Skip to main content
. 2016 Apr 1;77(2):275–304. doi: 10.1177/0013164416640327

Table 2.

Parameter Recovery for the Linear Higher-Order Mixture Rasch Model With a Sample Size of 2,000.

Test length 20
30
Class Majority
Minority
Majority
Minority
Criterion
Bias
RMSE
Bias
RMSE
Bias
RMSE
Bias
RMSE
Parameter
Difficulty
Test 1
 Mean 0.007 0.088 0.007 0.120 0.004 0.083 0.004 0.101
SD 0.024 0.013 0.016 0.022 0.015 0.011 0.020 0.015
Test 2
 Mean 0.007 0.088 0.007 0.113 −0.002 0.080 −0.002 0.103
SD 0.023 0.014 0.022 0.024 0.019 0.014 0.024 0.025
Test 3
 Mean 0.006 0.081 0.006 0.117 0.002 0.080 0.002 0.100
SD 0.016 0.013 0.020 0.023 0.013 0.011 0.019 0.015
Test 4
 Mean −0.001 0.086 −0.001 0.115 0.005 0.082 0.005 0.104
SD 0.023 0.015 0.020 0.018 0.015 0.014 0.019 0.015
Test 5
 Mean 0.001 0.084 0.001 0.116 0.003 0.082 0.003 0.102
SD 0.016 0.015 0.022 0.023 0.017 0.012 0.016 0.018
Second-order
θ¯(2) 0.001 0.082 0.009 0.067
Var(θ(2)) −0.009 0.096 −0.008 0.082
Loading
 β1 0.011 0.037 0.006 0.025
 β2 0.005 0.029 0.000 0.032
 β3 −0.001 0.022 0.003 0.039
 β4 0.002 0.026 −0.001 0.023
 β5 −0.003 0.034 0.002 0.026
Residual
 Mean 0.003 0.047 0.001 0.067 −0.004 0.044 0.016 0.058
SD 0.006 0.007 0.015 0.010 0.004 0.007 0.014 0.016

Note. RMSE = root mean square error; Second-order = second-order latent trait; Loading = factor loading; Residual = residual variance; — = not applicable because of model constraints.