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Abstract

Coefficient omega and alpha are both measures of the composite reliability for a set
of items. Unlike coefficient alpha, coefficient omega remains unbiased with congeneric
items with uncorrelated errors. Despite this ability, coefficient omega is not as widely
used and cited in the literature as coefficient alpha. Reasons for coefficient omega’s
underutilization include a limited knowledge of its statistical properties. However,
consistent efforts to understand the statistical properties of coefficient omega can
help improve its utilization in research efforts. Here, six approaches for estimating
confidence intervals for coefficient omega with unidimensional congeneric items were
evaluated through a Monte Carlo simulation. The evaluations were made through
simulation conditions that mimic realistic conditions that investigators are likely to
face in applied work, including items that are not normally distributed and small sam-
ple size(s). Overall, the normal theory bootstrap confidence interval had the best
performance across all simulation conditions that included sample sizes less than 100.
However, most methods had sound coverage with sample sizes of 100 or more.
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Coefficient omega ‘‘captures the notion of the reliability of a test score’’ (McDonald,

1999, p. 90). As such, it is a measure of composite reliability introduced by

McDonald (1970) as an alternative reliability index to coefficient alpha. Coefficient

omega is computed using the item factor loadings and uniqueness from a factor anal-

ysis whereas coefficient alpha uses the item covariance (or correlation) matrix

(Cronbach, 1951; Guttman, 1945). As such, coefficient omega is a more general form

of reliability. This is best conveyed via three models based on classical test theory.

First, when items are parallel, both coefficient alpha and omega are equal to the com-

posite reliability for the set of items. Second, when items are tau-equivalent or essen-

tially tau-equivalent, coefficient alpha and omega are again equal to the composite

reliability for the set of items. However, when items are congeneric, coefficient alpha

is less than the composite reliability for a set of items whereas coefficient omega is

equal to the composite reliability for the set of items (Graham, 2006; Lord, Novick,

& Birnbaum, 1968; McDonald, 1999; Zinbarg, Revelle, Yovel, & Li, 2005). For fur-

ther details on these three classical test theory based models discussed, see Graham

(2006) or Padilla and Divers (2013). It should be noted that there are situations where

coefficient alpha can be higher than composite reliability with congeneric items. An

example of such a situation is when item errors are correlated (Novick & Lewis,

1967). However, this situation will not be investigated here.

Even though coefficient omega is a more general form of reliability, it has been

overshadowed by coefficient alpha in the literature (Hogan, Benjamin, & Brezinski,

2000; Peterson, 1994). Coefficient alpha’s popularity could be attributed to its ease of

computation and years trying to understand its statistical properties. However, recent

research on coefficient omega is beginning to make it a more viable alternative. In

particular, several confidence interval (CI) estimates have been proposed. The objec-

tive here is to investigate the performance of CIs in the literature that investigators (a)

can implement in a straightforward manner and (b) under conditions they are likely

to encounter in applied work.

Raykov (1997) proposed a composite reliability for congeneric unidimensional

items and then developed a corresponding percentile bootstrap (PB) CI (Raykov,

1998). Composite reliability is formulated through a structural equation model (SEM)

and is equivalent to coefficient omega. An illustration of the PB CI was provided

through a small simulation study that included 1,000 bootstrap samples, a sample size

of 400, and 6 unidimensional multivariate normal congeneric items.

In a subsequent study, Raykov (2002) derived an analytical standard error via a

first-order delta method for composite reliability. This method of estimating the com-

posite reliability standard error will be referred to as the delta method. The method is

again formulated through a SEM and illustrated with a small simulation. The simula-

tion included a sample size of 500 and 5 unidimensional multivariate normal conge-

neric items. In this study, the delta method CI was compared with the PB CI with

2,000 bootstrap samples, and both methods had similar results.

In a parallel study, Raykov and Shrout (2002) formulated a more general form of

composite reliability (Raykov, 1997, 1998) through a SEM with a corresponding PB
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CI. It is more general in that it does not assume the items are unidimensional. The

method is again illustrated with a small simulation that assumed two dimensions and

included a sample size of 300 and 6 multivariate normal congeneric items. The results

provide evidence that the composite reliability estimate is unbiased and the CI con-

tains the population parameter at the specified alpha level.

More recently, Raykov and Marcoulide (2011) added some modifications to the

coefficient omega delta method standard error. First, a logit transformation was added

to map the reliability parameter from its [0, 1] interval to the real line [2inf, inf]. In

addition, the authors noted that the robust maximum likelihood (MLR) estimator

should be used with nonnormal items that have at least 5 to 7 response categories.

For items with less than 5 response categories, a three-step parceling procedure is dis-

cussed. See Little, Cunningham, Shahar, and Widaman (2002) for a discussion on

parceling. The delta method and three-step parceling procedure are illustrated using

relatively large example data sets (i.e., n� 350).

Padilla and Divers (2013) proposed two additional coefficient omega bootstrap

CIs: the bias-corrected and accelerated (BCa) and normal theory bootstrap (NTB).

They investigated their performance along with the PB CI through a simulation study

that varied the number of items, item correlation type, number of item response cate-

gories (IRCs), shape of the distribution of items, and sample size. The authors found

that the NTB CI had the best performance across the simulation conditions followed

by the PB and BCa CIs, respectively. It should be noted that the PB and BCa CIs per-

formed comparably and the differences between them were marginal.

There are five points the literature makes about the coefficient omega CIs from

1997 to 2011. First, the delta method is applicable with (a) approximately continuous

items that are ‘‘viewed as having (b) a multinormal distribution’’ (Raykov &

Marcoulides, 2011, p. 168). Second, the delta method is applicable by combining it

with the MLR estimator with items that are (a) approximately continuous, (b) non-

normally distributed, (c) do not have floor/ceiling effects, and (d) is ‘‘. . . applicable

in a trustworthy way with items having at least five to seven possible values’’

(Raykov, 2012, p. 483). Third, for the delta method with binary items, Raykov and

Marcoulides (2011) point to combining the MLR estimator with item parceling ‘‘as a

conceivable alternative to consider . . .’’ (p. 176). Subsequently, Raykov (2012) indi-

cates that the delta method with MLR/parceling can be used with items with up to 5

to 7 response categories. Fourth, there are no guidelines for deciding which CI to use

between the delta and PB method under specific situations (Raykov & Marcoulides,

2011). Lastly, Raykov (2012) indicates that ‘‘at present no specific guidelines can be

provided with regard to determining [a] necessary sample size . . .’’ (p. 489) for any

of the methods from the above four points.

With these points in mind, interest here is on investigating the relative perfor-

mance of these coefficient omega CI methods that can be implemented in a straight-

forward manner. In addition, the BCa and NTB CI methods are included as they are

also bootstrap methods but were introduced in the literature after 2011. Furthermore,

items are rarely normally distributed (Micceri, 1989) and continuous (Raykov, 2002)
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in applied work. Therefore, particular interest is on the impact noncontinuous and

nonnormally distributed items have on the CIs. We start by defining coefficient

omega.

Coefficient Omega and Reliability

Consider a measurement instrument with k items x1; x2; . . . , xk designed to measure

a single construct, factor, or latent variable. In the behavioral/social sciences, it is

common to compute the reliability of the composite x ¼
Pk
j¼1

xj: This composite relia-

bility is often referred to as the test score reliability or the reliability of the measure-

ment instrument. If the items are congeneric, coefficient omega is the appropriate

composite reliability index.

Coefficient omega is defined as

v ¼

Pk
j¼1

lj

 !2

Pk
j¼1

lj

 !2

þ
Pk
j¼1

wj

; ð1Þ

where lj and wj is the jth factor loading and its uniqueness, respectively (McDonald,

1970, 1999). In the definition,
Pk
j¼1

lj

 !2

is the true-score variance and
Pk
j¼1

wj is the

error variance. Coefficient omega is estimated v̂ð Þ by using sample estimates l̂j and

ŵj in Equation 1.

Logit Transformation

Some of the CIs are based on the idea of normalizing coefficient omega. As men-

tioned above, this is done to remove the [0, 1] range constraint on coefficient omega.

Normalizing involves transforming the coefficient omega estimate to an approxi-

mately normal deviate, which can be used to form a normal theory (NT) CI as

follows:

ẑ6za=2SE ẑð Þ; ð2Þ

where

ẑ ¼ ln
v̂

1� v̂

� �
; ð3Þ
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SE ẑð Þ ¼ SE v̂ð Þ
v̂ 1� v̂ð Þ ; ð4Þ

SE v̂ð Þ is the standard error for v̂; and za=2 is a standard normal deviate correspond-

ing to significance level (a). The key to the above NT CI for v̂ is estimating SE v̂ð Þ:
The NT CI bounds are then back transformed to provide the CIs associated with v̂ on

its original scale.

Non-Bootstrap Coefficient Omega CIs

Two non-bootstrap CI methods were examined. Before discussing these methods the

variance estimate that is common to both is first presented. Raykov (2002) first pro-

posed the following delta method based variance estimate for coefficient omega:

var v̂ð Þ ¼ D̂ 2
1 var ûð Þ þ D̂ 2

2 var v̂ð Þ þ 2D̂1D̂2cov û; v̂ð Þ; ð5Þ

where

û ¼
Xk

j¼1

l̂j; ð6Þ

v̂ ¼
Xk

j¼1

ŵj; ð7Þ

D̂1 ¼
2ûv̂

û2 þ v̂2
� �2

; ð8Þ

D̂2 ¼
�û2

û2 þ v̂2
� �2

; ð9Þ

and var(.) and cov(.) are the variance and covariance operators, respectively. In addi-

tion, Raykov presented a corresponding coefficient omega CI where

SE v̂ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var v̂ð Þ

p
: Here, two non-bootstrap CIs associated with the above delta var-

iance estimate were examined.

The first non-bootstrap CI method examined is a modification of Rakov’s (2002)

original CI. Specifically, Raykov (2012) and Raykov and Marcoulides (2011) modi-

fied the original CI by adding the above logit transformation to the standard error of

the delta method. From now on, this method will be referred to as the delta with logit

transformation (DTLG) method.

The three-step parceling method is the second non-bootstrap method examined.

This method is a modification of the first in that it is designed for items with 7 or less

response categories and entails (a) parceling the items, (b) estimating the delta
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variance above via the MLR estimator, and (c) employing the logit transformation.

For further details on the three-step parceling procedure, see Rarkov and

Marcoulides (2011). In addition, Raykov (2012) points out that the parceling method

‘‘will be trustworthy when resulting reliability estimates and confidence intervals do

not vary considerably across possible parceling choices’’ (p. 483). From now on, this

method will be referred to as the three-step parceling with logit transformation

(PRLG) method.

Bootstrapped Coefficient Omega CIs

Bootstrapping for coefficient omega can be summarized in three steps. Suppose

X ¼ x1; x2; . . . , xnð Þt are the observed data where each xi is a 1 3 k vector. First,

obtain a bootstrap sample X bð Þ ¼ x
bð Þ

1 ; x
bð Þ

2 ; . . . , x bð Þ
n

� �t

; which is the bth random

resample from X with replacement. Note that X and X(b) have the same sample

size. Second, compute and store the bth bootstrap estimate of coefficient omega

v̂ðbÞ
� �

from X bð Þ: Lastly, the stored estimates v̂ð1Þ; v̂ð2Þ; . . . ; v̂ðBÞ represent the

empirical sampling distribution (ESD) of v̂ for b ¼ 1; 2; . . . ; B bootstrap sam-

ples. The ESD can then be summarized for statistical inference about v. The boot-

strap estimate of SE is

SE v̂ð Þ ¼ 1

B� 1

XB

b¼1

v̂ðbÞ � �v
� �2

" #1=2

; ð10Þ

where

�v ¼ 1

B

XB

b¼1

v̂ðbÞ: ð11Þ

Four bootstrap CIs were examined. First, Raykov (1998) proposed a percentile

based (PB) CI obtained by computing the a/2 and 1 2a/2 percentiles from the v̂

ESD where a is the Type I error rate. Second, Padilla and Divers (2013) proposed

the BCa and NTB CIs. The BCa CI is an improvement on the PB CI that adjusts the

a/2 and 1 2a/2 percentiles in two ways: (a) it makes a correction for bias and (b) a

correction for skewness (or acceleration). The NTB CI is estimated as v̂6za=2SE v̂ð Þ:
The fourth CI was formed by using the bootstrap SE with the logit transformation

above (BTLG). For technical and theoretical details concerning the bootstrap and the

first three bootstrap CIs investigated, see Efron and Tibshirani (1998).

Again, two non-bootstrap (DTLG and PRLG) and four bootstrap (PB, BCa, NTB,

and BTLG) methods of estimating coefficient omega CIs are investigated under sev-

eral simulation conditions.
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Method

Simulation Design

Five different simulation factors were investigated in a 4 (# of items) 3 3 (corr. type)

3 4 (# of IRCs) 3 3 (distribution type) 3 10 (sample size) Monte Carlo simulation

design for a total of 1,440 conditions. All simulated items were nonnormal and bin-

ary or Likert-type (ordinal); none of the items were continuous. For each simulation

condition, 1,000 replications were obtained.

Binary and Likert-type items were generated using the method used in Maydeu-

Olivares, Coffman, and Hartmann (2007). This method is outlined below:

1. Select the structure for the k 3 k correlation matrix P, where k is the number

of items.

2. Select a set of thresholds n to categorize items to a predetermined skewness

and kurtosis.

3. Generate an n 3 k multivariate data matrix X*~N(0, P), where n is the sample

size.

4. Categorize the generated data X* using the thresholds n to generate the data

set X. Each variable x in X is categorized by the thresholds as follows: x ¼ m

if nm\x�\nmþ1 for m ¼ 0; 1; . . . ;M � 1 where n0 ¼ �‘ and nM ¼ ‘; and

M is the number of categories.

5. Estimate the coefficient omega CIs from X as outlined above.

6. Compute coefficient omega (v) from P and the thresholds in n. See Maydeu-

Olivares et al. (2007) for full details.

7. Determine if the CIs contain v.

Below are the specific simulation conditions investigated.

Number of Items (k). Past research on coefficient alpha and omega has looked at vari-

ous numbers of items ranging from 2 to 20 (Duhachek & Iacobucci, 2004; Maydeu-

Olivares et al., 2007; Padilla & Divers, 2013). To make the results here comparable

to past research and to accommodate even parceling, the following number of items

were selected: k = 6, 12, 18, 24.

Item Correlation Type (r). Three different unstructured item correlation matrices P

were investigated. All correlation structures were based on a one-factor model with

congeneric items. The loadings associated with each correlation structure were as

follows: l1 = .4, .5, .6, .7, .8, .9; l2 = .3, .4, .5, .6, .7, .8; and l3 = .4, .4, .4, .8, .8, .8.

Item Response Category. Four IRCs were investigated: 2, 3, 5, and 7. List item num-

ber 4 above highlights the item categories that were used; none of the items were

continuous.
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Distribution Type. Three different distribution types were investigated. When IRC = 2

(i.e., binary items), the thresholds in n were chosen so that the distributions had the

following characteristics:

1. Type 1: skewness = 0 and kurtosis = 22

2. Type 2: skewness = 1.70 and kurtosis = 0.88

3. Type 3: skewness = 0.41 and kurtosis = 21.83

The Type 3 distribution for binary categorization was studied by Maydeu-Olivares et

al. (2007). When IRC = 3, 5, 7, the thresholds in n were chosen so that the distribu-

tions had the following characteristics:

1. Type 1: skewness = 0 and kurtosis = 0

2. Type 2: skewness = 0 and kurtosis = 0.88

3. Type 3: skewness = 0.97 and kurtosis = 2.20

The Type 2 and 3 distributions for IRC . 2 categorization were studied by Maydeu-

Olivares et al. (2007). The combination of number of items, item correlations, and

item categorization created a range of .55 to .94 for v.

Sample Size (n). The following typical sample sizes in behavioral/social science

research were investigated: n = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500.

Duhachek and Iacobucci (2004) indicate that n . 200 is a point of diminishing

returns for reliability estimates. However, here slightly larger samples sizes were

investigated in order to be conservative.

Criteria for Evaluating CIs

In each simulation replication, coefficient omega and corresponding quantities were

estimated and evaluated. Here, coefficient omega 100(1 2a)% CIs were estimated

with a = .05. For bootstrapping methods, 2,000 bootstraps samples were used. CI

coverage is defined as the proportion of estimated CIs that contain v and was evalu-

ated using Bradley’s (1978) liberal criteria, defined as 1� 1:5a � 1

�a� � 1� 0:5a; where a� is the true Type I error probability. Hence, acceptable

coverage is given by [.925, .975].

Results

In terms of coverage, the NTB CI had the most optimal performance. The major

impact on the CIs was IRCs combined with Type 2 and 3 distributions. In addition,

the results are presented in the context of sample size because it has a noticeable sta-

bilizing effect on the CIs. Therefore, only tables for Type 2 and 3 distributions and
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sample size of 50 will be presented because most of the CIs began to converge to

acceptable coverage beyond this point.

Sample Size of 50

For Type 1 distributions, the NTB CI did not have an instance of unacceptable cover-

age (0/1,440 = 0). The DTLG CI had one instance of unacceptable coverage with 18

binary items (1/1,440 = .001). The PB CI had the most unacceptable coverage (8/

1,440 = .006). In general, most unacceptable coverage occurred with 18 to 24 items.

With Type 2 distributions (see Table 1), the NTB CI had unacceptable coverage

in 2 instances for binary items (2/1,440 = .001). The PB CI had the most unaccepta-

ble coverage (35/1,440 = .024). Most unacceptable coverage occurred with 18 to 24

items. However, a noticeable characteristic is that the DTLG CI had unacceptable

coverage for all binary items (12/1,440 = .008).

For Type 3 distributions (see Table 2), the NTB CI had one instance of unaccepta-

ble coverage for 6 items with 5 IRCs (1/1,440 = .001). The PB, PRLG, and DTLG

CIs had the most unacceptable coverage (9/1,440 = .006 and 9/1,440 = .006, and 10/

1,440 = .007, respectively). As before, most unacceptable coverage occurred with 18

to 24 items.

Sample Size of 100

For Type 1 distributions, none of the CIs had an instance of unacceptable coverage.

With Type 2 distributions, the NTB, BTLG, and PRLG CIs did not have an

instance of unacceptable coverage. The DTLG CI had the most unacceptable cover-

age (15/1,440 = .010), most of which occurred with binary items as all coverage was

unacceptable in this situation (12/1,440 = .008).

For Type 3 distributions, the PB, BTLG, and PRLG CIs did not have an instance

of unacceptable coverage. However, the NTB CI had an instance of unacceptable

coverage for 6 items with 7 IRCs (1/1,440 = .001). In addition, the DTLG had the

most unacceptable coverage (6/1,440 = .004). Here, most unacceptable coverage

occurred with 6 to 12 items.

With the exception of the DTLG CI, the remaining sample sizes (i.e., n� 150)

had a stabilizing effect on the CIs. Specifically, regardless of the sample size investi-

gated, the DTLG CI had unacceptable coverage for all instances of binary items with

Type 2 distributions.

Sample Size of 150

For Type 1 distributions, only the DTLG CI had a single instance of unacceptable

coverage with 18 binary items (1/1,440 = .001).

With Type 2 distributions, the NTB, BCa, BTLG, and PRLG CIs had no instances

of unacceptable coverage. The DTLG CI had the most unacceptable coverage (16/
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1,440 = .011), the majority of which occurred with binary items. In fact, it had unac-

ceptable coverage for all binary items (12/1,440 = .008).

For Type 3 distributions, only the DTLG had unacceptable coverage (8/1,440 =

.006), most of which occurred with 3 IRCs.

Sample Size of 200

For Type 1 distributions, only the PB and DTLG had an instance of unacceptable

coverage that occurred with 24 items (1/1,440 = .001).

With Type 2 distributions, only the DTLG and PRGL CIs had instances of unac-

ceptable coverage (15/1,440 = .010 and 1/1,440 = .001, respectively). The DTLG CI

had unacceptable coverage for all instances of binary items (12/1,440 = .008).

Furthermore, none of the CIs had unacceptable coverage for 7 IRCs.

For Type 3 distributions, again only the DTLG and PRLG CIs had unacceptable

coverage (6/1,440 = .004 and 1/1,440 = .001, respectively). Most of the unacceptable

coverage occurred with 18 to 24 items. In addition, neither of the CIs had unaccepta-

ble coverage for 7 IRCs.

Sample Size of 250

For Type 1 distributions, only the DTLG CI had instances of unacceptable coverage

that tended to occur with 18 to 24 items (4/1,440 = .003).

With Type 2 distributions, only the DTLG CI had unacceptable coverage (14/1,

440 = .010). As before, the DTLG CI had unacceptable coverage for all instances of

binary items (12/1, 440 = .008). The remaining two instances of unacceptable cover-

age were sporadic.

For Type 3 distributions, only the DTLG CI had sporadic instances of unaccepta-

ble coverage (5/1,440 = .003).

Sample Size of 300

For Type 1 distributions, only the DTLG CI had two instances of unacceptable cover-

age with 18 to 24 binary items (2/1,440 = .001).

For Type 2 distributions, only the DTLG CI had unacceptable coverage (16/1,440

= .011). As before, the DTLG CI had unacceptable coverage for all instances of bin-

ary items (12/1,440 = .008). The other four instances of unacceptable coverage were

sporadic.

For Type 3 distributions, only the DTLG CI had sporadic instances of unaccepta-

ble coverage that occurred with 3 to 5 IRCs (4/1,440 = .003).

Sample Size of 350 or More

Regardless of the distribution type, most of the CIs had acceptable coverage here.

Only the PRLG and DTLG CIs had instances of unacceptable coverage (4/1,440 =
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.003 and 96/1,440 = .067, respectively). The PRLG CI unacceptable coverage

occurred sporadically. On the other hand, half of the DTLG CI unacceptable cover-

age occurred with binary items and Type 2 distributions (48/1,440 = .033). The other

half of the DTLG CI unacceptable coverage occurred sporadically.

Figures 1 to 3 display the 95% CI coverage for distribution type by item response

category. The figures clearly show that the NTB CI had the most consistent coverage

within range. In addition, with the exception of the NTB CI, all the CIs were affected

by Type 2 distributions as it was the condition with the most unacceptable coverage

occurring mostly with the PB and PRLG CIs. A noticeable characteristic is that the

Figure 1. Distribution of 95% CI coverage for item response category (IRC) at Type 1
distribution.
Note. CI = confidence interval; DTLG = delta method with logit transformation; PRLG = three-step

parceling with logit transformation; PB = percentile bootstrap; BCa = biased-corrected and accelerated

bootstrap; NTB = normal theory bootstrap; BTLG = bootstrap SE with logit transformation; dashed line

is at .95 and solid lines at [.925, .975].
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DTLG CI was most affected by binary items, and specifically in combination with

Type 2 distributions, as it did not have any acceptable coverage here.

Discussion

Six coefficient omega CIs for unidimensional congeneric items proposed in the litera-

ture and that can be implemented in a straightforward manner were investigated via a

simulation study. Of particular interest was the impact of nonnormality and binary/

Likert-type items. To date, no study has compared these CIs. In fact, the literature has

Figure 2. Distribution of 95% CI coverage for item response category (IRC) at Type 2
distribution.
Note. CI = confidence interval; DTLG = delta method with logit transformation; PRLG = three-step

parceling with logit transformation; PB = percentile bootstrap; BCa = biased-corrected and accelerated

bootstrap; NTB = normal theory bootstrap; BTLG = bootstrap SE with logit transformation; dashed line

is at .95 and solid lines at [.925, .975].
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called for guidelines between choosing among the investigated CIs that were devel-

oped between 1997 and 2011 (Raykov, 2012; Raykov & Marcoulides, 2011). Those

developed after 2011 were included for completeness. The results show noticeable

variation between the methods. However, the NTB CI had by far the best coverage

across all the simulation conditions. Most performance variation was between the

remaining methods as they were affected by the type of distribution and IRC.

Most unacceptable coverage occurred with a sample size of 50. In this instance,

with the exception of the PB CI, most of the CIs performed fairly well under the

Figure 3. Distribution of 95% CI coverage for item response category (IRC) at Type 3
distribution.
Note. CI = confidence interval; DTLG = delta method with logit transformation; PRLG = three-step

parceling with logit transformation; PB = percentile bootstrap; BCa = biased-corrected and accelerated

bootstrap; NTB = normal theory bootstrap; BTLG = bootstrap SE with logit transformation; dashed line

is at .95 and solid lines at [.925, .975].

450 Educational and Psychological Measurement 76(3)



Type 1 distribution. However, under the Type 2 distribution there was more notice-

able variation and unacceptable coverage between the CIs. Here, the PB CI once

again had the most unacceptable coverage. In addition, the DTLG CI did not have a

single instance of acceptable coverage with binary items. In fact, only the NTB CI

performed well in this situation. The bootstrap CIs were comparable under the Type

1 and 3 distributions. However, while the DTLG performed well with non-binary

items, it performed poorly with binary items.

Increasing the sample size had a stabilizing effect. All the CIs had more acceptable

coverage as sample size increased. In fact, once the sample increased beyond 100, the

CIs had comparable results. The only exception was the DTLG CI under the Types 2

and 3 distributions. Here, the DTLG CI did not start to have comparable results with

the other CIs until a sample size of 250 or more. However, regardless of the sample

size, the DTLG CI for binary items under the Type 2 distribution did not have a sin-

gle instance of acceptable coverage.

There are two reasons for the DTLG CI results. First, the parameters are estimated

via maximum likelihood, which has large sample size properties. This is why the

DTLG CI for nonbinary items did not stabilize and have comparable results with the

other CIs until a sample size of 250. Second, the Type 2 distribution binary items

had the most positive kurtosis. Distributions with positive kurtosis are narrower with

higher peaks. As such, these distributions tend to have less variability which directly

affects correlation coefficients. In addition, the range restrictions imposed by binary

items affect correlations because they have less variability. These two conditions

magnified each other to create the situation where the DTLG CI did not have a single

instance of acceptable coverage for binary items with Type 2 distributions. In fact,

the Type 2 distribution binary items affected many of the other CIs with a sample

size of 50 for the second reason presented here.

Like any study, there are some limitations. Three limitations are noted here. First,

the results are limited to the conditions investigated, and therefore there is no sugges-

tion that the results are absolute. Even so, the conditions that were investigated are

general in that they can encompass many situations encountered in applied settings.

In addition, the results do provide more information about the CIs investigated than

there is in the current literature. Second, Raykov, Dimitrov, and Asparouhov (2010)

developed a coefficient omega CI method for binary items. However, this method

was not included here because it is ‘‘rather tedious to apply . . . with more than about

8 to 10 items’’ (Raykov & Marcoulides, 2011, p. 176). As measurement instruments

tend to have more than 10 items, the method could prove to be cumbersome for end

users and therefore not straightforward to use. Third, the NTB CI assumes that the

ESD for coefficient omega is normal. Padilla and Divers (2013) have discussed this

issue and will not be discussed here. However, if one does not want to make the nor-

mality assumption about the ESD, the BTLG is a reasonable choice with a sample

size of 50 and nonbinary items. The BTLG remains a reasonable choice for sample

sizes greater than 50 (see below).
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Within the context of the simulation, there is a clear order of performance among

the six CIs. The NTB CI had the best performance in that it had acceptable coverage

under all but 5 simulation conditions (5/1,440 = .003). The BTLG, BCa, and PRLG

CIs had the next best performance (17/1,440 = .012, 32/1,440 = .022, and 33/1,440 =

.023, respectively). Note that the BCa and PRLG CIs had nearly equivalent overall

performance. This was followed by the PB and DTLG CIs (64/1,440 = .044 and 237/

1,440 = .165, respectively). In particular, the NTB CI was the only one that had rea-

sonable performance with a sample size of 50. However, with the exception of the

PB and DTLG CIs, the remaining CIs are reasonable choices when the sample size is

100 or larger. If computing power is an issue, a reasonable alternative is the PRLG CI

when sample size is 100 or more. Interested readers can obtain a free and easy-to-use

R function for the coefficient omega bootstrap CIs through the corresponding author’s

website (www.omegalab-padilla.org).
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