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Abstract

The present study investigates different approaches to adding covariates and the
impact in fitting mixture item response theory models. Mixture item response theory
models serve as an important methodology for tackling several psychometric issues
in test development, including the detection of latent differential item functioning. A
Monte Carlo simulation study is conducted in which data generated according to a
two-class mixture Rasch model with both dichotomous and continuous covariates
are fitted to several mixture Rasch models with misspecified covariates to examine
the effects of covariate inclusion on model parameter estimation. In addition, both
complete response data and incomplete response data with different types of miss-
ingness are considered in the present study in order to simulate practical assessment
settings. Parameter estimation is carried out within a Bayesian framework vis-à-vis
Markov chain Monte Carlo algorithms.
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In a wide variety of empirical studies in behavioral science and education, collateral

information is collected in addition to the variables of primary interest to the

researchers. This type of collateral information, also referred to as covariates in liter-

ature, usually contains background characteristics such as gender, ethnicity, and

years of education. Although these types of ‘‘outside variables’’ are sometimes

ignored in statistical modeling, it is believed that they may potentially have impor-

tant relations with the modeled variables of primary interest. The present study is an

1University of Maryland, College Park, MD, USA

Corresponding Author:

Tongyun Li, Measurement, Statistics and Evaluation (EDMS), Department of Human Development and

Quantitative Methodology, University of Maryland, 1230 Benjamin Building, College Park, MD 20742, USA.

Email: tongyun.iris@gmail.com



investigation of the potential benefits and limitations of including such covariate

information in mixture item response theory (IRT) modeling, in complete and incom-

plete response data scenarios.

Mixture IRT models, which combine IRT and latent class analysis (LCA), have

been used in psychometric research for analyzing item response data that may violate

underlying assumptions of either modeling approach (Rost 1990). Whereas IRT mod-

els assume the latent variable, a person’s latent trait, to be continuous, models in

LCA framework assume discrete latent classes underlying item responses. As a com-

bination of the two modeling approaches, mixture IRT models estimate both the

examinees’ continuous latent trait and latent class membership simultaneously.

The mixture IRT modeling approach has been applied to tackle such psycho-

metric issues in test development as the identification of items with latent differential

item functioning (DIF; e.g., Cohen & Bolt, 2005), and the detection of testing speed-

edness (e.g., Bolt, Cohen, & Wollack, 2002). Furthermore, this approach has also

been applied to practical situations. For instance, in psychopathological testing (e.g.,

Finch & Pierson, 2011), researchers and clinicians have applied mixture IRT models

to assign subjects to their most likely type of behavior disorders for diagnostic pur-

poses from which an intervention program may be implemented.

As the most commonly used mixture IRT model, the mixture Rasch model

(MRM) was first introduced by Rost (1990), Kelderman and Macready (1990), and

Mislevy and Verhelst (1990). Basically, the idea of MRM is to incorporate the Rasch

model in a discrete mixture of latent subgroups (i.e., latent classes), with the Rasch

model fitted to each class but with different item parameters across latent classes

(Rost, 1990). As a member of the mixture model family, the MRM shares many

similarities with other mixture models (e.g., growth/factor mixture models). Small

latent class separation sometimes poses challenges for model parameter estimation

and latent class identification. Thus, the inclusion of covariates has been proposed in

the mixture IRT, as well as in other mixture modeling frameworks, in order to

achieve different purposes such as obtaining more accurate model parameter esti-

mates, latent class assignment, and enumeration of latent classes (e.g., Lubke &

Muthén, 2005; Smit, Kelderman, & van der Flier, 1999, 2000).

Mislevy (1987) explored the incorporation of covariates in non-mixture IRT models

and found that covariate information may increase the precision of model parameter

estimation in the same amount as adding 2 to 6 items, and it accounts for as much as

one third of the population variance in educational assessment. This explanatory IRT

modeling approach has been elaborated later (e.g., Adams, Wilson, & Wu, 1997;

Wilson & De Boeck, 2004). Item or person related covariates are included for different

purposes such as explaining estimated effects or improving parameter estimation.

In mixture IRT, covariates have been added to achieve similar goals as those in

non-mixture IRT models. For example, Smit et al. (1999, 2000) explored the use of

covariates in the mixture Rasch and two-parameter-logistic IRT models by manipulat-

ing the association between latent class membership and a dichotomous covariate in

terms of bivariate probability. Samuelsen (2005) further explored this issue in the
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context of DIF. More recently, latent class membership in the MRM was modeled

using logistic regression with a dichotomous covariate as the sole predictor of latent

class membership (Dai, 2013). Tay, Newman, and Vermunt (2011) conducted a real

data analysis using both continuous and dichotomous covariates as predictors of the

latent class membership.

All previous studies have demonstrated that incorporating potentially effective

covariates may help the recovery of latent class structure, and obtain more accurate

model parameter estimates. However, certain important areas still have not been thor-

oughly explored. First, all relevant simulation work in mixture IRT modeling has

exclusively focused on dichotomous covariate related to the latent class membership,

and none included continuous covariate. Second, the possibilities of relating dichoto-

mous covariate with other model parameters have not been explored, and no informa-

tion is available about the comparison among different approaches to including both

dichotomous and continuous covariates in the model. Third, none of previous studies

provided information about overall model fit and selection with respect to covariate

inclusion. Fourth, all previous studies were based on complete item response data.

Therefore, the purpose of the present study is to examine the impact of different

approaches to incorporating covariates in mixture IRT models on model parameter

estimation based on complete and incomplete item response data sets. Both dichoto-

mous and continuous covariates are included in the present study as predictors for the

latent class membership and the person ability parameters. The impact of covariate

specification is compared and analyzed in terms of model parameter recovery, latent

class identification, and the relative overall model fit among competing models.

Method

The Data Generating Model and Alternative Models

In the present study, the covariates enter the MRM either as predictors of pjg, the

probability of person j belonging to latent class g (i.e.,
PG

g = 1 pjg = 1), or as predictors

of latent trait ujg. In the true model, which is used for data generation, a dichotomous

covariate enters the model as a predictor of pjg through a logistic function as follows.

pjg =
exp (b0g + b1gDj)

PG
g = 1

exp (b0g + b1gDj)

, ð1Þ

where Dj indicates the dichotomous covariate, such as gender, and b0g and b1g are

corresponding regression coefficients in the logistic function. For model identifica-

tion purpose, both b01 and b11 are fixed as 0 for latent class 1. Two latent classes are

assumed (G = 2) in the current simulation. Further, a continuous covariate enters the

MRM as a predictor of the latent ability through a linear function:

ujg = a0g + a1gCj + ejg, ð2Þ
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where Cj indicates the continuous covariate (e.g., intelligence or motivation), a0g

and a1g are the intercept and the slope of the latent regression model corresponding

to latent group g, and ejg is the error term with a distributional assumption of

ejg;N (0, s2
eg). Equation (3) gives the mathematical specification of the complete

version of the data generating model:

P(Xij = 1jujg, big) =
X

g

1
J

X
J

exp (b0g + b1gDj)

PG
g = 1

exp (b0g + b1gDj)

0
BBB@

1
CCCA

1

1 + expf�½(a0g + a1gCj + ejg)� big�g

� �
:

ð3Þ

Five alternative models with misspecified covariate effects are included in the

present study to fit the simulated data. Table 1 presents the mathematical functions

of all the six models. The model name abbreviations are used in the tables and fig-

ures presented in the Simulation Results section.

Table 1. True Data-Generating Model and Alternative Models.

Model type Model specification

True model (TM) the MRM with

pjg =
exp (b0g + b1gDj)PG

g = 1

exp (b0g + b1gDj)

and ujg = a0g + a1gCj + ejg

where b01 = b11 = 0
Overspecified model (OM) the MRM with

pjg =
exp (b0g + b1gDj + b2gCj)PG

g = 1

exp (b0g + b1gDj + b2gCj)

and ujg = a0g + a1gCj + a2gDj + ejg

where b01 = b11 =b21 = 0
Model with mismatch covariates (MISM) the MRM with

pjg =
exp (b0g + b1gCj)PG

g = 1

exp (b0g + b1gCj)

and ujg = a0g + a1gDj + ejg

where b01 = b11 = 0
Underspecified models (UNM)

1. UNM-N The MRM without covariates
2. UNM-D The MRM with

pjg =
exp (b0g + b1gDj)PG

g = 1

exp (b0g + b1gDj)

where b01 = b11 = 0
3. UNM-C The MRM with ujg = a0g + a1gCj + ejg

Note. MRM = mixture Rasch model.
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Simulation Design

To keep the simulation study manageable, certain factors are held constant in the

simulation design. The number of latent classes is set at two according to previous

simulations in this line of research (e.g., Smit et al., 1999, 2000). A total of 2,000

respondents responding to 30 dichotomously-scored items are simulated. It is a rea-

sonable test length that is often seen in educational assessments. Also, the number of

respondents is fixed at 2,000 to ensure that the model parameters could be accurately

estimated so that the analysis of model performance would not be affected by the

imprecision in model parameter estimates. The person parameters are simulated from

a standard normal distribution, Normal(0, 1), for one latent class and a normal distri-

bution, Normal(1, 1), for the other. The person parameters may be drawn from the

same distributions or different distributions, as suggested by previous mixture IRT lit-

erature (e.g., Dai, 2013; Li, Cohen, Kim, & Cho, 2009). In the present study, a mean

difference of 1 is set for the person parameters of the two latent classes so that the

estimation of the MRM can converge more easily. Some previous studies have

manipulated test length and the number of respondents. However, because the present

study focuses on different approaches to covariate inclusion and their corresponding

impacts, these two factors are fixed to make the current simulation study manageable.

Additionally, the proportions of the dichotomous covariate are set to be .30 and

.70 based on a previous study (Dai, 2013). In other words, 30% of the respondents

are assigned a value of 0 and 70% are assigned a value of 1 on the dichotomous cov-

ariate. The values of the continuous covariate are drawn from the standard normal

distribution respectively for the two latent classes.

Other factors, including the mixing proportion (i.e., Prop), the average DIF effect

size (i.e., DIF), the strength of relations between covariates and model parameters

(i.e., OR [odds ratio] and Corr), the response data completeness (i.e., Data), and the

types of covariate inclusion approaches for comparison purpose (i.e., Model), are

manipulated. The abbreviations of these factors shown in the parentheses are used in

the tables and figures presented in later sections.

As for the mixing proportion, two levels, LC1%:LC2% = 50%:50% and

30%:70%, are considered. Extremely unequal mixes of latent classes are not

included in the present study so as to ensure that the parameters could be accurately

recovered for each latent group. For the strength of relations between covariates and

model parameters, odds ratios are used to indicate the magnitude of association

between the dichotomous covariate and the latent class membership (Dai, 2013). In

the DIF context, the odds ratio indexes the strength of the relation between manifest

grouping variables and latent classes:

odds ratio(OR) =
(P(g = 1jDj = 0)=P(g = 2jDj = 0))

(P(g = 1jDj = 1)=P(g = 2jDj = 1))
: ð4Þ

Specifically, when OR equals 1, the covariate has no effect on the latent class mem-

bership; while the OR equals 10, their relation is fairly strong. Regarding the relation
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between the continuous covariate and the latent trait, a1g denotes the magnitude of

the correlation. The strength of the correlation is also manipulated at two level as

either weak (i.e., .20), or strong (i.e., .80).

Item parameters are generated respectively from the standard normal distribution

and then two levels of average DIF effect sizes (i.e., the mean of |bi1-bi2|) are created.

When the average DIF effect size equals 1.5, 80% of the items have a difference in

item difficulty greater than 1.0 between the two latent classes; when the average DIF

effect size equals 1.0, 40% have a difference greater than 1.0. These two DIF effect

size levels are designed based on Zwick and Ercikan’s (1989) standards (i.e., negligi-

ble DIF: item difficulty differs less than 0.5; moderate DIF: item difficulty differs by

0.5; and large DIF: item difficulty differs by 1.0) and our preliminary study in con-

sideration of model convergence in both complete and missing data scenarios. The

selected average DIF size levels in the present simulation are quite large to ensure

that the latent structure and parameters could be accurately recovered. The generated

item parameters represent a wide range of parameter values observed in operational

settings.

Additionally, both complete and incomplete response data are simulated, because

missing data scenarios are prevalent in practical assessment settings, and it is believed

that covariate inclusion could compensate for the sparse information in the response

data and hence improve the model parameter estimation. The reasons for missing

responses may generally be classified into two major categories: missingness by test

design such as using matrix-sampled booklets, and nonresponse such as with omitted

and not-reached items (Ludlow & O’Leary, 1999). Not-reached items usually occur

when examinees fail to complete a test within a given time, whereas omitted items

are associated with examinees’ low ability levels or lack of motivation in low-stakes

assessments (e.g., De Ayala, Plake, & Impara, 2001). In this study, two types of miss-

ing data are of primary interest: the missingness by design through balanced incom-

plete block spiraling (BIB) which is implemented in many large-scale assessments,

such as the National Assessment of Educational Progress (NAEP); and the missing-

ness by omitted items with low-ability individuals omitting difficult items which are

essentially conditional missing. The not-reached item scenario is not considered in

the present study because it is suggested that not-reached items are not used in item

calibration or scaling in practical settings (Lord, 1980). In the current simulation, the

missingness by test design is considered as missing completely at random, whereas

the nonresponse by omitted items is considered missing not at random (Finch, 2008).

For missingness by the booklet design, one condition is simulated based on previ-

ous research (e.g., von Davier, Gonzalez, & Mislevy, 2009) reflecting practical test

settings (i.e., NAEP; National Center for Education Statistics, 2009): items are ran-

domly assigned to one of three blocks named A, B, and C, and each person responds

to two of these blocks (i.e., a total of 20 items out of 30 items) such that the booklets

are organized as AB, BC and CA, to which are responded by 667, 667, and 666

examinees, respectively. The total proportion of missing data is .33. Regarding the

other type of missingness, omitted responses, previous literature indicates that this

Li et al. 853



type of missingness usually affects 10% to 50% of the items in a test (e.g., Chen &

Jiao, 2012). Thus, the omitted responses are simulated according to the upper bound:

a total of 400 respondents with the lowest ability omit 50% of the most difficult

items (i.e., 15 items) corresponding to the latent class the person belongs to. This

leads to a total proportion of missing data of .10. In both types of missingness, miss-

ing data only occur in the item responses but not in the covariate information.

In summary, all the levels of the manipulated factors are carefully chosen based

on both the previous literature in this line of research and the preliminary simulation

runs. Certain extreme levels, such as a large amount of missing data (e.g., 60%),

extremely unequal latent classes (e.g., 15%:85%) and small DIF size (e.g., 0.5), are

excluded from the present design because they have been found to result in serious

convergence issues (i.e., non-mixing or within chain label switching) in the prelimi-

nary study. Table 2 summarizes the fixed and manipulated factors and their corre-

sponding levels. The present study includes 2 3 2 3 2 3 2 3 3 = 48 simulation

conditions. With 25 data sets simulated for each study condition, 1,200 data sets are

generated. For each data set, 6 models are used to fit the data. Thus, there are a total

Table 2. Fixed and Manipulated Factors and Their Corresponding Levels in the Simulation.

Factors Values

Fixed factors
Number of latent classes 2
Test length 30
Sample size 2,000
Distribution of subjects’ latent ability LC1: N(0,1); LC2: N(1,1)
Distribution of covariates Dichotomous: 30%:70%

Continuous: LC1: N(0,1); LC2: N(0,1)
Manipulated factors

Model type (6 models) True model
Overspecified model
Underspecified models (3 models)
A model with mismatching covariates

Mixing proportion (LC1%; LC2%) (50%; 50%)
(30%; 70%)

Strength of the relation between Dj and pjg Strong (OR = 10)
Weak (OR = 1)

Strength of the relation between Cj and ujg LC1: a11 = .2; LC2: a12 = .2
LC1: a11 = .8; LC2: a12 = .8

Average DIF (i.e., the mean of |bi1-bi2|) 1.5
1.0

Response data completeness (3 types) Complete data
Incomplete data with booklet design
Incomplete data with conditional

omitted response

Note. LC = latent class; OR = odds ratio; DIF = differential item functioning.
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of 6 3 48 = 288 simulation cells with 25 3 288 = 7,200 replications. In the prelimi-

nary study, 100 replications are run in one condition for the data-generating model.

The summary statistics show that there is little fluctuation in the standard error and

bias of model parameter estimates after the number of replications exceeds 20.

Considering the large amount of time required for Bayesian estimation, 25 replica-

tions per cell are used in the present study.

Parameter Estimation

In this study, R2WinBUGS package in R 2.15.2 is employed to interface with

WinBUGS 1.4 to carry out the Bayesian estimation of model parameters. The start-

ing values for all model parameters are randomly generated by WinBUGS. The esti-

mates of item and person parameters are the means over the sampled iterations

starting from the next iteration after the burn-in period (Kim & Bolt, 2007). For the

latent class membership, the estimates are the modes of the sampled iterations after

burn-in. To derive the posterior distributions for each model parameter, the following

prior distributions are used for the estimation of the data generating model:

bi1;Normal(0, 1) b02;Normal(0,1)

bi2 � bi1;Normal(0, :5) b12;Normal(0,1)

tg;Gamma(:5, 1) a0g;Normal(0,1)

a1g;Normal(0,1)

where G = 2. As the person parameter ujg is decomposed as shown in Equation (2),

the intercept parameter, slope parameter, and variance of the error term are estimated

instead of ujg. tg indicates the precision of the error term with tg = 1=s2
eg. For the

MRM without covariates, additional prior distributions are used:

ujg;Normal(mg, tg)

mg;Normal(0,1)

(p1, p2);Dirichlet(5,5)

These prior distributions are not highly informative. They are selected based on rele-

vant research (e.g., Cho & Cohen, 2010) and the distributions for data generation

used in the present study.

Two chains of 31,000 iterations are run, and the burn-in cycle for each chain is

6,000. To reduce serial dependencies across iterations, a thinning of 5 is used. Thus,

the final posterior sample size is 10,000 on which model estimates are based. No con-

vergence problems have been observed in any replications.
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Model Performance

The model performance is evaluated in terms of three outcomes: (a) the latent group

classification accuracy, (b) the parameter recovery accuracy, and (c) the overall

model fit as indicated by the proportion of correct model selections.

The accuracy of latent group classification is assessed using the proportion of sub-

jects that are assigned to their true latent class based on their estimated latent class

membership. The recovery of model parameters is evaluated in terms of (a) the pro-

portion of replications for which the 95% confidence interval around the item and

person parameter estimates captured the true value and (b) the bias, the standard

error (SE) and the root mean squared error (RMSE) of the item and person parameter

estimates.

The following fit statistics are also obtained for each model under different simu-

lation conditions: Akaike’s information criterion (AIC; Akaike, 1974), Bayesian

Information Criterion (BIC; Schwarz, 1978), a correction of AIC based on sample

size and the number of parameters (AICc; Burnham & Anderson, 2002), the consis-

tent AIC (CAIC; Bozdogan, 1993), the sample-size adjusted BIC (SABIC; Sclove,

1987) and deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van

der Linden, 2002).

Some research (e.g., Li et al., 2009) has recommended the use of BIC for mixture

distribution model selection; however, the choice of model fit indices is still incon-

clusive because the performance of overall fit indices is sometimes model- and

design-specific. In the present study, 6 indices are calculated in R and summarized in

order to provide a comprehensive overview of the model fit with regard to different

approaches to covariate inclusion in the MRM.

Simulation Results

For all the outcome measures, descriptive statistics are provided in this section. In

order to identify statistically significant effects of the manipulated factors on the

model performance (except overall model fit), several repeated-measures analyses of

variance (ANOVAs) were performed. The manipulated factors, including mixing pro-

portion, strength of the relation between Dj and pjg, strength of the relation between

Cj and ujg, DIF, and data completeness, were used as between-replication variables.

Model was used as a within-replication variable. The sphericity assumption was

checked, and the Huynh–Feldt correction was used to adjust the degrees of freedom

if necessary. Considering that the sample size with respect to the repeated variable

(i.e., model) was relatively large in the current simulation, the normality assumption

was not a big concern for the present study and thus no data transformation was

implemented.

Only those statistically significant effects with at least a Cohen’s f value of

0.1 (i.e., small effect size) were reported. The effect size cutting values are negligible

(f \ 0.1), small (0.1 � f \ 0.25), moderate (0.25 � f \ 0.4), and large (f� 0.4) in
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the ANOVA (Cohen, 1988). The proportion of variance accounted for by each main

or interaction effects (h2) was provided as well.

Latent Group Classification

Table 3 presented the descriptive statistics of correct classification rate by six

manipulated factors. As expected, the true model with both dichotomous and contin-

uous covariates correctly specified resulted in in the most accurate latent class

assignment, although the difference between the true model and the overspecified

model was almost negligible. Also, when either of the covariates was correctly speci-

fied in the model (i.e., UNM-C and UNM-D), the accuracy of latent group classifica-

tion was better than the conditions in which no covariates were included (i.e., UNM-

N). The model with only the dichotomous covariate resulted in slightly higher cor-

rect classification rate than that with only the continuous covariate. The MRM with

mismatching covariates resulted in the worst correct classification rate, and it was

even worse than not including any covariates.

The ANOVA results indicated that the estimation model, data completeness, mix-

ing proportion, and DIF size had significant effects on the correct classification rate.

The effect sizes were large for data completeness (p \ .001, f = 0.853, h2 = 0.421),

moderate for DIF (p \ .001, f = 0.363, h2 = 0.116), and small for model (p \ .001,

f = 0.239, h2 = 0.054) and mixing proportion (p \ .001, f = 0.131, h2 = 0.017).

Besides, larger DIF and equal mixing proportion tended to result in higher correct

classification rate. Post hoc pairwise comparison showed that all pairwise differences

were statistically significant.

Table 3. The Average Correct Classification Rate of Model by Other Manipulated Factors.

Model

MarginalTM UNM-N UNM-C UNM-D OM MISM

Data Complete 0.963 0.958 0.960 0.961 0.963 0.956 0.960
Booklet design 0.910 0.889 0.900 0.903 0.909 0.848 0.893
Omitted response 0.934 0.921 0.928 0.928 0.934 0.918 0.927

Prop .5/.5 0.940 0.929 0.935 0.934 0.939 0.917 0.932
.3/.7 0.932 0.916 0.924 0.927 0.931 0.897 0.921

OR 1 0.928 0.923 0.929 0.922 0.928 0.909 0.923
10 0.943 0.923 0.929 0.939 0.943 0.905 0.930

Corr .2;.2 0.930 0.922 0.923 0.930 0.930 0.919 0.926
.8;.8 0.941 0.923 0.935 0.931 0.941 0.895 0.928

DIF 1 0.924 0.908 0.916 0.920 0.924 0.882 0.912
1.5 0.947 0.937 0.943 0.942 0.946 0.932 0.941

Marginal 0.936 0.923 0.929 0.931 0.935 0.907 0.927

Note. TM = true model; OM = overspecified model; UNM = underspecified model; MISM = model with

mismatch covariates; OR = odds ratio; DIF = differential item functioning.

Li et al. 857



In addition to the main effects, the interaction terms of model by data complete-

ness (p \ .001, f = 0.203, h2 = 0.040), odds ratio (p \ .001, f = 0.102, h2 = 0.010),

correlation (p \ .001, f = 0.151, h2 = 0.022), and DIF (p \ .001, f = 0.120, h2 =

0.014), and the interactions of data completeness by mixing proportion (p \ .001,

f = 0.178, h2 = 0.031) and DIF (p \ .001, f = 0.316, h2 = 0.091) were also found to

be significantly related to the accuracy of latent class assignment. Furthermore,

three-way interactions among data completeness, model, and correlation (p \ .001,

f = 0.148, h2 = 0.021), and among data completeness, model, and DIF (p \ .001,

f = 0.141, h2 = 0.019) were also statistically significant. The two-way and the three-

way interactions are presented in the appendix.

Parameter Recovery

The recovery of item and person parameters was evaluated separately. As the item

parameters were constrained for scale identification and model comparability, on

average there was no bias in the item parameter estimates.

Item Parameter Recovery. Table 4 presented the descriptive statistics of item parameter

recovery evaluation criteria by manipulated factors. Across all the other factors, the

Table 4. The Descriptive Statistics of Item Parameter by Manipulated Factors.

Factors Levels

Item parameter SE Item parameter RMSE 95% coverage

M SD M SD M SD

Model TM 0.089 0.024 0.136 0.103 0.868 0.103
UMN-N 0.091 0.024 0.144 0.115 0.849 0.116
UMN-C 0.089 0.023 0.140 0.107 0.860 0.109
UMN-D 0.092 0.029 0.142 0.110 0.859 0.112
OM 0.089 0.024 0.136 0.103 0.867 0.104
MISM 0.094 0.029 0.158 0.132 0.823 0.145

Prop .5/.5 0.085 0.020 0.100 0.032 0.892 0.055
.3/.7 0.097 0.029 0.185 0.142 0.816 0.145

OR 1 0.091 0.026 0.144 0.112 0.850 0.118
10 0.090 0.025 0.141 0.110 0.859 0.114

Corr .2;.2 0.091 0.025 0.143 0.113 0.852 0.115
.8;.8 0.091 0.026 0.142 0.110 0.856 0.117

DIF 1 0.083 0.017 0.121 0.074 0.864 0.088
1.5 0.098 0.030 0.164 0.136 0.844 0.138

Data Complete 0.072 0.004 0.073 0.005 0.953 0.005
Booklet design 0.119 0.025 0.250 0.137 0.749 0.138
Omitted response 0.082 0.007 0.104 0.020 0.861 0.022

Note. TM = true model; OM = overspecified model; UNM = underspecified model; MISM = model with

mismatch covariates; OR = odds ratio; DIF = differential item functioning; SE = standard error; RMSE =

root mean squared error.
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true model resulted in the smallest SE and RMSE, and the highest 95% coverage rate,

followed by the overspecified model with negligible differences. Also, when either of

the covariates was correctly specified (i.e., UNM-C or UNM-D), the item parameter

recovery was better than the MRM with no covariates included. The MRM with only

the continuous covariate resulted in slightly better recovery than the MRM with only

the dichotomous covariate. Similar to the results of latent group classification, MISM

was also the worst in item parameter recovery.

The ANOVA results indicated that data completeness, mixing proportion, and

DIF had statistically significant impacts on the SE of item parameters. Among them,

data completeness had a large effect size (p \ .001, f = 0.483, h2 = 0.189), and mix-

ing proportion (p \ .001, f = 0.128, h2 = 0.016) and DIF (p \ .001, f = 0.187, h2 =

0.034), respectively, had a small effect size. In addition, data completeness interacted

significantly with DIF with a small effect size (p \ .001, f = 0.122, h2 = 0.015).

Regarding the RMSE of item parameters, data completeness and mixing proportion

had statistically significant effects, respectively with a moderate (p \ .001, f = 0.327,

h2 = 0.097) and a small effect size (p \ .001, f = 0.172, h2 = 0.029). The interaction

term of data completeness by mixing proportion was also statistically significant with

a small effect size (p \ .001, f = 0.172, h2 = 0.029). Similar to the results of RMSE,

data completeness, mixing proportion and their interactions also had statistically sig-

nificant effects on the 95% coverage of item parameters. The interaction among data

completeness, mixing proportion, and DIF was also statistically significant. The

effect size was large for data completeness (p \ .001, f = 0.403, h2 = 0.140), and

small for mixing proportion (p \ .001, f = 0.174, h2 = 0.029), the two-way interac-

tion (p \ .001, f = 0.225, h2 = 0.048) and the three-way interaction (p \ .001, f =

0.123, h2 = 0.015).

Person Parameter Recovery. Table 5 presented the summary statistics of person para-

meter recovery. Overall, there tended to be a positive bias in the person parameter

estimates, indicating an overestimation of the person parameters. However, the mar-

ginal bias for the booklet design condition across other manipulated factors was neg-

ative, suggesting an underestimation. For the SE of person parameters, there were

negligible differences among the true model, the MRM with only the continuous cov-

ariate and the overspecified model, and they resulted in smaller SE than the other

three models. It indicated that the inclusion of the continuous covariate, rather than

the dichotomous covariate, may potentially lead to a reduction in the SE of person

parameter estimates. With regard to the RMSE which indicated the overall recovery

of person parameters, it was found that the true model and the overspecified model

resulted in the best person parameter recovery, followed by the MRM with only the

continuous covariate with negligible difference. The MRM with mismatching covari-

ates again performed the worst in terms of person parameter recovery.

The ANOVA results showed that data completeness had a statistically significant

effect on the bias of person parameters with a moderate effect size (p \ .001,

f = 0.223, h2 = 0.047). In addition, data completeness interacted significantly with
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mixing proportion (p \ .001, f = 0.156, h2 = 0.024) and DIF (p \ .001, f = 0.142,

h2 = 0.020) with respect to the bias of person parameters. The three-way interaction

term of data by mixing proportion and DIF were also found to be statistically signifi-

cant with a small effect size (p \ .001, f = 0.129, h2 = 0.016). Regarding the SE and

RMSE of person parameters, data completeness (p \ .001, f = 0.118, h2 = 0.014;

p \ .001, f = 0.163, h2 = 0.026), mixing proportion (p \ .001, f = 0.147, h2 = 0.021;

p \ .001, f = 0.104, h2 = 0.011), and DIF (p \ .001, f = 0.106, h2 = 0.011; p \ .001,

f = 0.159, h2 = 0.025) were found to have significant effects on these two measures

with small effect sizes. No significant interaction terms were observed. For the 95%

coverage, only data completeness was found to be statistically significant with a

small effect size (p \ .001, f = 0.122, h2 = 0.015).

Overall Model Fit Indies

The percentage of each model being selected as the best-fitting model with respect

to the six overall model selection indices were graphically displayed in Figure 1.

Overall, AIC, BIC, AICc, CAIC, and SABIC did not perform very well. Among

them, AIC and AICc performed the worst as they had difficulty differentiating

Table 5. The Descriptive Statistics of Person Parameter by Manipulated Factors.

Factors Levels

Person
parameter bias

Person
parameter SE

Person
parameter RMSE

95%
coverage

M SD M SD M SD M SD

Model TM 0.025 0.061 0.144 0.040 0.184 0.056 0.948 0.011
UMN-N 0.022 0.075 0.162 0.042 0.202 0.065 0.946 0.012
UMN-C 0.031 0.065 0.143 0.042 0.185 0.059 0.947 0.012
UMN-D 0.022 0.071 0.163 0.047 0.198 0.066 0.946 0.011
OM 0.024 0.063 0.145 0.041 0.184 0.058 0.948 0.011
MISM 0.027 0.080 0.163 0.043 0.207 0.070 0.942 0.014

Prop .5/.5 0.043 0.035 0.179 0.029 0.217 0.048 0.948 0.010
.3/.7 0.007 0.087 0.128 0.040 0.170 0.067 0.944 0.013

OR 1 0.026 0.071 0.154 0.044 0.195 0.064 0.946 0.012
10 0.025 0.067 0.153 0.042 0.191 0.062 0.946 0.011

Corr .2;.2 0.022 0.072 0.161 0.042 0.199 0.065 0.945 0.012
.8;.8 0.028 0.065 0.146 0.041 0.188 0.060 0.946 0.012

DIF 1 0.029 0.023 0.135 0.032 0.158 0.035 0.948 0.008
1.5 0.022 0.095 0.172 0.046 0.229 0.064 0.944 0.014

Data Complete 0.010 0.003 0.134 0.033 0.146 0.035 0.955 0.001
Booklet design 20.016 0.091 0.181 0.046 0.234 0.067 0.950 0.007
Omitted response 0.082 0.029 0.145 0.034 0.200 0.046 0.933 0.009

Note. TM = true model; OM = overspecified model; UNM = underspecified model; MISM = model with

mismatch covariates; OR = odds ratio; DIF = differential item functioning; SE = standard error; RMSE =

root mean squared error.
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models. On the other hand, BIC, CAIC and SABIC performed similarly and they all

tended to choose the most parsimonious model, the MRM without covariates. The

only index that successfully identified the MRM with correctly specified covariates

was DIC, a Bayesian measure of fit. However, a closer examination of selection fre-

quency showed that the performance of model fit indices tended to vary depending

on certain manipulated factors. Thus, the selection decisions were analyzed with

respect to data completeness, and the relations between model parameters and the

covariates.

As shown in Figure 2, the ability of differentiating models was stronger for the six

indices when the data was complete. In this scenario, BIC, CAIC, and SABIC had a

strong tendency of selecting the most parsimonious model. With regard to DIC, it

was highly effective in selecting the data-generating model. As for the few cases that

DIC chose the MRM with only the continuous covariate, they all occurred when the

odds ratio was weak (i.e., OR = 1), so it was reasonable for DIC to select a more par-

simonious model without the dichotomous covariate.

In the booklet design condition, BIC, CAIC, and SABIC still tended to choose the

MRM without covariates, yet the tendency was relatively weak. Moreover, DIC was

no longer effective when the booklet design was used. It could not distinguish

between the overspecified model and the MRM with only the continuous covariate.

In addition, for the omitted response condition, none of the indices was effective.

DIC had the same selection percentage for the true model and the overspecified

model.

Figure 1. Overall model selection percentage across simulation conditions.
Note. TM = true model; OM = overspecified model; UNM = underspecified model; MISM = model with

mismatch covariates; AIC = Akaike’s information criterion; BIC = Bayesian information criterion; AICc =

a correction of AIC based on sample size and the number of parameters; CAIC = consistent AIC; SABIC

= sample-size adjusted BIC; DIC = deviance information criterion.
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Figure 2. Model selection percentage by data completeness across other manipulated
factors.
Note. TM = true model; OM = overspecified model; UNM = underspecified model; MISM = model with

mismatch covariates; AIC = Akaike’s information criterion; BIC = Bayesian information criterion; CICc =

a correction of AIC based on sample size and the number of parameters; CAIC = consistent AIC; SABIC

= sample-size adjusted BIC; DIC = deviance information criterion.
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Further, the selection decision was examined with respect to odds ratio. When the

odds ratio was weak, BIC, CAIC, and SABIC most frequently selected the most par-

simonious model. DIC predominantly identified the MRM with only the continuous

covariate as the best-fitting model, which was a reasonable choice in consideration

of model parsimony when OR = 1. However, as the odds ratio was strong, the deci-

sions were made most often between MRM with only the dichotomous covariate and

the MRM without covariates for BIC, CAIC, and SABIC. Again, DIC successfully

identified the MRM with correct covariate specification with the highest selection

percentage.

Finally, the selection percentage was analyzed by the correlation between the con-

tinuous covariate and the person parameter. When the correlation was as weak as

0.2, AIC, BIC, AICc, CAIC, and SABIC all favored the most parsimonious model.

Meanwhile, DIC correctly identified the true model as the best-fitting model.

However, when the correlation was as strong as 0.8, BIC, CAIC, and SABIC most

frequently selected the MRM with only the continuous covariate, whereas DIC still

predominantly selected the correct model.

In sum, the above results suggested that DIC was the most successful index in

selecting the MRM with correct covariate inclusion, whereas the performances of

BIC, CAIC, and SABIC were quite similar and they had a consistent tendency of

favoring model parsimony. Another important finding was that their performance

tended to be strongly compromised when missing data were present. Also, the ten-

dency of selecting the overspecified model occurred in particular for DIC in both the

booklet design and omitted response conditions.

Discussion

Given the potential advantages of covariate inclusion in IRT modeling, the present

study explored different approaches to adding covariates into the MRM and the cor-

responding impacts on model estimation. The results are summarized and relevant

implications are addressed in details in this section.

The data generating model, with both the dichotomous and continuous covariates

correctly specified, has the best performance in terms of the accuracy of latent class

assignment. It also has, on average, the smallest SE and RMSE in item parameter

recovery, the smallest RMSE in person parameter recovery and the highest 95% cov-

erage rate for both item and person parameter recovery. Literature (Smit et al., 1999;

2000) suggested that the latent class assignment may substantially benefit from incor-

porating dichotomous covariates that are moderately or strongly related to the latent

class variable. In line with their results, the current study also witnesses a moderate

increase in the correct classification rate if both dichotomous and continuous covari-

ates are correctly specified in the MRM. Moreover, if only one covariate, dichoto-

mous or continuous, is correctly specified in the MRM, there is also an improvement

in the correct classification rate, but the MRM with only the dichotomous covariate

performs slightly better than the MRM with only the continuous covariate. The
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reason might be that the dichotomous covariate enters UNM-D directly as a predictor

of the latent class membership.

As for the parameter recovery, Mislevy and Sheehan (1989a, 1989b) suggested

that the incorporation of covariates associated with the latent trait could compensate

for the sparse information in the response data and hence reduce the MSE of person

parameter estimates and the SE of item parameter estimates in maximum likelihood

estimation. The results were further confirmed in Adams et al. (1997) and Smit et al.

(1999, 2000). Similarly, in the present study, the descriptive statistics show that the

correct covariate inclusion may lead to a reduction in the item parameter SE and

RMSE, person parameter RMSE and an increase in the 95% confidence interval cov-

erage rate, although this pattern is not of practical significance in the ANOVA results

(i.e., f \ 0.1). A plausible explanation for the small effect size is the test length used

in the current simulation. Previous studies all used very short tests with no more than

10 items (Mislevy & Sheehan, 1989a, 1989b; Smit et al., 1999; 2000) and indicated

that the effects of covariate information could diminish as test length increases.

However, in the present study, in order to guarantee the convergence rate in the miss-

ing data scenarios, the test length is set to be 30. This could be the major reason why

the effect of model is not very pronounced for parameter recovery as shown in the

ANOVA results.

Additionally, there is an interesting finding that the improvement in person para-

meter recovery may be exclusively due to the inclusion of the continuous covariate

as a predictor of the person parameter, because the MRM with only the dichotomous

covariate does not perform any better than the MRM without covariates in terms of

the SE and RMSE of person parameter recovery. Thus, it is possible that the covari-

ate may function differentially in the model estimation and the benefits for the MRM

may depend on the approach to covariate inclusion.

In summary, for the different approaches to covariate inclusion, the results in the

present study show that the correct specification of both covariates in the MRM could

potentially benefit model parameter estimation. Moreover, if only one covariate is

correctly specified in the MRM, the model performance could still be improved to

some extent, and the continuous covariate tends to influence both the latent group

classification and the model parameter recovery whereas the dichotomous covariate

seems only to improve the latent class assignment. Furthermore, based on all the

model performance criteria mentioned above, it is found that the true model and the

overspecified model are almost indistinguishable from each other, indicating that

including redundant covariate information may not necessarily worsen the model per-

formance as long as all the necessary covariates are correctly specified in the model.

However, the MRM with mismatching covariates results in the worst model perfor-

mance in terms of most of the criteria considered in the present study, implying that

the mismatch between covariates and model parameters may lead to even worse

results than not including any covariates at all.

Among the other manipulated factors, DIF, mixing proportion, data completeness,

and their interactions tend to strongly impact the accuracy of latent class assignment,
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as well as item and person parameter recovery. As mixing proportion and DIF have

been extensively studied in mixture IRT literature, they are not discussed in detail

here. Regarding data completeness, the booklet design tends to lead to the worst

result in terms of most of the evaluation criteria used in the present study, with the

exception that the omitted response condition results in the largest bias and the lowest

95% coverage for the person parameter estimates. The poor performance of booklet

design is within expectation, considering the largest amount of missing data involved;

however, it is surprising to find even worse performance of omitted response in two

person parameter outcome measures, and one possible reason for that could be the

conditional missing data mechanism involved in the omitted response scenario.

The other important aspect of the present study is to provide information about

model fit with respect to covariate inclusion, which has not been discussed by other

studies in this line of research. Previous research regarding model fit in the mixture

IRT context (Li et al., 2009) recommended the use of BIC because of its outstanding

performance and consistency in detecting latent class enumeration. It was also sug-

gested that both AIC and DIC had a tendency to select the most complex model (Li

et al., 2009). However, different from the previous study, the current simulation pro-

vides unique information about the effectiveness of overall model fit indices in the

mixture IRT modeling context with covariate inclusion.

In general, among the six indices reported in the study, DIC is the most effective

one in identifying the correct covariate inclusion in the MRM. Regarding the other

five indices, they are not found to be useful in the current study, yet it is found that

AIC and AICc are highly consistent with each other, and BIC, CAIC, and SABIC all

have a very strong tendency to select the most parsimonious model. Different from

the message provided by previous research that AIC tended to select more complex

model, the current simulation indicates that AIC and AICc are highly ineffective in

the MRM context when covariates are involved. These two indices may not be good

choices for practitioners when mixture IRT models are used. Furthermore, although

BIC is proved to be successful in selecting the best latent structure for mixture IRT

models in the literature, this index may not be sensitive to the fit of covariate inclu-

sion in the mixture IRT models. Thus, the use of BIC should be implemented with

caution as it works well in some contexts but not the others. However, in most

commonly-used commercial software programs for mixture IRT model parameter

estimation, the use of AIC and BIC is prevalent, and other model fit indices are usu-

ally not provided. The lack of choices for model fit indices in the commercial soft-

ware programs may lead to misfitting models being selected as best-fitting models

for practitioners. It is suggested that the calculation of more model fit indices may be

implemented in software programs and DIC could also be included if a Bayesian

module exists, so that researchers may select which index to use, depending on the

purpose of the study and the data structure.

Another important finding in the present study regarding model selection is that

the effectiveness of all six indices is highly sensitive to the missing data. Even for

DIC, its performance is greatly compromised when missing data are present. To be
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specific, DIC shows a tendency of selecting the most complicated model no matter

the missing data come from omitted responses or booklet design. The other indices

also have great difficulty in differentiating the true model and the three underspeci-

fied models in missing data conditions. Therefore, one important suggestion to come

out of this study for practitioners is to be extremely cautious about overall model

selection indices when using them with missing data. As the effectiveness of model

fit indices is sometimes model and design specific and could be compromised by

missing data, it is recommended that researchers should evaluate the model-data fit

from different perspectives, rather than solely relying on overall information-based

fit indices to choose models.

As for the practical implications of covariate inclusion approaches, it is expected

that the mixture IRT model with correctly specified covariates may help identify

latent DIF, explain latent DIF using manifest grouping variables (e.g., dichotomous

covariate), and improve model parameter estimation simultaneously. Previously,

covariate inclusion has been proved useful in non-mixture IRT context for the pur-

pose of explaining estimated effects (e.g., Wilson & De Boeck, 2004) and improving

model parameter estimation (e.g., Adams et al., 1997). The current study incorpo-

rates covariates into the MRM via different approaches, and extends the use of cov-

ariate information to a broader scenario.

Purely in the perspective of model estimation, covariate inclusion is promising for

mixture IRT models with the potential benefit of improving the latent group classifi-

cation and the estimation of model parameters. However, regarding the practical use,

there exists a theoretical debate with respect to the validity of inference drawn about

the population if covariate information is used, because covariate inclusion violates

the fundamental of equitable measurement and test fairness; namely, the parameter

estimation should be independent of any variables beyond the response data per se

(Adams et al., 1997). Thus, it is desirable to use covariates to improve the precision

of model parameter estimation, yet it is less desirable to draw inference based on the

conditional model, especially when high-stakes decisions are involved (Mislevy &

Sheehan, 1989a). Additionally, one important methodology, which is closely related

to the covariate inclusion approach and also commonly used in large-scale survey

assessment, is the plausible value imputation method. Plausible values are imputed

values drawn from an empirically derived distribution of latent achievement scores

that are conditional on the observed values of respondents’ background variables

(i.e., covariates) and item responses (e.g., Mislevy, 1991, 1993; Rubin, 1987; von

Davier et al., 2009). As mentioned in Adams et al. (1997), to draw plausible values,

NAEP uses an approach very similar to a two-step estimation with covariates. Item

parameters are estimated first without the covariates and then the item parameters

are fixed in the second phase for the generation of plausible values to better approxi-

mate population parameters (Adams et al., 1997). This methodology could be taken

as an important extension and practical application based on covariate inclusion

approaches.
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As with all other studies, certain limitations remain in the present study. First,

considering the amount of time required for the model estimation under the Bayesian

framework1, a number of factors and the prior distributions are fixed, so that the

results are limited to the manipulated factors under investigation. Future research

may manipulate more simulation factors or include more levels of the studied fac-

tors, especially for test length and data completeness. Second, previous research sug-

gested that one-step estimation, as used in the present study, is favored than two-step

estimation, due to the fact that the latter might greatly underestimate the regression

parameters (Adams et al., 1997). However, without a direct comparison, it is unclear

how much one-step estimation is better than two-step estimation in terms of recover-

ing the relations between covariates and model parameters in the MRM context. This

issue may be explored in future research.

In summary, despite the limitations, the findings from this study definitely add to

the literature about different approaches to covariate inclusion in mixture IRT model-

ing. A proper use of covariate information is of theoretical and practical importance

for researchers to achieve more accurate model estimation. The current simulation

study provides important theoretical evidence and practical implications about the

impact of different covariate inclusion approaches on the accuracy of latent group

classification, model parameter recovery, and overall model fit. It complements pre-

vious studies and lays a foundation for future explorations.
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