondal and Laake (2001; bias avoiding method), and

the method of Croon (2002; bias correcting method). For each method we derive the

bias analytically on the population level for both the standardized and unstandardized

parameterization. Next, for the bias correcting method, a new standard error is devel-

oped, making it possible to use the bias correcting method to test hypotheses. Finally,

two simulation studies are set up to compare the performance of the four methods in

finite samples, using normal and nonnormal data, respectively. The simulation studies

also allow us to evaluate the performance of the newly developed standard error.

Since SEM is generally considered as the standard method to examine the regressions

between latent variables, SEM is also included in the simulation studies. The aim is

to be able to compare the methods on their overall statistical performance and formu-

late recommendations for the applied users.

Setting

To be able to compare the four methods, a simple regression model with one depen-

dent and one independent variable is used. The simple regression model is used to

reduce the notational complexity and enhance comprehensibility. However, it can

easily be extended, to settings with more than one dependent variable and more than

one independent variable. In fact, a more complex setting is used in the simulation

study. Within this framework of a simple linear regression, we consider four possible

scenarios, which are visualized in Figure 1. In the first scenario, both the dependent

and independent variable are measured without error. They are considered observed

variables. In the second scenario, factor scores are used for the independent variable,

while the dependent variable is observed. In the third scenario, factor scores are used

for the dependent variable, while the independent variable is observed. In the fourth

and final scenario, factor scores are used for both variables. In all scenarios, the struc-

tural equation is

h = gj + z, ð1Þ

where h is the dependent variable, j is the independent variable, g is the regression

coefficient, and z is the residual error term. When h and j are latent, the following

measurement models are used:

x = Lxj + d ð2Þ
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y = Lyh + e, ð3Þ

where x = (X1, :::, Xi, :::, Xp)T and y = (Y1, :::, Yj, :::, Yq)T are vectors of mean-centered

observed indicators measuring j and h respectively, Lx and Ly are vectors of the fac-

tor loadings and d and e are the respective vectors of measurement error variables.

In the first step of FSR, we use these measurement models to perform an FA for

each latent variable separately and to calculate the factor scores for j (Fj) and h

(Fh). To be able to perform a FA, the metric scales of the latent variables j and h

have to be fixed. This can be done in several ways, for example by fixing one factor

loading per latent variable to 1 or by fixing the variance of the latent variable to 1.

We will refer to the latter as the standardized parameterization, and the former as the

unstandardized parameterization. In this article, we will mainly use the unstandar-

dized parameterization.

The factor scores are calculated by multiplying a factor score matrix A with the

observed indicators x (or y):

Fh = Ahy ð4Þ

Fj = Ajx: ð5Þ

The computation of the factor score matrices Ah and Aj depends on the method used

for the prediction of the factor score. The different methods and their influence will

be discussed in the next section.

Figure 1. The four scenarios considered.
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In the second step of FSR, a linear regression is performed between the factor

scores, resulting in a regression coefficient. In a simple linear regression, the true

regression coefficient is defined as the true covariance between the dependent and

the independent variables, divided by the variance of the independent variable:

g =
cov(j, h)

var(j)
: ð6Þ

When performing the linear regression with factor scores, the regression coefficient

becomes

b =
cov(Fj, Fh)

var(Fj)
, ð7Þ

which is not necessarily the same as the true regression coefficient. The relationship

between g and b can best be understood if we work out the covariance and variances

of the factor scores. In Appendix A, we derive the exact relationship between b and g:

b =
cov(Fj, Fh)

var(Fj)
=

AjLxcov(j, h)L
0

yA
0

h

AjSxA
0
j

=
AjLxvar(j)L

0

yA
0

h

AjSxA
0
j

g: ð8Þ

From this, it is clear that in most cases the regression coefficient obtained with FSR

will not be the same as the true regression coefficient. It is also possible to calculate

the expected regression coefficients when factor scores are only used for one of the

variables, dependent or independent. The interested reader can find the calculations

in Appendix A.

Methods to Perform Factor Score Regression

To perform FSR, several methods can be used, such as the regression FSR method,

the Bartlett FSR method, the bias avoiding method (Skrondal & Laake, 2001) and the

bias correcting method (Croon, 2002). In this section, these four methods will be dis-

cussed. In Table 1, an overview of this discussion is given.

Regression Factor Score Regression Method

The regression FSR method uses the regression predictor (Thomson, 1934;

Thurstone, 1935) to compute the factor scores and then uses these factor scores in a

linear regression. When using the regression predictor, the factor scoring matrices

AR
j and AR

h are computed as follows:

AR
j = FL

0

xS�1
x = var(j)L

0

xS�1
x , ð9Þ

and
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AR
h = var(h)L

0

yS�1
y : ð10Þ

This means the formula for the variance of Fj can be simplified. In Appendix B, this

is done to show that the regression coefficient in FSR is not biased in all cases. When

using the regression FSR method, there is only bias when factor sores are used for the

dependent variable. With regard to bias, it is acceptable to use the regression FSR

method if only the independent variables are factor scores. When factor sores are used

for the dependent variable, one should not use regression FSR, since the regression

parameter will be biased in most cases.

These results only apply when the unstandardized parameterization is used (Skrondal

& Laake, 2001). The standardized regression coefficient gz is different from the unstan-

dardized regression coefficient g. The standardized regression coefficient can be calcu-

lated from the unstandardized regression coefficient and standard deviations:

gz =
sd(j)

sd(h)
g: ð11Þ

Since sd(Fj) and sd(Fh) are biased, the standardized regression coefficient will be

biased too if factor scores are used for any of the variables.

Bartlett Factor Score Regression Method

The Bartlett FSR method uses the Bartlett predictor (Bartlett, 1937; Thomson, 1938)

to compute the factor scores and then uses these factor scores in a linear regression.

The factor scoring matrices AB
j and AB

j are calculated as follows:

Table 1. The Regression Parameter b in Relationship to g When Using Factor Score
Regression.

b =

Both
variables
observed

Independent
variable

factor scores,
dependent

variable
observed

Independent
variable

observed,
dependent

variable
factor scores

Both
variables
factor
scores

The general case g AjLxvar(j)

AjSxA
0
j

g L
0

yA
0

hg AjLxvar(j)L
0

yA
0

h

AjSxA
0
j

g

Regression FSR g g AR
hLyg AR

hLyg

Bartlett FSR g var(j)

AB
jSxA

B0
j

g
g var(j)

AB
jSxA

B0
j

g

Bias avoiding method g g g g
Bias correcting method g g g g

Note. g is the true population regression parameter, b is the regression parameter that is obtained when

using FSR. When b = g, there is no bias. If b is not equal to g, there is bias.
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AB
j = (L

0

xΘ
�1
d Lx)�1L

0

xΘ
�1
d ð12Þ

AB
h = (L

0

yΘ
�1
e Ly)�1L

0

yΘ
�1
e , ð13Þ

with Θd and Θe the covariance matrices of respectively, d and e.
The Bartlett predictor is less known than the regression predictor, but has the

advantage that AB
j Lx = (L

0

xΘ
�1
d Lx)�1L

0

xΘ
�1
d Lx = 1 and AB

hLy = 1. This implies that

the formulas for the covariances can be simplified. The formula for the variance of j

stays the same. Combined, this gives the regression coefficients as in Appendix C

and Table 1. When using Bartlett FSR, there is no longer bias when factor sores are

used for the dependent variable. However, now there is bias when factor scores are

used for the independent variable. There is also still bias when factor scores are used

for both variables.

Again, these results only apply for the unstandardized parameterization. Since the

standard deviations are also biased using this method, the standardized regression

coefficient will be biased if factor scores are used for any of the variables.

Bias Avoiding Method

The bias avoiding method was developed by Skrondal and Laake (2001). Based on

the results discussed in the previous section, they concluded that one should simply

use the regression predictor to predict the factor scores of the independent variable,

while one should use the Bartlett predictor to predict the factor scores of the depen-

dent variable. It has already been proven that this works for the unstandardized para-

meterization when factor scores are used for only one of the variables, but Skrondal

and Laake (2001) showed that this also works when factor scores are used for both

variables. In Appendix D, it is proven that this method results in unbiased estimates

for all settings, but it has some drawbacks. First of all, one has to determine in

advance if a variable will be dependent or independent. Moreover, a variable can only

be dependent or independent. Mediational relationships are not possible. Second, this

method only works when the unstandardized parameterization is used. When using

the standardized parameterization, the regression coefficient estimate will still be

biased.

Bias Correcting Method

The bias correcting method was developed by Croon (2002). In this method, the fac-

tor scores are computed using either the regression predictor or the Bartlett predictor.

After computing the factor scores, their variances and covariances are calculated.

Next, these variances and covariances of the factor scores are used to compute the

variances and covariances of the true latent variable scores. Finally, these estimates

are used to calculate the regression coefficient. In Appendix E, it is shown how the

covariance and variance of the true latent variable scores can be computed. Once
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these computations have been made, the regression coefficient can be computed as

b = cov(j, h)=var(j). Since these variances and covariances are unbiased, this results

in an unbiased regression coefficient estimate (see Table 1). While this process is

more complex than the bias avoiding method, it does have some advantages over it.

First of all, it works for both the Bartlett and the regression predictor. Second, since

the variances are no longer biased, the standard deviations necessary to calculate the

standardized regression coefficient are also unbiased. This means that the method of

Croon (2002) also results in an unbiased regression coefficient when the standardized

parameterization is used.

Standard Errors

Skrondal and Laake (2001), Croon (2002), and Lu et al. (2011) only describe how to

calculate the regression coefficient, just as in the previous section. To be able to use

the methods for hypothesis testing, it is necessary to have a complementary signifi-

cance test, which requires a standard error and a theoretical distribution. For regres-

sion FSR, Bartlett FSR and the bias avoiding method, this is no problem. All three

methods perform a regular linear regression after calculating the factor scores. This

means that the significance test from the linear regression can be used. This test uses

the following standard error:

SE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2dvar(Fj)(n� 1)

s
,

where S2 is defined as:

S2 = dvar(Fh)(1� r2)
n� 1

n� (p + 1)
,

with r = gz = sd(j)
sd(h)

g, n is the sample size, and p is the number of independent vari-

ables. A t-statistic is calculated by dividing the regression coefficient by its standard

error. Finally, a p value is calculated by comparing this t-statistic with a t-distribution

with n2 (p + 1) degrees of freedom. Note, that when performing hypothesis tests, we

are dealing with finite samples. For this reason, all population parameters are

replaced with their corresponding sample estimates.

For the bias correcting method, the standard error is not so easy to calculate. If

one would use the above standard error, then this would be the standard error that

coincides with the original, uncorrected regression coefficient. In this case, using the

corrected regression coefficient to calculate the t value would result in an incorrect t

value (and p value). On the other hand, using the uncorrected regression coefficient

would just result in a significance test for the uncorrected regression coefficient and

is again not adequate.
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Another alternative would be to use the above formula for the standard error, but

replace all variances and standard deviations with their corrected versions (Croon,

2002). Unfortunately, this approach implicitly assumes that the true latent scores are

directly observable, resulting in an underestimation of the standard error. This sug-

gests that the standard error consists of multiple parts, namely error resulting from

the regression itself and error resulting from the factor scores. One way to calculate

the error resulting from the factor scores, is to first calculate the prediction error in

the factor scores. The prediction error in Fj and Fh will be denoted as varex
and varey

,

respectively. These prediction errors can be calculated for both the regression and

Bartlett predictor. Here, we will only discuss the regression predictor. Skrondal and

Rabe-Hesketh (2004, equation 7.7) showed that the prediction errors can be calcu-

lated as follows when using the regression predictor:

varex
=F� F

0
L
0
S
�1
x LF

= var(j)� var(h):

The last equation is derived from Equation (B3) in Appendix B. The same derivations

can be made for the dependent variable h:

varey
= var(h)� var(Fh):

The prediction error in the factor scores is thus the difference between the observed

and the corrected variance. Since this is again a variance, the formula from the regu-

lar linear regression can be used to calculate the corresponding S2. From this, it can

be derived that the total S2 consists of three parts:

1. S2
reg = var(h)(1� r2) n�1

n�(p + 1)

2. S2
y = varey

(1� r2) n�1
n�(p + 1)

3. S2
x = varex

r2 n�1
n�(p + 1)

:

Note that for S2
x , r2 is used instead of 1 2r2. This is because the prediction error in

the independent variable has more influence on the standard error, as the relation

between the variables increases. When the independent variable has no influence on

the dependent variable, it also has no influence on the standard error. Now, the total

S2 can be calculated by summing up the three parts:

S2
total = S2

reg + S2
y + S2

x : ð14Þ

Finally, a new adjusted standard error can be calculated as

SE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

total

var(Fj)(n� 1)

s
: ð15Þ

Devlieger et al. 749



Using this approximate standard error and the corrected regression coefficient,

an approximate t statistic can be obtained and compared with the theoretical

t-distribution with n2 (p + 1) degrees of freedom. Using this newly developed stan-

dard error, the bias correcting method can now be used to perform hypothesis tests

about the regression coefficient g.

Simulation Studies

Two simulation studies are conducted to examine the finite sample performance of

these methods and significance tests. In a first study, the methods are studied using

item responses that are normally distributed. In the second study, nonnormal item

responses are used. The results of these studies can be used as guidelines to deter-

mine which method to use, depending on the data and research questions.

First, an outline of how the data were simulated is given, followed by a description

of the analyses performed on the simulated data and the results of both studies.

Data Simulation
Study 1. Before the simulation of the data, a ground truth or population model is

defined. The structural model consists of a multivariate regression between three

latent independent variables, j1, j2 and j3, and two latent dependent variables h1

and h2, resulting in the structural equation:

h1 = g1j1 + g2j2 + g3j3 + z1, ð16Þ

h2 = g3j1 + g1j2 + g2j3 + z2: ð17Þ

The model is depicted in Figure 2.

The simulation of the data consists of two steps, which are carried out using R (R

Development Core Team, 2008). In the first step, the true latent variable values of

j1, j2, j3, h1 and h2 are generated. The variance of the independent variables j1, j2

and j3 is set at 100, while the residual variance of the dependent variables h1 and h2

is set at 400. The covariances between all latent variables are 0. To generate data that

comply with these parameters, the true latent scores of j1, j2 and j3 are first gener-

ated, followed by the regression residuals z1 and z2. Finally, using the structural

equations h1 = g1j1 + g2j2 + g3j3 + z1 and h2 = g3j1 + g1j2 + g2j3 + z2, the true latent

scores on h1 and h2 are generated.

In the second step, data are generated for each observed item response xij and yij,

using the true latent scores and the measurement models, with i referring to the latent

variables and j to the items. The measurement models of the latent variables are

yij = lyij
hi + eij and xij = lxij

ji + dij. All lxij
and lyij

are set at 1. The residual variances

Θeij
of all yij are set at Θeij

=
var(hi)(1�CDyi

)

CDyi

and the residual variances Θdij
of all xij are

set at Θdij
=

var(ji)(1�CDxi
)

CDxi

, with CDyi
and CDxi

the respective coefficients of
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determination for the measurement models. All CDxi
and CDyi

are equal and will

thus be referred to as CD. To create item responses that are normally distributed

(skewness = 0, kurtosis = 3), eij and dij are generated from a univariate normal

distribution.

The coefficient of determination CD, the regression coefficient gi, the sample size

n, and the number of items I for the two latent variables are varied to create 216

experimental conditions. The sample size is varied to be able to determine the con-

sistency of the methods, while the CD is varied to account for the degree of factor

score indeterminacy. A higher CD implies a lower degree of factor score indetermi-

nacy (Acito & Anderson, 1986). The regression coefficient is varied to be able to

determine the power and type I error rate. The values used for these parameters can

be found in Table 2.

Study 2. In the second simulation study, the aim is to compare the methods when the

observed item responses are not normally distributed. This means the simulation of

the data is done in the same way as in Study 1, except for the generation of the eij

and dij. To create nonnormal item responses, the generation of eij and dij is done in

two different ways. To create item responses that are symmetrical, but have a large

kurtosis, eij and dij are generated from a t-distribution with three degrees of freedom,

multiplied by
ffiffiffiffiffiffiffiffi
Yeij

p
or

ffiffiffiffiffiffiffiffi
Ydij

p
, respectively. On average, this results in data with an

almost-zero skewness (=0.001) and a kurtosis of about 10.057. To create item

responses that are skewed and have a nonnormal kurtosis, eij and dij are generated

Figure 2. The population model.
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from x2 -distributions with one degree of freedom, multiplied by
ffiffiffiffiffiffiffiffi
Yeij

p
or

ffiffiffiffiffiffiffiffi
Ydij

p
,

respectively. On average, this results in data with a skewness of 0.693 and a kurtosis

of 4.785. Note that the way the data are simulated implies that the degree of non-

normality reduces as the CD increases. This is due to the fact that eij and dij have less

influence when the factor loadings become stronger.

Analyses

The analysis performed on the data is the same in both studies. Five methods of anal-

yses are performed on the simulated data, namely regression FSR, Bartlett FSR, the

bias avoiding method (Skrondal & Laake, 2001), the bias correcting method (Croon,

2002), and SEM.

For the SEM analysis, a correctly specified SEM model is constructed, meaning

that it corresponds with the population model used to generate the data. This model

is estimated using the simulated data set, with a ‘‘maximum likelihood’’ estimator.

From the results, the regression coefficient ĝ, and its standard error SE and p value p̂

are obtained, as well as the standardized regression coefficient ĝz. This is done for a

1,000 simulated data sets for every simulation condition. Based on all 1,000 replica-

tions, several performance criteria are calculated, namely the mean regression coeffi-

cient estimations �g and �gz, the bias using the unstandardized and the bias using

standardized parameterization, the empirical standard deviation, the mean square

error (MSE), the mean standard error and the standard error bias for the regression

coefficient and the power of the statistical test. For the conditions with a regression

coefficient of 0, the type I error rate is calculated instead of the power.

For the four FSR methods, an FA is performed for all latent variables. Hereafter,

factor scores are calculated, using the Bartlett and the regression predictor. Next, the

regression factor scores are used in two linear regressions for the regression FSR and

the Bartlett factor scores are used for the Bartlett FSR. For the bias avoiding method,

two linear regressions are performed, using the Bartlett factor scores for the depen-

dent variables and the regression factor scores for the independent variables. Finally,

for the bias correcting method, the regression coefficient and standard errors are

Table 2. Summary of the Model Parameters Used in Simulation.

Model parameter Value

Regression coefficients g1 0
g2 1.5
g3 0.41

Coefficient of determination (CD) 0.3, 0.6
0.7, 0.9

0.95, 0.99
The sample size (n) 300, 500, 800, 2,000
The number of items (I) 3, 5, 10
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calculated using the formulas described above. Again, the regression coefficients g

and ĝz and the standard error SE and p value p̂ for ĝ were retained. This was

repeated 1,000 times and the same performance criteria were calculated. The criteria

are summarized in Table 3.

Analysis of the Results
Study 1. To compare the five methods with regard to the bias using the unstandar-

dized and standardized parameterization, efficiency, MSE, standard error bias, type I

error rate and power, an analysis of variance (ANOVA) was performed for each of

these performance measures. The independent variables were the design factors,

namely the sample size, coefficient of determination, method, number of items, and

the value of gamma. All possible two-way interactions were also included in the anal-

yses. This resulted in 15 predictors for each model. The results of these ANOVAs can

be found in Table 4. Because of space constraints, only the informative effects are

discussed in the ‘‘Results’’ section.

Study 2. The same ANOVAs were performed when the data were not normally dis-

tributed. However, one extra independent variable was added, namely the degree of

nonnormality. This resulted in 21 predictors. The results can be found in Table 6.

Results of Study 1

The results are discussed per statistical performance criterion. The proportion of suc-

cessful replications, the bias, and efficiency results are discussed first, followed by

the MSE, standard error bias, type I error rate, and power. In Table 5, a comparison

between the methods for all performance criteria is given.

Table 3. Summary of the Performance Criteria, With R the Number of Successful
Replications.

Criteria Formula

ĝ 1
R

PR
i = 1 ĝi

�gz
1
R

PR
i = 1 ĝzi

Bias 1
R

PR
i = 1 (ĝi � g)

Relative bias Bias
g

Empirical standard deviation (ESD)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
R�1

PR
i = 1 (ĝi � �g)2

q
Mean square error (MSE) 1

R

PR
i = 1 (ĝi � g)2

Mean standard error (MSTE) 1
R

PR
i = 1 SE

Standard error bias (SEB) 1
R

PR
i = 1 (MSTE� ESD)

Power/type I error 1
R

PR
i = 1 (p̂i\0:05)
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Proportion of Successful Replications. The first performance measure that was consid-

ered was the proportion of successful replications for each method. The proportion of

successful replications is very high for all methods and conditions, namely 0.989 or

higher. The proportion of successful replications of SEM is even higher than the pro-

portions of the other four methods, which all have the same proportions.

Bias. As can be seen in Figure 3A, only the regression FSR and the Bartlett FSR

method are biased, whereas the three remaining methods are not. More specifically,

Table 4. ANOVA Models, Using Normally Distributed Data.

Effect df Successful replications Bias Standardized bias Efficiency

I 2 1253.97*** 43.37*** 105.00*** 271.22***
g 2 0.00 264.20*** 722.37*** 1192.35***
CD 5 839.31*** 154.10*** 412.64*** 3131.66***
Method 4 48.24*** 265.33*** 230.36*** 310.78***
n 3 1.41 0.16 0.18 15202.77***
Method * CD 20 43.35*** 74.21*** 67.21*** 127.58***
Method * g 8 0.00 131.22*** 113.74*** 3.92**
Method * I 8 40.24*** 17.73 *** 16.52*** 32.96***
Method * n 12 2.22* 0.02 0.012 12.15***
CD * g 10 0.00 74.66*** 202.22*** 389.46***
CD * I 10 800.24*** 10.60*** 26.21*** 204.36***
CD * n 15 7.21*** 0.03 0.04 181.63***
g * I 4 0.00 20.55*** 50.20*** 0.88
g * n 6 0.00 0.70 0.33 50.27***
I * n 6 3.11* 0.08 0.08 70.98***

Effect df MSE
Standard
error bias

Type I
error rate Power

I 2 38.98*** 14.13*** 47.11*** 55.84***
g 2 144.13*** 1122.45*** / 921.72***
CD 5 164.28*** 531.54*** 2.92 + 177.54***
Method 4 40.55*** 62.15*** 9.33*** 0.22
n 3 65.76*** 79.20*** 38.13*** 429.60***
Method * CD 20 25.57*** 32.43*** 1.42 0.17
Method * g 8 44.50*** 65.25*** / 0.22
Method * I 8 8.14*** 1.64 0.16 0.05
Method * n 12 0.37 1.35 0.22 0.04
CD * g 10 83.48*** 355.61*** / 177.66***
CD * I 10 23.48*** 12.22*** 15.40*** 24.47***
CD * n 15 3.33*** 28.90*** 3.41*** 48.33***
g * I 4 18.90*** 0.97 / 56.01***
g * n 6 1.01 50.96*** / 429.17***
I * n 6 0.65 0.99 5.89*** 13.17***
Residuals 2,044 634 1,339

Note. ANOVA= analysis of variance; MSE = mean square error; CD = coefficient of determination.

+ p = .01-.05.*p = .001-.01. **p = .000-.001. ***p \ .000.

754 Educational and Psychological Measurement 76(5)



both methods underestimate the regression coefficient and the Bartlett FSR method is

more severely biased than the regression FSR method. Moreover, the bias is not influ-

enced by the sample size, implying that both the regression and Bartlett FSR methods

are also inconsistent. The bias does disappear with an increasing factor loading and

when g is equal to 0. When the number of items goes up, the bias also declines, but

has not disappeared completely when the number of items reaches 10. The three other

methods, namely the bias avoiding, bias correcting, and SEM method, exhibit, as

expected, very little bias. The three methods perform very similar.

Bias Using Standardized Parameterization. The patterns change slightly when the stan-

dardized parameterization is used (see Figure 4A). Now, the bias avoiding method

also underestimates the regression coefficient and is inconsistent. There is also no

longer a difference between the Bartlett FSR, regression FSR, and bias avoiding

methods. All other effects can be interpreted in the same way as in the unstandar-

dized parameterization.

Efficiency. While regression FSR and Bartlett FSR are the most biased methods, they

are also the most efficient methods. The Bartlett FSR method is even slightly more effi-

cient than the regression FSR method. The three other methods have very similar stan-

dard errors. However, the bias avoiding method is slightly more efficient than the other

two when the coefficient of determination is low. It is also important to note that the dif-

ferences between the methods disappear as the coefficient of determination increases.

Mean Square Error. The regression and Bartlett FSR methods have a high MSE, as

compared with the other three methods, with the Bartlett FSR having the worst MSE.

The MSE of the other three methods is very similar to each other. The differences

between the five methods disappear when the CD approaches 1 or when the value of

g approaches 0.

Table 5. Comparison Between the Five Methods per Performance Criteria.

Regression
FSR

Bartlett
FSR

Bias
avoiding

Bias
correcting SEM

Number of successful replications 2 2 2 2 1
Bias 4 5 1 1 1
Standardized bias 3 3 3 1 1
Efficiency 2 1 3 4 4
MSE 4 5 1 1 1
Standard error bias 4 2 5 3 1
Type I error 1 1 1 1 1
Power 1 1 1 1 1

Note. MSE = mean square error. The numbers indicate the performance of the methods in relation to

each other for each performance criteria. A score of 1 means the method performed best on that

particular performance criteria, while a score of 5 means the method performed the worst.
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Figure 3. Bias. (A) The influence of sample size, coefficients of determination (CD), number
of items, and the value of g on the bias, in interaction with the method. (B) The influence of
sample size, coefficient of determination, number of items, and the value of g on the bias, in
interaction with the method, when the data are not normally distributed.
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Figure 4. Bias using the standardized parameterization. (A) The influence of sample size,
coefficients of determination (CD), number of items, and the value of g on the bias using the
standardized parameterization, in interaction with the method. (B) The influence of sample
size, coefficients of determination (CD), number of items, and the value of g on the bias using
the standardized parameterization, in interaction with the method, in interaction with the
method, when the data are not normally distributed.
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Standard Error Bias. With regard to the standard error bias, there is a large difference

between the methods. In Figure 5A, it can be seen that all five methods show bias in

the standard error. However, the SEM method clearly has the smallest standard error

bias. The four alternative methods are more severely biased with regard to the stan-

dard error. On average, the Bartlett FSR method gives the second best estimation of

the standard error, followed by the bias correcting and regression FSR methods.

Over all methods, a higher sample size, a higher CD or more items, lowers the

standard error bias, while a larger value of g increases the standard error bias. When

the CD approaches 1, all differences between the methods disappear and when the

value of g increases, the differences between the methods also increases. It is impor-

tant to note that when there is no effect (g = 0), the standard error bias almost com-

pletely disappears for all five methods. This means the standard error bias will have

little effect on the type I error rate.

Type I Error. The type I error rates for the regression FSR, Bartlett FSR and bias

avoiding method are very similar, while SEM has a slightly higher type I error rate

and the bias correcting method has a slightly lower type I error rate. While these dif-

ferences are statistically significant, for all five methods the type I error rates are

around the expected value of 0.05. In practice, this means these differences are not

really relevant.

Power. All five methods have approximately the same power. There are only small

differences when the coefficient of determination is very weak. In that case, SEM has

the lowest power, followed by the bias correcting method. The other methods have

the same power.

Results of Study 2

The results of the second study are described in relation to the first study. The impact

of the kind of nonnormality is also discussed.

Proportion of Successful Replications. When the data are not normally distributed, the

proportion of successful replications is a lot lower and the differences between the

methods are larger. Especially the proportion of successful replications of SEM is

very low as compared with the other four methods. This is mostly due to the condi-

tions where the coefficient of determination is very low (CD = 0.3) or the number of

items is low (I = 3). The proportion of the bias correcting method is the second low-

est, followed by the bias avoiding method. The regression FSR method has the high-

est proportion of successful replications. All these effects are largely due to the

conditions where a t-distribution was used to simulate the item responses. The x2 dis-

tribution seems to have less effect. This could be due to the fact that the kurtosis is

larger when using the t-distribution than when using the x2 distribution.
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Bias. With regard to the bias, there are two main shifts in the patterns (Figure 3B).

First, now, there is a difference between SEM, the bias avoiding, and bias correcting

methods. SEM still shows almost no bias, while the bias correcting and bias avoiding

methods do show a little bias. The bias avoiding method is more biased than the bias

correcting method. The regression FSR and Bartlett FSR still show a large amount

of bias. Second, the sample size does have an influence for SEM, the bias avoiding,

and bias correcting method. Because of the larger bias in these methods, it can now

be seen that these methods are consistent. Again, these patterns are largely caused by

the conditions using the t-distribution.

Bias Using Standardized Parameterization. The patterns with regard to the bias using

standardized parameterization change in two ways (see Figure 4B). First, both SEM

and the bias correcting method show a small bias in the standardized regression para-

meter, with SEM having the smallest bias. Second, the sample size does have an

influence on the bias of the bias correcting and SEM method when the data are not

normally distributed. When the sample size increases, the bias decreases.

Efficiency. The efficiency is a lot lower when the data are not normal, especially when

the t-distribution was used to simulate the data.

Mean Square Error. While the MSE of SEM, bias correcting, and bias avoiding

method were very similar to each other when the data were normally distributed,

now there are small differences. SEM has the smallest MSE, closely followed by the

bias correcting method. This is again due to the high kurtosis of the conditions simu-

lated with the t-distribution. All other effects remain the same.

Standard Error Bias. When the data are not normally distributed, the standard error

bias of the bias correcting method is the worst in some conditions (see Figure 5B),

especially when the CD or the value of g is very low.

Type I Error. When the data are not normally distributed, especially when there is a

high kurtosis, the type I error rate is larger than the expected value of 0.05 for all

methods. Especially the bias correcting method seems to have a large type I error

rate, when the coefficient of determination is very low, namely CD = 0.30.

Power. As can be expected, the power seems to be lower when the data are not nor-

mally distributed. Table 6 shows that the method does not have a significant influence

on the power, when the data are not normally distributed.

Discussion

In this article, an overview was given of four methods for FSR, namely regression

FSR, Bartlett FSR, the bias avoiding method (Skrondal & Laake, 2001), and the bias
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Figure 5. Standard error bias. (A) The influence of sample size, coefficients of
determination, number of items, and the value of g on the standard error bias, in interaction
with the method. (B) The influence of sample size, coefficients of determination, number of
items, and the value of g on the standard error bias, in interaction with the method, in
interaction with the method, when the data are not normally distributed. Note that the scale
of the y-axis is not the same as in (A).
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Table 6. ANOVA Models, Using Nonnormal Data.

Effect df
Successful

replications Bias
Standardized

bias Efficiency

I 2 124.49*** 168.59*** 270.76*** 240.69***
g 2 0.00 1215.43*** 2449.80*** 2974.83***
CD 5 1219.83*** 686.33*** 1266.31*** 6770.51***
Method 4 183.97*** 528.00*** 525.92*** 190.16***
n 3 79.03*** 4.31* 4.24* 2657.27***
Nonnormality (NN) 1 2100.28*** 299.53*** 342.32*** 8044.76***
Method * CD 20 121.49*** 110.43*** 122.62*** 15.08***
Method * g 8 0.00 262.68*** 264.49*** 3.55**
Method * I 8 28.19*** 22.15*** 25.99*** 3.15*
Method * n 12 1.83 + 0.55 0.20 0.49
Method * NN 4 153.36*** 5.82** 7.09*** 3.15*
CD * g 10 0.00 340.41*** 615.95*** 644.05***
CD * I 10 36.24*** 33.25*** 45.76*** 32.18***
CD * n 15 36.33*** 2.64** 1.77 62.45***
CD * NN 5 1087.06*** 111.44*** 92.32*** 1874.78***
g * I 4 0.00 77.43*** 126.66*** 4.54*
g * n 6 0.00 1.88 1.33 2.57 +

g * NN 2 0.00 152.23*** 165.91*** 1060.31***
I * n 6 3.39* 1.07 0.42 4.04**
I * NN 2 61.01*** 22.12*** 14.55*** 8.72**
n * NN 3 54.25*** 7.35*** 2.89 + 2.53

Effect df MSE
Standard
error bias

Type I
error rate Power

I 2 96.50*** 4.57 + 3.83 + 321.30***
g 2 824.44*** 2473.21*** / 3549.41***
CD 5 935.59*** 2733.13*** 378.18*** 1307.85***
Method 4 48.17*** 95.91*** 35.50*** 0.72
n 3 70.00*** 4.67* 31.634*** 810.00***
Nonnormality (NN) 1 657.45*** 6300.45*** 1804.36*** 365.06***
Method * CD 20 20.40*** 35.43*** 31.72*** 1.49
Method * g 8 64.50*** 70.14*** / 0.99
Method * I 8 3.88** 2.19 + 1.27 0.57
Method * n 12 0.48 0.68 1.21 0.05
Method * NN 4 5.28** 22.85*** 33.79*** 2.11
CD * g 10 408.33*** 524.64*** / 926.40***
CD * I 10 38.39*** 0.74 15.70*** 111.62***
CD * n 15 16.93*** 1.48 17.76*** 114.89***
CD * NN 5 308.80*** 1449.50*** 340.35*** 126.93
g * I 4 55.55*** 23.48*** / 198.07***
g * n 6 4.79 9.81*** / 662.82***
g * NN 2 265.38*** 1037.45*** / 158.74***
I * n 6 1.13 0.64 1.36 22.92***
I * NN 2 3.88** 8.01** 0.31 26.26***
n * NN 3 11.56*** 0.71 74.15*** 13.08
Residuals 4,187 1,339 2,763

Note. ANOVA = analysis of variance; MSE = mean square error; CD = coefficient of determination.

+ p = .01-.05. *p = .001-.01. **p = .000-.001. ***p \ .000.
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correcting method (Croon, 2002). The four methods were described and their statisti-

cal properties were discussed on the population level. Since there was no adequate

standard error available for the bias correcting method, a new standard error was

developed. To be able to determine the statistical properties of the methods in finite

samples and to evaluate the performance of the newly developed standard error, two

Monte Carlo simulation studies were performed.

The simulation studies showed that the regression FSR method does not perform

well. This confirms the general expectations found in the literature (e.g., Bollen,

1989; Croon, 2002; Lastovicka & Thamodaran, 1991; Lewis & Linzer, 2005; Shevlin

et al., 1997; Skrondal & Laake, 2001). It also complies with the results of Lu et al.

(2011). The method is biased for both the standardized and unstandardized parame-

terization and is inconsistent. The method does have a high efficiency, but it also has

a high MSE. This means that the high efficiency cannot compensate for the high bias.

Moreover, the estimates of the standard error have the second highest bias observed.

The Bartlett FSR method performs even worse than the regression FSR method,

with a comparable bias using the standardized parameterization, but a higher unstan-

dardized bias and MSE. It does have a lower standard error bias. It is also the most

efficient method, but at the same time it has the highest bias and MSE of all methods.

The first corrected method, namely the bias avoiding method of Skrondal and

Laake (2001), only performs slightly better than the regression FSR and Bartlett FSR

methods. It is unbiased when using the unstandardized parameterization, but it is still

biased when using the standardized parameterization. This result highlights the fact

that standardized and unstandardized regression coefficients do not always behave in

the same way (Kim & Mueller, 1976). The standard error bias is the largest of all

methods and it has the same power and type I error rate as regression FSR and

Bartlett FSR. It can be concluded that this method only outperforms regression FSR

and Bartlett FSR with regard to the unstandardized bias and is outperformed by SEM

and the bias correcting method.

The second corrected method, the bias correcting method, performs better than the

bias avoiding method. It is unbiased for both the standardized and unstandardized parame-

terization and has the highest power. When the observed item responses are not normally

distributed, it does show a slightly larger bias than the SEM method, but its proportion of

successful replications is also much higher. With regard to the standard error bias, only

SEM and Bartlett FSR do better. This result shows that the newly developed standard

error is reliable and even performs better than the regular standard error used in the bias

avoiding method. However, it is important to note that when the data are not normally

distributed and the factor loadings are very weak (CD = 0.3), the standard error bias goes

up, resulting in a higher type I error rate. In all other conditions, the estimate of the stan-

dard error is reliable. The method not only has the lowest efficiency but also has the low-

est MSE, meaning that the low efficiency does not have much influence.

The SEM method performs very similar to the bias correcting method. When the

data are normally distributed, SEM has the same bias when using the unstandardized

and standardized parameterization, efficiency, MSE, power, and type I error rate.
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When the data are not normally distributed, SEM not only has a lower bias and MSE

but also has a very low proportion of successful replications. This means that,

although SEM gives less biased regression coefficients, the chance that the model

will not converge, is also much larger for SEM. On the other hand, there is almost

no standard error bias when using the SEM method.

Overall, it can be concluded that only the bias correcting method is a suitable alter-

native for SEM. The method performs similar to the SEM method with regard to bias,

efficiency, MSE, power, and type I error rate. It does have more standard error bias

than SEM, but it has the second lowest standard error bias of the four FSR methods.

It also has more successful replications than SEM when the data are not normally dis-

tributed. The method does have some drawbacks in comparison with SEM, because

of its two-step nature. First, at this moment, there are no overall fit indices available.

Second, the method cannot be used for all possible structural models. For example,

the method cannot handle mediational relationships and is not applicable to nonrecur-

sive methods. However, it is the intention of the authors to extend the method to be

applicable to the full SEM model and to develop a set of fit indices for this method.

A second conclusion that can be made is that factor score indeterminacy plays a

great role in deciding which method to use. The simulation study showed that if the

factor score indeterminacy is low (i.e., a CD of 0.99) the differences between the

methods disappear completely, on all performance criteria. As a result, there is no

longer a problem with performing a conventional FSR. This implies that it is impor-

tant to first determine the factor score indeterminacies by use of indeterminacy

indices. If these indices suggest that the indeterminacies are very low, any of the

methods can be used. If these indices suggest the indeterminacies are moderate or

high, one should use SEM or the bias correcting method.

In this article it was shown that the bias correcting method of Croon (2002) is a

reliable and unbiased method to perform a FSR. A new and reliable standard error

was also developed, meaning that the bias correcting method can now be used by

applied users to perform significance tests. However, performing the method is a

rather complex and technical process. For this reason, software to perform the method

will be developed and made available for the applied users in the near future.

Appendix A

Regression Coefficient When Performing Factor Score Regression, in the General Case

In this appendix, we derive the relationship between b and g in the general case. We

make a distinction between three scenarios:

1. Both the independent and dependent variable are latent variables.

2. Only the independent variable is a latent variable.

3. Only the dependent variable is a latent variable.
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Independent and Dependent Latent Variable. When performing the linear regression

with factor scores, the regression coefficient becomes b =
cov(Fj , Fh)

var(Fj)
, which is not

necessarily the same as the true regression coefficient. The relationship between g

and b can best be understood if we work out the covariance and variances of the

factor scores. The covariance can be written as

cov(Fj, Fh) = cov(Ajx, Ahy)

= Ajcov(x, y)A
0

h

= Ajcov(Lxj + d, Lyh + e)A
0

h

= AjLxcov(j + d, h + e)L
0

yA
0

h

= AjLx½cov(j, h) + cov(j, e) +

cov(h, e) + cov(d, e)�L0

yA
0

h

= AjLxcov(j, h)L
0

yA
0

h: ðA1Þ

The variance can be written as

var(Fj) = var(Ajx)

= Ajvar(x)A
0

j

= AjSxA
0

j, ðA2Þ

where Sx is the variance of x. Based on these calculations, the regression coefficient

becomes

b =
cov(Fj, Fh)

var(Fj)
=

AjLxcov(j, h)L
0

yA
0

h

AjSxA
0
j

=
AjLxvar(j)L

0

yA
0

h

AjSxA
0
j

g: ðA3Þ

Independent Latent Variable. When factor sores are only used for the independent vari-

able, the regression coefficient becomes b =
cov(Fj , h)

var(Fj)
. Again, we work out the covar-

iance and variances of the factor scores:

var(Fj) = AjSxA
0

j ðA4Þ

cov(Fj, h) = cov(Ajx, h)

= Ajcov(x, h)

= Ajcov(Lxj, h)

= AjLxcov(j, h) ðA5Þ

764 Educational and Psychological Measurement 76(5)



Based on these calculations, the estimated regression coefficient becomes

=
cov(Fj, h)

var(Fj)
=

AjLxcov(j, h)

AjSxA
0
j

=
AjLxvar(j)

AjSxA
0
j

g: ðA6Þ

Dependent Latent Variable. When only the dependent variable consists of factor

scores, the regression coefficient becomes b =
cov(j, Fh)

var(j)
. Again, we work out the cov-

ariance and variances of the factor scores:

cov(j, Fh) = cov(j, Ahy)

= cov(j, y)Ah

= cov(j, Lyh)A
0

h

= cov(j, h)L
0

yA
0

h ðA7Þ

Based on these calculations, the estimated regression coefficient becomes

b =
cov(j, Fh)

var(j)
=

AjLxcov(j, h)

var(j)
= AjLxg: ðA8Þ

Appendix B

Regression Coefficient When Performing Factor Score Regression, Using
Regression Factor Score Regression

In this appendix, we derive the relationship between b and g when we use the regres-

sion predictor to calculate the factor scores. When using the regression predictor, the

factor scoring matrices AR
j and AR

h are computed as follows:

AR
j = FL

0

xS�1
x = var(j)L

0

xS�1
x , ðB1Þ

AR
h = var(h)L

0

yS�1
y : ðB2Þ

This means the formula for the variance of Fj can be simplified:

var(FR
j ) = AR

j SxAR0

j

= var(j)L
0

xS�1
x SxAR0

j

= var(j)L
0

xIAR0

j

= var(j)L
0

xAR0

j =F
0
L
0
S
�1
x LF

= AR
j Lxvar(j): ðB3Þ
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The formulas for the covariances stay unchanged. Based on these calculations, the

regression coefficient can be recalculated. When both variables are latent, the regres-

sion coefficient becomes

b =
cov(Fj, Fh)

var(Fj)
=

AjLxcov(j, h)L
0

yA
0

h

AR
j Lxvar(j)

=
cov(j, h)L

0

yA
0

h

var(j)
= L

0

yA
0

hg: ðB4Þ

When only the independent variable is latent, the regression coefficient becomes:

b =
cov(Fj, h)

var(Fj)
=

AjLxcov(j, h)

AR
j Lxvar(j)

=
cov(j, h)

var(j)
= g: ðB5Þ

When only the dependent variable is latent, the regression coefficient becomes

b =
cov(j, Fh)

var(j)
=

AjLxcov(j, h)

var(j)
= AjLxg: ðB6Þ

Appendix C

Regression Coefficient When Performing Factor Score Regression, Using
Bartlett Factor Score Regression

In this appendix, we derive the relationship between b and g when we use the

Bartlett predictor to calculate the factor scores. The Bartlett predictor has the advan-

tage that AB
j Lx = 1 and AB

hLy = 1. This implies that the formulas for the covariances

can be simplified:

cov(Fj, Fh) = AjLxcov(j, h)L
0

yA
0

h = cov(j, h)

cov(Fj, h) = AjLxcov(j, h) = cov(j, h)

cov(j, Fh) = cov(j, h)L
0

yA
0

h = cov(j, h) ðC1Þ

The formula for the variance of j stays the same. Combined, this gives the following

regression coefficient, when both variables are latent:

b =
cov(Fj, Fh)

var(Fj)
=

cov(j, h)

AjSxA
0
j

=
var(j)

AjSxA
0
j

g: ðC2Þ

When only the independent variable is latent, the regression coefficient becomes

b =
cov(Fj, h)

var(Fj)
=

cov(j, h)

AjSxA
0
j

=
var(j)

AjSxA
0
j

g: ðC3Þ
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When only the dependent variable is latent, the regression coefficient becomes

b =
cov(j, Fh)

var(j)
=

cov(j, h)

var(j)
= g: ðC4Þ

Appendix D

Regression Coefficient When Performing Factor Score Regression, Using the
Bias Avoiding Method

In this appendix, we derive the relationship between b and g when we use the bias

avoiding method, which uses the regression predictor to predict the factor scores of

the independent variable and the Bartlett predictor to predict the factor scores of the

dependent variable. The covariances between the two variables then becomes

cov(FR
j , FB

h ) = cov(AR
j x, AB

hy)

= AR
j cov(x, y)AB0

h

= AR
j cov(Lxj + d, Lyh + e)AB0

h

= AR
j Lxcov(j + d, h + e)L

0

yAB0

h

= AR
j Lx½cov(j, h) + cov(j, e) + cov(h, e) + cov(d, e)�L0

yAB0

h

= AR
j Lxcov(j, h)L

0

yAB0

h

= AR
j Lxcov(j, h) ðD1Þ

cov(FR
j , h) = AR

j Lxcov(j, h) ðD2Þ

cov(j, FB
h ) = cov(j, h)L

0

yAB0

h = cov(j, h), ðD3Þ

while the variance can be written as

var(FR
j ) = AR

j Lxvar(j): ðD4Þ

Combined, this gives the following regression coefficient, when both variables are

latent:

b =
cov(FR

j , FB
h )

var(FR
j )

=
AR

j Lxcov(j, h)

AR
j Lxvar(j)

=
cov(j, h)

var(j)
= g: ðD5Þ
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When only the independent variable is latent, the regression coefficient becomes

b =
cov(FR

j , h)

var(FR
j )

=
AR

j Lxcov(j, h)

AR
j Lxvar(j)

=
cov(j, h)

var(j)
= g: ðD6Þ

When only the dependent variable is latent, the regression coefficient becomes

b =
cov(j, FB

h )

var(j)
=

cov(j, h)

var(j)
= g: ðD7Þ

Appendix E

Regression Coefficient When Performing FSR, Using the Bias Correcting
Method

In this appendix, we derive the relationship between b and g when we use the bias

correcting method. To be able to perform the bias correcting method, the covariance

between the true latent variable scores and the variance of the independent true latent

variable scores needs to be calculated. The computation of the covariance is based on

the formula given in Equation (A1):

cov(j, h) =
cov(Fj, Fh)

AjLxL
0

yA
0
h

: ðE1Þ

When calculating factor scores, Ls and the As matrices are readily available and the

cov(Fj, Fh) can be calculated. This means that it is possible to compute the true cov-

ariance. Similar calculations can be made for cov(Fj, h) and cov(j, Fh). The calcula-

tions for the variance of j is slightly more complex. First, we calculate the variance

of the factor scores:

var(Fj) = Ajvar(x)A
0

j

= Ajvar(Lxj + d)A
0

j

= Aj½var(Lxj) + var(d)�A0

j

= Aj½Lxvar(j)L
0

x + Θd�A
0

j: ðE2Þ

Based on this formula, we can derive a formula for the variance of j:

Lxvar(j)L
0

x + Θd = var(Fj)(AjA
0

j)�1

Lxvar(j)L
0

x = var(Fj)(AjA
0

j)�1 �Θd
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Lxvar(j)L
0

x = (var(Fj)� AjΘdA
0

j)(AjA
0

j)�1

var(j) = (var(Fj)� AjΘdA
0

j)(AjLxA
0

jL
0

x)�1: ðE3Þ

Once the covariance and variance of the true latent variable scores are computed, the

regression coefficient can be computed as b = cov(j, h)
var(j)

.
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