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Abstract

Multilevel modeling (MLM) is frequently used to detect cluster-level group differences
in cluster randomized trial and observational studies. Group differences on the out-
comes (posttest scores) are detected by controlling for the covariate (pretest scores)
as a proxy variable for unobserved factors that predict future attributes. The pretest
and posttest scores that are most often used in MLM are total scores. In prior
research, there have been concerns regarding measurement error in the use of total
scores in using MLM. In this article, using ordinary least squares and an attenuation
formula, we derive the measurement error correction formula for cluster-level group
difference estimates from MLM in the presence of measurement error in the out-
come, the covariate, or both. Examples are provided to illustrate the correction for-
mula in cluster randomized and observational studies using between-cluster reliability
coefficients recently developed.
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Introduction

Multilevel designs have been widely adopted in education because it is natural that

individuals (e.g., students) are nested within clusters (e.g., classrooms or schools) in

educational settings. In cluster randomized studies, clusters of individuals are

assigned at random to treatments. Random assignment may occur at the classroom

level rather than at the student level because researchers cannot control students’

class assignment (Raudenbush, 1997). In observational studies, researchers do not

have control over the assignment of clusters into groups. For example, the effect of

school type (e.g., traditional schools vs. nontraditional schools) on student-level out-

comes can be of interest and school type assignment cannot be controlled by

researchers. In cluster randomized and observational studies, one objective for statis-

tical analysis is to explore cluster-level group differences between a control group

and a treatment group in cluster randomized studies and between cluster-level groups

(e.g., cluster-level demographic information) in observational studies having multile-

vel designs.

In practice, multilevel modeling (MLM) is the general approach used to detect

cluster-level group differences on posttest outcomes; often, related covariates at dif-

ferent levels of multilevel data are controlled in the model (Aitkin & Longford,

1986; Goldstein, 2003, chap. 2). Pretest scores are important covariates to be con-

trolled because they serve as proxy variables for unobserved factors that predict

future attributes (e.g., Bloom, Hayes, & Black, 2005). Also, many educational and

psychological outcomes, such as ability, are unobservable. Thus, multiple indicators

(or items) are often collected to infer the unobserved attributes. When using MLM,

the multiple indicators on pre- and posttest measures are frequently summed (i.e.,

total score). The question to be addressed in this article is whether the total scores

are appropriate to use either as a covariate (i.e., pretest scores) or as the outcome

(i.e., posttest scores) in MLM analyses that are used to detect cluster-level group dif-

ferences. Referring to previous research findings, there are two major concerns in

using total scores in MLM: measurement error in covariates (e.g., Lüdtke et al.,

2008; Lüdtke, Marsh, Robitzsch, & Trautwein, 2011; Shin & Raudenbush, 2010)

and in outcomes (e.g., Fox, 2004; Raudenbush & Sadoff, 2008). However, these pre-

vious studies have not presented the effects of these concerns on detecting cluster-

level group differences when using MLM.

There are two common practices used to ameliorate concerns about measurement

error (Cohen, Cohen, West, & Aiken, 2003; Cole & Preacher, 2014): using measure-

ment error correction methods and using latent variable models for explicit modeling

of construct(s) with multiple indicators. An attenuation formula to correct for mea-

surement error (Lord & Novick, 1968; Spearman, 1904) has been used for correlation

coefficients as evidence of validity or criterion reliability. Cohen et al. (2003) used

the attenuation formula to correct for measurement error in outcomes and covariates

in linear regression models. Other kinds of measurement error correction methods

include errors-in-variables regressions (e.g., Camilli, 2006) and simulation extrapola-

tion (see Carroll, Ruppert, Stefanski, & Crainiceanu, 2006; Fuller, 1987, for reviews
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on the correction methods). Recently, Lockwood and McCaffrey (2014) presented

such correction methods to correct for measurement error in analysis of covariance

(ANCOVA) and multilevel ANCOVA, for estimating treatment effects in observa-

tional studies. On the other hand, previous research has shown that covariate mea-

surement error is not a problem in treatment effects for experimental or randomized

designs with groups that do not differ in average covariate values in ANCOVA

(Culpepper & Aguinis, 2011; Porter & Raudenbush, 1987). That is, measurement

error in covariates (e.g., pretest scores) may not be of concern for detecting group dif-

ferences in a randomized design.

Within a structural equation modeling (SEM) framework, there are several studies

demonstrating the use of latent variable models to test analysis of variance

(ANOVA)–like mean differences across groups at the latent construct level, includ-

ing structured means models (SMMs; Sörbom, 1974) and multiple-indicator multi-

ple-cause (MIMIC; Jöreskog & Goldberger, 1975) models. A relatively novel

analytic framework, multilevel SEM (MSEM), has been used to account for multile-

vel data in the use of SEM (McDonald, 1993; L. K. Muthén & Muthén, 1998-2014;

Rabe-Hesketh, Skrondal, & Pickles, 2004). MSEM for categorical variables is also

referred to as explanatory item response modeling (De Boeck & Wilson, 2004) or

nonlinear multilevel latent variable modeling (e.g., Yang & Cai, 2014). Multilevel

item response models have been used to account for measurement error in covari-

ate(s) (Battauz, Bellio, & Gori, 2011; Fox & Glas, 2003) or in outcomes (e.g., Fox,

2004) or in both covariates and outcomes (e.g., Raudenbush & Sampson, 1999).

However, situations may arise where researchers need to choose measurement

error correction methods instead of latent variable modeling approaches. First, item-

level data, making it possible to specify a measurement model, are not always avail-

able. Many studies consider MLM because only a single outcome (e.g., a standar-

dized test score) is available for analyses. Second, latent variable models often

require larger sample sizes than MLM because there are more measurement model

parameters to be estimated in latent variable models. When cluster sizes and the

number of clusters are not large enough, the use of latent variable models may not

be feasible. Third, when MLM is the dominant analytic method in a substantive area,

researchers may use MLM to communicate their study results more easily with oth-

ers in the area.

The purpose of this study is to provide a measurement error correction formula for

the cluster-level group difference estimate in the presence of measurement error in

outcomes (e.g., posttest) for cluster randomized studies and in outcomes (e.g., postt-

est) or a covariate (e.g., pretest) or both for observational studies. In the current study,

the derivation of the measurement error correction formula is based on ordinary least

squares (OLS; e.g., Cohen et al., 2003) and an attenuation formula (Lord & Novick,

1968; Spearman, 1904). It has been shown that the OLS principle can be applied to

fixed effect estimation in a two-level random intercept model when covariates are not

correlated across levels (Lüdtke et al., 2008; Lüdtke et al., 2011). With an assumption
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of normally distributed errors, the OLS estimator is a maximum likelihood estimator

(MLE; e.g., Neter, Kutner, Nachtsheim, & Wasserman, 1996).

This article is organized as follows. We first specify a two-level random intercept

MLM to estimate a cluster-level group difference parameter and describe a multile-

vel extension of classical test theory (CTT) to characterize measurement error in

multilevel modeling. We then provide a measurement error correction formula for

the cluster-level group difference estimate from MLM. Subsequently, to illustrate the

formula, the measurement error correction formula is applied to two empirical stud-

ies for detecting cluster-level group differences in cluster randomized and observa-

tional studies, respectively.

Assessing Group Differences and Measurement Error in
Multilevel Modeling

A two-level random intercept MLM is chosen to detect the cluster-level group differ-

ence on posttest scores, controlling for pretest scores (equation 4.6 in Moerbeek, Van

Breukelen, & Berger, 2008). Here, the individual level is called Level 1 (e.g., stu-

dent-level) and the cluster level is called Level 2 (e.g., classroom level). Denote yjk

and xjk as total scores for person j ( j = 1, . . . , J ) nested within cluster k (k = 1, . . . , K)

for posttest and pretest scores, respectively. Also, denote �yk and �xk as the cluster mean

for posttest and pretest scores, respectively.

A model at Level 1 (e.g., the student level) can be specified as follows:

yjk = b0k + b1j � (xjk � �xk) + ejk , ð1Þ

where b0k is the posttest score for cluster k adjusted for the pretest score for that per-

son, b1j is the effect of the pretest score for person j, and ejk is the residual of a post-

test total score at Level 1, assumed to follow N (0, s2). A model at Level 2 (e.g., the

classroom level) can be specified as follows:

b0k = g00 + g01 � �xk + g02 � GROUPk + uk ð2Þ

and b1j = g10, where GROUPk is a cluster-level binary group covariate (e.g., with a

value of 20.5 for members of the control group and a value of 0.5 for members of

the treatment group [effect-coding] in a cluster randomized study), g00 is the average

score at posttest for cluster k adjusted for the group and the pretest score, g01 is the

effect of the cluster mean pretest score at Level 2, g02 is the effect of the group, g10

is the effect of the pretest score at Level 1, and uk is the residual of the posttest total

score at Level 2, assumed to follow N (0, t2). Inserting the Level 2 model into the

Level 1 model gives the reduced-form model:

yjk = g00 + g10 � (xjk � �xk) + g01 � �xk + g02 � GROUPk + uk + ejk : ð3Þ
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Characterizing Measurement Error in Multilevel Modeling

In this subsection, a multilevel extension of CTT (Geldhof, Preacher, & Zyphur,

2014; Lüdtke et al., 2011; B. O. Muthén, 1991) is presented to characterize measure-

ment error in MLM. The observed posttest total score for the outcome, yjk in

Equation (3), can be decomposed into several components as follows:

yjk = Tyk + Tyjk + Ryk + Ryjk , ð4Þ

where Tyk is the between-cluster true score, Tyjk is the within-cluster true score, Ryk is

the between-cluster measurement error score, and Ryjk is the within-cluster measure-

ment error score. Here, true scores are not correlated with error scores, true scores at

the individual level are not correlated with true scores at the cluster level, and mea-

surement error scores at the individual level are not correlated with measurement

error scores at the cluster level. A similar CTT-based model can be specified for the

covariate, xjk = Txk + Txjk + Rxk + Rxjk .

Geldhof et al. (2014) presented separate reliability estimates at each level based

on Equation (4). Specifically, within-cluster reliability can be defined as the ratio of

the within-level true score variance to total within-level variance (
var½Tyjk �

var½Tyjk + Ryjk �),
whereas between-cluster reliability can be defined as the ratio of the between-level

true score variance to total between-level variance (
var½Tyk �

var½Tyk + Ryk �). Geldhof et al. (2014)

described and evaluated the multilevel (two-level) extensions of Cronbach’s a

(Cronbach, 1951), composite reliability (v; e.g., Werts, Linn, & Jöreskog, 1974),

and maximal reliability (H ; Thomson, 1940). Readers can refer to Geldhof et al.

(2014) for discussion and calculation of between-cluster reliability.

Measurement Error Correction for Cluster-Level Group
Differences

In this section, we first show the correction formula for measurement error only in

the outcome, which can be used for cluster randomized studies. Subsequently, we

provide the correction formula for measurement error in the covariate, which can be

applied to observational studies. We further show that the latter correction formula is

not necessary for cluster randomized studies. Finally, the correction formula for mea-

surement error in the outcome and the covariate is presented for observational

studies.

Let g02 be an unstandardized partial regression coefficient for the cluster-level

group covariate GROUPk , controlling for (xjk � �xk) and �xk in the two-level random

intercept MLM. Because (xjk � �xk) and �xk are orthogonal, and (xjk � �xk) and

GROUPk are also orthogonal, g02 can be calculated as follows, following equation

3.2.4 (p. 68) and equation 3.2.5 (p. 69) in Cohen et al. (2003):

bg02 = (
r�y:GROUP � r�y�x � r�x:GROUP

1� r2
�x:GROUP

) � ( SD�y

SDGROUP

), ð5Þ
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where r�y:GROUP is the correlation between a posttest mean �yk and a manifest (binary)

covariate GROUPk , r�y�x is the correlation between posttest means �yk and pretest means

�xk , r�x:GROUP is the correlation between pretest means �xk and a manifest (binary) cov-

ariate GROUPk , SD�y is the standard deviation of posttest means �yk (across clusters),

and SDGROUP is the standard deviation of the GROUPk covariate.

Cluster-Level Group Difference With Measurement Error in the Outcome

When there is measurement error only in the outcome, yjk , the unstandardized regres-

sion coefficient, g02½CorrectedY �, corrected for measurement error in yjk (i.e., the unstan-

dardized partial regression coefficient for a ‘‘true’’ posttest score at Level 2, Tyk) is

bg02½CorrectedY � = (
rTyk �GROUP � rTyk ��x � r�x�GROUP

1� r2
�x�GROUP

) � ( SD�y

SDGROUP

): ð6Þ

The following two attenuation formulas can be used to compute rTyk �GROUP (a

‘‘true’’ correlation between the ‘‘true’’ posttest score at Level 2 and a group covari-

ate GROUPk) and rTyk ��x (a ‘‘true’’ correlation between the ‘‘true’’ posttest score at

Level 2 and the pretest score at Level 2), respectively (see equation 3.9.7 in Lord &

Novick, 1968):

rTyk �GROUP =
r�y�GROUP
ffiffiffiffiffiffi
r�y�y
p ð7Þ

and

rTyk ��x =
r�y�x
ffiffiffiffiffiffi
r�y�y
p

,
ð8Þ

where r�y�y is the reliability coefficient of the outcome at Level 2 (called between-clus-

ter reliability in Geldhof et al., 2014).

Substituting Equations (7) and (8) into Equation (6), the measurement error cor-

rected group difference estimate, bg02½CorrectedY �, is

bg02½CorrectedY � =
1
ffiffiffiffiffiffi
r�y�y
p � r�y:GROUP � r�y�x � r�x�GROUP

1� r2
�x:GROUP

(
SD�y

SDGROUP

) =
1
ffiffiffiffiffiffi
r�y�y
p � bg02: ð9Þ

As shown in Equation 9, the correction formula is a function of the between-cluster

reliability for the outcome.

Cluster-Level Group Difference With Measurement Error in the Covariate

Referring to equation 4.3.6 (p. 122) in Cohen et al. (2003), the unstandardized regres-

sion coefficient corrected for measurement error in �xk , bg02½correctedX �, which is the
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unstandardized partial regression coefficient controlling for a ‘‘true’’ pretest score,

can be derived as follows:

bg02½correctedX � = (
r�y:GROUP � r�x�x � r�y�x � r�x:GROUP

r�x�x � r2
�x:GROUP

) � ( SD�y

SDGROUP

), ð10Þ

where r�x�x is the reliability coefficient for pretest scores at Level 2.

Measurement error in a covariate is expected in observational studies so that the

correction formula provided in Equation (10) can be used to correct for such measure-

ment error. However, the expected bias in bg02 in the presence of measurement error

in �xk is 0 in a cluster randomized design as shown below:

E(bg02 � bg02½correctedX �) = E(bg02)� E(bg02½correctedX �): ð11Þ

Because every term in Equations (5) and (10) is a constant, Equation (11) is calcu-

lated simply as follows:

E(bg02)� E(bg02½correctedX �)

= (
SD�y

SDGROUP

) � f( r�y:GROUP � r�y�x � r�x:GROUP

1� r2
�x:GROUP

)� (
r�y:GROUP � r�x�x � r�y�x � r�x:GROUP

r�x�x � r2
�x:GROUP

)g:

ð12Þ

The expected bias is 0 in the case of r�x:GROUP = 0, which is assumed in a cluster ran-

domized design.

Cluster-Level Group Difference With Measurement Error in the Outcome and
Covariate

When there is measurement error in the outcome (yjk) and in the covariate (xjk), the

unstandardized regression coefficient, g02½CorrectedYX �, corrected for measurement error

in yjk and in xjk (i.e., the unstandardized partial regression coefficient for a ‘‘true’’

posttest score at Level 2 [Tyk] and a ‘‘true’’ pretest score at Level 2 [Txk]) is

bg02½CorrectedYX � = (
rTyk �GROUP � rTyk �Txk

� rTxk �GROUP

1� r2
Txk �GROUP

) � ( SD�y

SDGROUP

): ð13Þ

Equation (7) to calculate rTyk �GROUP and the following two disattenuation formulae

can be used to compute rTyk �Txk
(a ‘‘true’’ correlation between the ‘‘true’’ posttest

score and the ‘‘true’’ pretest score at Level 2) and rTxk �GROUP (a ‘‘true’’ correlation

between the ‘‘true’’ pretest score at Level 2 and a group covariate GROUPk):

rTyk �Txk
=

r�y�x
ffiffiffiffiffiffiffiffiffiffiffi
r�y�yr�x�x
p ð14Þ
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and

rTxk �GROUP =
r�x�GROUP
ffiffiffiffiffiffi
r�x�x
p : ð15Þ

Substituting Equations (7), (14), and (15) into Equation (13), the measurement

error corrected group difference estimate, bg02½CorrectedYX �, is

bg02½CorrectedYX � =
1
ffiffiffiffiffiffi
r�y�y
p � ( r�x�x � r�y:GROUP � r�y�x � r�x�GROUP

r�x�x � r2
�x:GROUP

) � ( SD�y

SDGROUP

): ð16Þ

As presented in Equation (16), the correction formula is a function of the between-

cluster reliability for the outcome and the covariate.

Examples

In this section, we illustrate the use of the correction formula for measurement error

only in the outcome (Equation 9) in a cluster randomized study and the use of the cor-

rection formula for the outcome and the covariate (Equation 16) in an observational

study. In both examples, the main analytic goal is to detect cluster-level group differ-

ences using the two-level random MLM based on total pretest and posttest scores

(Equation 3). In the examples, for comparison with the OLS estimate for g02 and the

calculation of intraclass correlation, the model was also estimated under maximum

likelihood (ML) with robust standard errors (MLR estimator in Mplus) using Mplus

(L. K. Muthén & Muthén, 1998-2014). Mplus code for obtaining ML estimate is pro-

vided in the appendix. Between-cluster reliability, a, v, and H , were computed using

Mplus. Example Mplus code for the between-cluster reliability can be found at http://

quantpsy.org.

Example 1: Measurement Error Correction for the Outcome in a Cluster
Randomized Study

The data used in the first example were collected in an efficacy trial of the instruc-

tional intervention called Enhanced Anchored Instruction (EAI). EAI aims to

improve math achievement in middle and high school students (see Bottge et al.,

2015, for details on EAI). The design of the efficacy trial was a pretest–posttest clus-

ter randomized design, where schools, rather than classes or students, were randomly

assigned to EAI and business as usual (BAU). A main research analysis focus was

whether group (EAI vs. BAU) differences emerged for computation math skill after

EAI.

Measure and Samples. The researcher-developed test Fraction Computation Test was

administered at pretest and posttest. The test has 20 items assessing students’ ability

to manually add and subtract fractions. There were a total of 42 points on the test. For
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18 of the 20 items, students could earn 0, 1, or 2 points. On two items, students could

earn 3 points if they simplified the answer (i.e., revised the fraction to simple terms).

Interrater agreement was 99% on the pretest and 97% on the posttest.

Twenty-four middle schools in the Southeastern United States participated in the

study. The schools were randomly assigned to EAI and BAU with equal probability.

Of the initial sample, 25 students did not respond to all items in the pretest or the

posttest. These students were not considered in the analysis. Accordingly, 232 BAU

and 214 EAI students were chosen in the final sample. The cluster size (i.e., the num-

ber of students for each teacher) ranged from 7 to 28 students and the average cluster

size was 17.84. Based on chi-square tests of equal proportions, students were compa-

rable across instructional conditions in terms of gender, ethnicity, subsidized lunch,

and disability area (see Bottge et al., 2015). Each school had one participating inclu-

sive math classroom, except one school having two participating classrooms.

Therefore, clustering due to schools was ignored and a two-level structure (i.e., 446

students nested in 25 teachers) was considered.

Analysis. A group (i.e., treatment condition) covariate was coded with a value of

20.5 for members of the BAU group and a value of 0.5 for the EAI group. The intra-

class correlation (based on results of the unconditional two-level random intercept

MLM using ML) on the outcome was 0.232, indicating that 23.2% of the total var-

iance is explained by teachers. The between-cluster reliability estimates for posttest

scores were 0.8501 for apost, 0.8623 for vpost, and 0.8902 for Hpost. These between-

cluster reliability coefficient estimates were relatively high, but they indicate the

presence of measurement error in the outcome.

Group Difference Estimate Without and With Measurement Error Correction for the

Outcome. bg02 (OLS estimate) was 8.8690 ( = ½r�y:GROUP�r�y�x�r�x:GROUP

1�r2
�x:GROUP

� � ½ SD�y

SDGROUP
�=

½0:5900�(0:4896�0:0123)

1�(0:0123)2 � � ½7:7428
0:5099
�). With ML, bg02 was 9.057 (standard error=1.947), which

was similar to the OLS estimate (within one ML standard error). Because

the between-cluster reliability coefficient estimates were slightly different, the

corrected group difference estimate due to measurement error was calculated

using Equation (9) as follows: (a) bg02½correctedY � =
8:8690ffiffi
(
p

0:8501)
= 9:6192, where

apost = 0:8501; (b) bg02½correctedY � =
8:8690ffiffi
(
p

0:8623)
= 9:5509, where vpost = 0:8623; and (c)

bg02½correctedY � =
8:8690ffiffi
(
p

0:8902)
= 9:4001, where Hpost = 0:8902.

Example 2: Measurement Error Correction for the Outcome and the
Covariate in an Observational Study

In the second example, we use data from an instructional intervention to improve

word knowledge of adolescents (see Goodwin, 2016, for details). The design of the

study was a pretest–posttest randomized design at the student level, where students
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nested within teachers were randomly assigned within class to the intervention or

comparison instruction. For the illustrative purpose of detecting a cluster (i.e.,

teacher)-level group difference in the current study, an analysis goal was to detect

teacher group differences from traditional and nontraditional schools. For this analy-

sis goal, we consider this example to be an observational study at the cluster level

even though the data are from a (individual level) randomized study.

Measure and Samples. Word knowledge was measured by three researcher-created

measures for multiple-choice, self-report, and depth shown by producing related

words at pretest and posttest. The multiple-choice measure was chosen in this study.

In the multiple-choice measure, students were presented with an underlined word

within a short phrase without context clues and they then circled the word among

five choices of target word. There were 16 words (i.e., items) and items were scored

as correct (score of 1) or incorrect (score of 0).

The samples consisted of 202 students (118 fifth-grade; 84 sixth-grade) that were

diverse (113 Black, 47 Hispanic, 37 Caucasian, 5 Asian), mostly in poverty (173

receiving free and reduced lunch services), and spoke a range of languages at home

(128 native English speakers, 28 English language learners, 46 language minority

youth). These students were learning from 21 teachers who ranged in experience lev-

els. Cluster size (i.e., the number of students for each teacher) ranged from 1 to 35

and the average cluster size was 9.619. The study took place within four schools

(school A=13; B=35, C=98, D=56) in the southeastern U.S. Schools A and D were

traditional middle schools and Schools B and C were nontraditional schools (i.e.,

STEM [science, technology, engineering, and math] magnet and charter school,

respectively). One student missed the last five items at pretest and was omitted.

There were 201 students nested within 21 teachers in the final samples for analysis.

Analysis. Twenty-one teachers were grouped into two groups, teachers in traditional

schools (K = 12) and teachers in non-traditional schools (K = 9). The two-level (i.e.,

201 students nested within 21 teachers) random intercept MLM (Equation 3) was fit

to the data to detect cluster (teacher)-level group differences. A teacher group covari-

ate (i.e., a GROUP covariate) was coded with a value of 20.5 for teachers of the tra-

ditional schools and a value of 0.5 for teachers of the nontraditional schools.

Based on results of the unconditional two-level random intercept MLM using ML,

the intraclass correlation was 0.234 for the outcome (i.e., posttest scores) and 0.196

for the covariate (i.e., pretest scores). These results indicate that 23.4% of the total

variance in the outcome and 19.6% of the total variance in the covariate are explained

by teachers. The between-cluster reliability estimates for pretest scores were 0.7551

for apre, 0.8416 for vpre, and 0.8533 for Hpre. r�x:GROUP was 0.403 (95% confidence

interval = 20.035 to 0.711), which suggests that bias for cluster-level group differ-

ence estimate is expected due to measurement error in the covariate. The between-

cluster reliability estimates for posttest scores were 0.8514 for apost, 0.9012 for vpost,

and 0.8928 for Hpost.
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Group Difference Estimate Without and With Measurement Error Correction for the

Outcome and the Covariate. bg02 (OLS estimate) was 20.2353 ( = ½r�y:GROUP�r�y�x�r�x:GROUP

1�r2
�x:GROUP

��

½ SD�y

SDGROUP
�= ½0:2862�(0:8560�0:4030)

1�(0:4030)2 � � ½1:7003
0:5071
�). bg02 with ML (–0.241, standard error=0.364)

was similar to the OLS estimate. Equation (16) was used to correct for measurement

error in the outcome and the covariate based on the between-cluster reliability esti-

mates as follows: (a) bg02½correctedYX � =
1ffiffiffiffiffiffiffiffiffiffi

0:8514
p � ½(0:7551�0:2862)�(0:8560�0:4030)

0:7551�(0:4030)2 � � ( 1:7003
0:5071

) =

�0:7900, where apre = 0:7551 and apost = 0:8514; (b) bg02½correctedYX � =
1ffiffiffiffiffiffiffiffiffiffi

0:9012
p � ½(0:8416�0:2862)�(0:8560�0:4030)

0:8416�(0:4030)2 � � ( 1:7003
0:5071

) = � 0:5414, where vpre = 0:8416 and

vpost = 0:9012; and (c) bg02½correctedYX � =
1ffiffiffiffiffiffiffiffiffiffi

0:8928
p � ½(0:8533�0:2862)�(0:8560�0:4030)

0:8533�(0:4030)2 � � ( 1:7003
0:5071

) =

�0:5175, where Hpre = 0:8533 and Hpost = 0:8928.

Summary and Discussion

The number of studies with multilevel designs has increased in educational research.

Many researchers collect multiple indicators to measure educational and psychologi-

cal attributes, which are often subject to measurement error. It has been increasingly

common to use latent variable models to explicitly model measurement error in out-

comes and/or covariates using multiple indicators (e.g., Fox, 2004; B. O. Muthén &

Asparouhov, 2013; Rabe-Hesketh et al., 2004; Raudenbush & Sampson, 1999; Yang

& Cai, 2014). However, as noted earlier, researchers may encounter situations where

latent variable models cannot be used for measurement error adjustment.

In this article, measurement error correction formulas for a cluster-level group dif-

ference estimate from MLM were provided when there is measurement error in the

outcome (e.g., posttest scores) in cluster randomized studies and there is measure-

ment error in the outcome (e.g., posttest scores) and the covariate (e.g., pretest scores)

in observational studies. We showed that the measurement error correction formula is

a function of the between-cluster reliability recently developed by Geldhof et al.

(2014). In the examples, we illustrated how to obtain disattenuated cluster-level group

difference estimates using the formula in cluster randomized and observational

studies.

There are methodological limitations to the current study. First, we limited our

focus to the two-level random intercept MLM because it is one of the more popular

analytic methods for estimating cluster-level group differences (e.g., Moerbeek et al.,

2008; Raudenbush, 1997). In addition, only pretest covariates (at Levels 1 and 2) and

a binary group covariate (at Level 2) were considered in the model because we focus

attention on cluster-level group effects and pretest scores. Additional work is required

for other specifications of MLM having more hierarchical levels and additional

covariates.

Second, the measurement error correction formula we provided was based on an

unbiased estimate of the between-cluster reliability and its availability to researchers.

The empirical illustration was based on the between-cluster reliability coefficients
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described by Geldhof et al. (2014). According to a simulation study, they found

between-cluster reliability coefficient estimates cannot be trusted when cluster size is

small (i.e., 15 or fewer individuals per cluster) and intraclass correlation is low (i.e.,

\:05), and between-level v is preferable to between-level a and H in most data con-

ditions. Estimates of v and a can be similar in the case of essential tau equivalence,

which is often violated in practice (Sijtsma, 2009). However, specification and

evaluation for the between reliability in Geldhof et al. (2014) was based on the

two-level confirmatory factor model for continuous outcomes to calculate v and H .

Future research is required to estimate and evaluate the between reliability for cate-

gorical outcomes.

Third, this study used an attenuation formula for measurement error correction. As

shown in the formula, the lower the between-cluster reliability, the greater will be the

correction. Unlike the measurement error correction for correlations, there is no range

restriction for the disattenuated estimate in MLM using the disattenuation formula.

However, the correction formula we provided for MLM estimates shares limitations

of the correction formula for correlation coefficients (see Muchinsky, 1996, for a

review of the limitations). For example, the interpretation of a dramatically elevated

disattenuated estimate is challenging, especially when the between-cluster reliability

coefficient estimate is small (e.g., \:4). Regarding this problem, it is recommended

to check for possible reasons for low between-cluster reliability prior to using the cor-

rection formula. Also, it is recommended to report both the original estimate (before

correction) and the disattenuated estimate (after correction) as suggested for meta-

analyses using MLM (Hox & de Leeuw, 2003).

Fourth, scale scores calculated from measurement models (e.g., factor analytic

models, item response models) can be used as the outcome in MLM when they are

available to researchers in addition to the total scores. In using the scale scores in

MLM, the procedure can be called a two-stage procedure where the scale scores are

calculated using measurement models in the first stage and then used as outcomes

and covariates in MLM in the second stage. An additional study of the two-stage pro-

cedure and the measurement error correction method presented in this study is neces-

sary to present relative performance for detecting the cluster-level group differences

between the two approaches.

Despite these limitations, this article highlighted that the cluster-level group dif-

ference estimate from MLM can be attenuated in the presence of measurement error

in the outcome in cluster randomized studies and in the presence of measurement

error in the outcome and the covariate in observational studies. Attenuation due to

measurement error is a well-known problem for correlations and for linear regression

models. However, no study to date has shown that the attenuation formula is also

applicable to MLM for detecting cluster-level group differences. Furthermore, sub-

stantive researchers continue to use cluster-level group difference estimates from

MLM based on total scores from unreliable measures. This article showed one possi-

ble measurement error correction method when researchers need to report group
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difference estimates from MLM in the presence of measurement error and between-

cluster reliability is available to them.

Appendix

Mplus Code Used for MLM Estimation

TITLE: MLM

DATA: FILE IS data.txt;

VARIABLE: NAMES ARE stuid tchid trt pre prew preb post;

USEVARIABLES = tchid post trt prew preb;

CLUSTER = tchid;

BETWEEN = trt preb;

WITHIN = prew;

ANALYSIS: TYPE IS TWOLEVEL;

ESTIMATOR = MLR;

MODEL:

%WITHIN%

post ON prew;

%BETWEEN%

post ON trt;

post ON preb;

OUTPUT: STDYX TECH1;

!stuid=person id

!tchid=cluster id

!trt=cluster-level group covariate

!pre=pretest scores

!prew=pretest scores - cluster mean for pretest scores

!preb=cluster mean for pretest scores

!post=posttest scores
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