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Abstract

Parallel analysis (PA) is a useful empirical tool for assessing the number of factors in
exploratory factor analysis. On conceptual and empirical grounds, we argue for a
revision to PA that makes it more consistent with hypothesis testing. Using Monte
Carlo methods, we evaluated the relative accuracy of the revised PA (R-PA) and tra-
ditional PA (T-PA) methods for factor analysis of tetrachoric correlations between
items with binary responses. We manipulated five data generation factors: number of
observations, type of factor model, factor loadings, correlation between factors, and
distribution of thresholds. The R-PA method tended to be more accurate than T-PA,
although not uniformly across conditions. R-PA tended to perform better relative to
T-PA if the underlying model (a) was unidimensional but had some unique items, (b)
had highly correlated factors, or (c) had a general factor as well as a group factor. In
addition, R-PA tended to outperform T-PA if items had higher factor loadings and
sample size was large. A major disadvantage of the T-PA method was that it fre-
quently yielded inflated Type I error rates.
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Researchers use exploratory factor analysis (EFA) to find factors that can explain the

covariation among measures in a parsimonious and meaningful way. Empirical cri-

teria are frequently applied to suggest the number of factors that should be extracted;
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detailed overviews of these empirical strategies are available in the methodological

literature (e.g., Crawford et al., 2010; Ruscio & Roche, 2012; Timmerman &

Lorenzo-Seva, 2011; Velicer, Eaton, & Fava, 2000). Horn (1965) and others (e.g.,

Fabrigar, Wegener, MacCallum, & Strahan, 1999; Preacher & MacCallum, 2003)

have argued that parallel analysis (PA), possibly in conjunction with other criteria

such as the scree test (Cattell, 1978), should be used to determine the number of

factors.

Although there are a number of variations of PA, perhaps the most common

approach involves the following steps: (a) conduct a principal component analysis

(PCA) on sample data; (b) generate 100 or more comparison data sets with the same

number of variables and sample size as the sample data, such that the variables are

multivariate normally distributed in the population and uncorrelated; (c) perform a

PCA on each of the comparison data sets; (d) calculate the mean eigenvalue for each

sequential component extracted for these comparison data sets; and (e) determine the

number of eigenvalues for the sample data that exceed the respective means of eigen-

values for the comparison data sets. This number is the estimated number of factors.

Green, Levy, Thompson, Lu, and Lo (2012) suggested a revised PA method (R-

PA) to counter a previous criticism of traditional PA (T-PA) concerning the use of

comparison data sets consisting of random normal data that are uncorrelated in the

population (Harshman & Reddon, 1983; Turner, 1998). The R-PA method assesses

the need for the kth factor by employing comparison data sets that are generated tak-

ing into account the existence of k 2 1 factors. The kth eigenvalue for the sample

data is compared with the results for kth eigenvalue for the comparison data sets. In

the current study, we extend previous research evaluating R-PA with continuous data

(Green et al., 2012; Green, Thompson, Levy, & Lo, 2014) to assessing R-PA for use

with binary data.

Parallel Analysis Methods for Continuous Data

Psychometricians frequently have suggested two ways to improve the accuracy of

PA. First, an extraction method based on the common factor model, such as principal

axis factoring (PAF), is substituted for PCA in conducting a PA (Ford, MacCallum,

& Tait, 1986; Mulaik, 2010). Some researchers have argued for the use of common

factor analysis in PA because the underlying model allows for unreliability of mea-

sures, which is consistent with data collected in educational and psychological

research (e.g., Fabrigar et al., 1999). Second, the eigenvalues for factors are com-

pared with the 95th percentile of eigenvalues rather than the mean eigenvalue for

random data sets (e.g., Buja & Eyuboglu, 1992; Glorfeld, 1995). The 95th percentile

eigenvalue rule is a more stringent criterion and decreases the potential difficulty of

overextraction of factors with PA (Zwick & Velicer, 1986).

Crawford et al. (2010) investigated the accuracy of PA with and without these

recommended changes in a Monte Carlo study. No single PA approach was uni-

formly better than the others across conditions. Also, none of the methods were well
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behaved; that is, their accuracies failed to consistently increase with increases in

sample size, factor loadings, and number of variables per factor and with decreases

in the correlations between factors.

One reason why these PA methods failed to behave well may be due to a problem

described by Harshman and Reddon (1983) and Turner (1998). They argued that the

use of reference distributions of eigenvalues based on data with no common factors

(i.e., with uncorrelated variables) is only appropriate to reach conclusions about the

relevance of the first factor. The proper reference distribution to reach a conclusion

about the relevance of the kth factor should be based in general on data sets with

k 2 1 underlying factors.

Green et al. (2012) proposed R-PA that incorporates the use of an appropriately

conditioned reference distribution of eigenvalues. With R-PA, the eigenvalue for the

kth factor is compared with eigenvalues for data sets generated taking into account

the existence of k 2 1 factors. Ideally, the comparison data sets should be generated

based on the population loadings of these k 2 1 factors. Because the population factor

loadings are unknown, sample factor loadings are substituted for the population val-

ues in conducting this revision to PA. Green et al. (2012) conducted a Monte Carlo

study to compare the accuracy of T-PA and R-PA methods using either PCA or PAF

in conjunction with either the mean or 95th percentile eigenvalue rule. R-PA using

PAF and the 95th percentile rule had relatively high accuracy and behaved better sta-

tistically than the other methods. T-PA using PAF and the 95th percentile rule also

demonstrated relatively high accuracy, but was not quite as well behaved.

Green et al. (2014) considered PA using PAF and the 95th percentile eigenvalue

rule as a series of hypotheses tests. They argued that within a hypothesis testing

framework, this traditional PA approach employs the wrong sampling distribution. In

comparison, the revised PA method applying PAF and the 95th percentile eigenvalue

rule was described as involving tests of null hypotheses that the data have no more

than k 2 1 underlying factors. At any step, the null hypothesis of no more than k 2 1

underlying factors is rejected at the .05 level if the kth eigenvalue for the sample data

is positive and exceeds the 95th percentile of eigenvalues for the kth factor of the

comparative data sets. In this sequential process, k initially equals 1. If the hypothesis

is rejected, k is increased by 1 to assess the null hypothesis that the variables have no

more than 1 underlying factor in the population. If this hypothesis is rejected, k is

again increased by 1, and the process is continued, evaluating at each step the null

hypothesis of no more than k– 1 factors, until the null hypothesis is not rejected. At

this point, the researcher may conclude that the number of factors is equal to the k of

the previous step.

Green et al. (2014) conducted a Monte Carlo study to assess the accuracy of R-

PA and T-PA (using PAF and the 95th percentile eigenvalue rule) as well as tradi-

tional likelihood ratio tests (LRTs; Hayahi, Bentler, & Yuan, 2007). Overall, the PA

approaches tended to outperform the LRT methods. T-PA tended to be more accurate

in conditions with low factor loadings, whereas R-PA was more accurate for condi-

tions with high correlations between factors, conditions with an underlying model
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that included both general and group factors, and conditions in which some of the

variables were not a function of any common factors.

The authors further investigated the PA methods by examining their empirical

Type I error rates, relative to the nominal alpha of .05, and their empirical powers.

These results can be summarized as follows: (a) Empirical alphas with the T-PA

approach tended to be too conservative in conditions with high factor loadings, par-

ticularly with larger sample sizes, and too liberal in conditions with low factor load-

ings and greater numbers of factors. (b) The empirical alphas with R-PA were in

most conditions below .05, with only one exceeding the value of .064 (i.e., .077).

The empirical alphas tended to be overly conservative with high factor loadings and

more than a single factor. (c) In conditions with lower factor loadings, T-PA had

greater empirical power than the revised method, which explains its greater overall

accuracy in these conditions. However, this greater power was due to inflated alphas.

(d) R-PA showed greater accuracy under a variety of conditions. In these conditions,

the greater accuracy was due to greater power rather than inflated alphas.

Independent of and concurrent with the work of Green and his colleagues (Green

et al., 2012; Green et al., 2014), Ruscio and Roche (2012) proposed and evaluated an

alternative approach for generating comparison data sets based on k– 1 factors. Their

method takes a more nonstandard approach than the one proposed by Green and his

colleagues (Green et al., 2012; Green et al., 2014) and involves computing root mean

squared differences between the eigenvalues for the sample data and the comparison

data set and conducting a series of Mann–Whitney U tests with a liberal alpha of .30.

They conducted a Monte Carlo study and found that their method performed well

across a range of conditions.

Parallel Analysis for Ordered Categorical Data

PA can be applied to assess the number of factors underlying items on a test that have

binary scales or ordered categorical response scales (e.g., Likert scale). The nature of

the research on PA for ordered categorical data appears to differ depending on why it

is being conducted. In some studies, PA is an intermediate step in EFA to determine

the number of factors to extract. In other studies, PA is viewed as a method to assess

whether a single dimension underlies a set of items, and, if so, then unidimensional

item response theory can be applied.

Traditional Parallel Analysis and the Choice of Correlations to Be Analyzed

Pearson product–moment correlations can underestimate the relationships between

the ordered categorical variables (e.g., Bollen & Barb, 1981). Underestimation is

likely to be greater to the extent that the number of response categories is limited

(e.g., binary) and the distributions of the categorical variables differ between vari-

ables (e.g., items are highly skewed in opposite directions). Thus, the pattern of

Pearson product–moment correlations in a matrix of ordered categorical items can be
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influenced by the disparity between the distributions of these items, particularly if

they have binary responses. The implication is that spurious factors can occur that

represent differences in distribution of variables rather than the true dimensionality

of items (Flora & Curran, 2004; Gorsuch, 1983). For binary items, these spurious

factors are frequently referred to as difficulty factors.

As an alternative, polychoric correlations can be computed between ordered cate-

gorical items; tetrachoric correlations are a special case of polychoric correlations in

which items have binary responses. In computing polychoric correlations, it is

assumed the ordered categorical items have underlying variables that are normally

distributed. Polychoric correlations are estimates of the correlations between the

latent, normally distributed variables.

A number of studies have been conducted to assess the accuracy of traditional PA

with ordered categorical items (e.g., Cho, Li, & Bandalos, 2009; Garrido, Abad, &

Ponsoda, 2012; Green, 1983; Timmerman & Lorenzo-Seva, 2011; Tran & Formann,

2009; Weng & Cheng, 2005). These studies varied in the conditions explored in gen-

erating the ordered categorical data and in the methods used in conducting PA. For

example, some researchers (Weng & Cheng, 2005; Tran & Forman, 2009) assessed

the accuracy of PA to evaluate unidimensionality (i.e., one common factor), given its

importance in item response theory, and others (Cho et al., 2009; Garrido et al., 2012;

Green, 1983; Timmerman & Lorenzo-Seva, 2011) assessed the accuracy of PA to

evaluate dimensionality in general.

A focus of these studies (except for Green, 1983) was on the relative accuracy of

PA when the analyses were conducted with Pearson product–moment correlations

versus polychoric correlations (or tetrachoric correlations for binary responses). The

findings and recommendations of these studies varied. For example, Tran and

Forman (2009) concluded that PA yielded unsatisfactorily low accuracies with either

type of correlation coefficients. Cho et al. (2009) and Weng and Cheng (2005)

showed that under most conditions, PA with product–moment correlations yielded

greater accuracy. However, the most recent and extensive studies by Timmerman

and Lorenzo-Seva (2011) and Garrido et al. (2012) concluded that PA with polycho-

ric correlations yielded better results, although problems such as failure to converge

and nonpositive definite matrices can occur in the estimation of polychoric correla-

tion matrices.

Parallel Analysis for Binary Items Using Comparative Data Sets with
Dimensionality

All of the cited studies involving ordered categorical items focused on the accuracy

of traditional PA. Interestingly, Drasgow and Lissak (1983) examined more than 30

years ago the effectiveness of PA to assess unidimensionality using a comparative

data set that was structured similarly to ones used with the R-PA approach. With the

Drasgow–Lissak method, a comparative item data set is computer generated based on

item parameters estimated from the sample data. Correlation matrices are computed
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for the binary data from the sample data set and the comparative data set and factor

analyzed. The eigenvalues from these two factor analyses are displayed on a scree

plot and visually examined to make a decision about whether one factor or multiple

factors underlie the sample data set. Presumably because this method was proposed

prior to the advent of high speed computers, only a single comparative data set is gen-

erated. The limited empirical results presented in their article suggested the approach

had potential.

Budescu, Cohen, and Ben-Simon (1997) and Finch and Monahan (2008) pre-

sented research that extended the work of Drasgow and Lissak (1983). Both sets of

authors recognized the insufficiency of generating a single comparative data set and

sought to remedy this problem (as well as other potential difficulties). The method by

Budescu et al. (1997) involves generating an expected matrix of correlations assuming

that a three-parameter logistic model underlies the sample data and focuses on eliminat-

ing items that make the test not unidimensional. Finch and Monahan (2008) revised the

Drasgow–Lissak method by introducing a bootstrap method to assess dimensionality.

Both Budescu et al. (1997) and Finch and Monahan (2008) conducted Monte Carlo

studies to assess their revisions to the Dragow–Lissak method, but narrowed their stud-

ies to the accuracy of identifying whether a single factor underlies the sample data.

Objectives of this Study

Many studies have investigated the accuracy of PA to evaluate the dimensionality of

a set of variables and generally found it to be one of the best methods for evaluating

the number of underlying factors (e.g., see summaries by Fabrigar et al., 1999;

Preacher & MacCallum, 2003). Fewer studies have examined PA with ordered cate-

gorical items. Overall, these studies suggest that PA can be an effective method and

PA is likely to yield better results with polychoric correlations (Garrido et al., 2012;

Timmerman & Lorenzo-Seva, 2011). Although not explicitly investigated, there

seems to be some belief that PA may not be as effective with binary items (see Tran

& Formann, 2009).

Almost all the research conducted using ordered categorical data has involved

assessing the effectiveness of traditional PA. The exception is the research by

Drasgow and Lissak (1983), who presented a PA method that generated a comparative

data set with a single underlying dimension rather than uncorrelated variables as with

traditional PA. However, their method was limited to the assessment of unidimension-

ality and was evaluated using a very limited Monte Carlo investigation. Budescu et al.

(1997) and Finch and Monahan (2008) recommended modifications to the Drasgow–

Lissak method, but limited their Monte Carlo investigation of their methods to the

assessment of unidimensionality and suggested revisions that take PA in a very differ-

ent direction (e.g., elimination of items not conforming to unidimensionality).

The purpose of our research is to assess the accuracy of T-PA and R-PA in esti-

mating the number of factors underlying binary data. The research extends the work

of Drasgow and Lissak (1983) and Green and his colleagues (Green et al., 2012;
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Green et al., 2014) by exploring a revised PA method to assess a variety of multifac-

tor models as well as unidimensional ones. In addition, we consider Type I and II

errors in the stepwise PA process to diagnose problems in the methods, similar to

Green et al. (2014) and Finch and Monahan (2008). Finally, we investigate the effec-

tiveness of PA methods for binary data in comparison with continuous data by com-

paring the results of the current study with those of a similarly structured previous

study (Green et al., 2014).

Method

Design

In all conditions, the number of items was eight, and the number of response cate-

gories for all items was two. Five data generation factors were manipulated to pro-

duce 52 conditions. The five generation factors were as follows:

� Number of observations (NO): The number of observations was set at 200 or

400.
� Type of factor model: Data were generated based on five types of factor mod-

els: (a) a zero-factor model in which all items were a function of only error;

(b) a unidimensional model in which all items loaded on a single factor

(referred to as one-factor model for all items); (c) a unidimensional model in

which half of the items loaded on a single factor, and the other half were a

function of only error (one-factor model with unique items); (d) a two-factor,

perfect-clusters model (Browne, 2001), with half of the items loading on one

factor and the other half of the items loading on the second factor; and (e) a

two-factor, bifactor model, with all items loading on a general factor and half

of the items also loading on a group factor.
� Factor loadings (l): For a one-factor model for all items, loadings for items

were either .5s or .7s. For a one-factor model with unique items, loadings for

items on the single factor were either .5s or .7s. For a two-factor, perfect-

clusters model, the nonzero loadings on the two factors were either all .5s or

all .7s. For a two-factor, bifactor model, the eight items had either all .5s or

all .7s on the general factor, and four of the items had .5s on the group factor

(i.e., loadings were not varied across conditions on the group factor).
� Factor correlations (rF1F2): For a two-factor, perfect-clusters model, the cor-

relation between factors was 0, .5, or .8. For a two-factor, bifactor model, the

correlation between factors was always 0.
� Thresholds (t) distributions: The thresholds were either uniform or mixed

across items. Uniform thresholds had 0s across all items, whereas mixed

thresholds had 2.5 on four items and +.5 on the remaining four items. For a

single-factor with unique items, the 2.5 and +.5 thresholds were split evenly

across the four items with nonzero loadings on the factor as well as across the

four items with zero loadings on the factor. For a two-factor, perfect-clusters
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model, the 2.5 and +.5 thresholds were split evenly across the four items with

nonzero loadings for each factor. For a two-factor, bifactor model, the 2.5

and +.5 thresholds were split evenly across the four items on the group factor

and across the remaining four items.

Data Generation and Analyses

Data were generated and analyzed using SAS 9.2. We used RANNOR to generate

normally distributed data, PROC FREQ to compute tetrachoric correlations, and

PROC FACTOR to conduct factor analyses.

Sample Data Sets. For each combination of manipulated conditions, 1,000 sample

data sets were generated with a common factor model. The factors and the errors in

the model were generated to be normally distributed. Thresholds were then imposed

on the continuous item data to yield sample data sets of binary item scores.

Tetrachoric correlation matrices were computed for each sample data set, and these

correlations were analyzed using PAF. If correlation matrices were positive definite

and the factor solution yielded no out-of-bound estimates, eigenvalues were retained

to be compared with those for the comparison data sets.

Comparison Data Sets. For traditional PA, 100 comparison data sets were generated

for each of the 1,000 sample data sets. The variables within data sets were generated

to be normally distributed and uncorrelated using RANNOR. These 100 data sets had

the same number of observations as the sample data sets. Thresholds were imposed

to create binary scores for the comparison data sets that were consistent with the bin-

ary score distributions of the sample data sets. Tetrachoric correlation matrices were

computed and analyzed using PAF with multiple R2s along the diagonal.

For revised PA, the comparison data sets for the null hypothesis of zero factors

were the comparison data sets for traditional PA. The comparison data sets for the

null hypothesis of k–1 or fewer factors were generated based on loadings of the k 2 1

factors from the factor analyses of the sample data sets. The comparison data sets had

the same number of observations as the sample data sets. Thresholds were imposed to

create binary scores for the comparison data sets that were consistent with the binary

score distributions of the sample data sets.

If a correlation matrix was not positive definite or a factor analysis yielded an out-

of-bound estimate for a comparison data sets for a PA method, that comparison data

sets was excluded. If a comparison data sets was eliminated for one PA method (e.g.,

T-PA), a comparison data sets also was deleted for the other PA method (e.g., R-PA)

in order to hold constant the number of comparison data sets across the two PA meth-

ods. The 95th percentiles of eigenvalues of the factors for each sets of comparison

data sets were retained for the traditional and revised PA methods. The eigenvalues

for the sample data sets were then compared with the 95th percentiles of eigenvalues
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for the comparative data sets to yield an estimated number of factors for traditional

and revised PA methods.

Criteria. For each condition, we computed the proportion of sample data sets in which

T-PA and R-PA accurately estimated the number of factors, underestimated the num-

ber of factors, and overestimated the number of factors. If we view the two PA meth-

ods as a series of hypothesis tests, the accuracy of these methods should not exceed

.95. An accuracy of 95% occurs for a model with k underlying factors if (a) the power

for tests of null hypotheses of fewer than k factors have powers approaching 1.0 and

(b) the alpha for the test of the null hypothesis of k factors is at the nominal level of .05.

The nominal alpha is at the .05 level because the sample eigenvalues were compared

with the 95th percentile of eigenvalues for the comparative data sets. Implicit within this

framework, a method has inflated alphas if the percent of data sets that overestimate the

number of factors is greater than .05. Similarly, underestimation of the number of fac-

tors may be viewed as a lack of power. However, in comparing methods, we must be

careful in reaching conclusions about the relative power of the two PA methods in that

perceived greater power could be due to inflated alphas for a method.

Results

The proportion of improper solutions for sample data sets or comparison data sets

exceeded 4% for only one condition (34.5% improper solutions for the condition with

NO = 200, bifactor model with l = .7 on the general factor, and heterogeneous t). In

general, the conditions with two underlying factors, factor loadings of .7, and hetero-

geneous thresholds produced higher percentages of improper solutions. Given the

small number of improper solutions across the large majority of conditions, we con-

cluded that the deletion of data sets having analyses with improper solutions had a

minimal effect on our results.

Accuracies

We present accuracies (i.e., proportions of sample data sets with correctly identified

number of factors) for the various conditions in Tables 1 and 2. For conditions with

no underlying factors, T-PA and R-PA must have the same accuracies. These results

offer some validation of the Monte Carlo program in that accuracies ranged from

.941 to .959, as one would expect given the choice of the 95th percentile rule for

eigenvalues of comparison data sets.

For conditions with one-factor models for all items, the accuracies for R-PA and

T-PA were very high, exceeding .910 for all conditions. It is interesting to examine

these results in greater detail. None of the PA methods ever underestimated the num-

ber of factors. In other words, the empirical powers to reject the null hypothesis of

zero factors were all 1.0. In contrast, the two PA methods differed in terms of the

proportion of data sets in which they yielded overestimates of the number of factors.
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Because there was no underestimation of the number of factors, these proportions

are equivalent to empirical alphas for testing the null hypothesis of one or fewer fac-

tors. The empirical alphas for R-PA were relatively close to the nominal alphas of

.05, ranging in value from .034 to .050, and translate into accuracies ranging in value

from .950 to .966 (i.e., 1 2 a). On the other hand, the empirical alphas for T-PA ran-

ged in value from .002 to .086, and, thus, the accuracies were from .914 to .998 (i.e.,

1 2 a). The alphas for T-PA tended to be greater than .05 with a sample size of 200

and factor loadings of .5s. In contrast, the alphas were negatively biased when load-

ings were .7s. Thus, T-PA was more accurate than R-PA for models with loadings of

.7s, but from a hypothesis testing perspective, the greater accuracy was due to the

overly conservative Type I error rates.

For all eight conditions investigating one-factor models with unique items, R-PA

substantially outperformed T-PA. The average difference in accuracies was .118. The

proportions of data sets with underestimated number of factors for these conditions

were identical for R-PA and T-PA. Consequently, the reason T-PA had poor accu-

racy was due to overestimation of the number of factors. Across all 8 conditions, the

proportion of overestimation for T-PA was between .130 and .223. Given an alpha of

.05, the proportion of overestimation should not exceed .05. In contrast to those from

T-PA, the proportions of overestimation for R-PA ranged from .046 to .060.

The results of conditions with two-factor, perfect-clusters models differed depend-

ing on the magnitude of the correlation between factors. When the factor correlation

was 0, R-PA and T-PA performed similarly (within .02 of each other) in four of the

eight conditions. R-PA performed better in three of the remaining four conditions.

These differences are directly tied to Type I error rates. The proportion of data sets

with an overestimated number of factors should not exceed .05 given the sets alpha of

.05. However, in the three conditions in which T-PA performed relatively poorly, the

proportions of data sets with an overestimated number of factors were .083, .136, and

.137 for T-PA versus .049, .047, and .024 for R-PA. In the one condition in which R-

PA performed relatively poorly, T-PA had higher accuracy because of its overly con-

servative Type I error rate of .008 (vs. .046 for R-PA).

When the factor correlation was .5 for two-factor, perfect-clusters models, the

results are less clear. T-PA performed better than R-PA in four conditions; R-PA

yielded more accurate results in one condition; and the two methods yielded approxi-

mately the same degree of accuracy for the remaining three cases (within .02 of each

other). The proportions of data sets with an underestimated number of factors were

either similar or greater for R-PA across these eight conditions. These differences

might be attributed to greater power of T-PA to reject the null hypothesis of one or

fewer factors; however, based on the previous results, it is quite possible that these

differences are due to inflated alphas. In contrast, the proportions of data sets with an

overestimated number of factors were .006 to .100 for T-PA and .022 to .042 for R-

PA. These results indicated that T-PA had inflated empirical alphas for the null

hypothesis of two or fewer factors in three conditions and deflated empirical alphas

for two other conditions (in which powers for earlier tests in the sequence were 1.0).
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Both methods were less accurate in conditions with perfect-clusters models and a

correlation of .8 between factors than those in previous conditions. T-PA performed

better than R-PA in one condition; R-PA yielded more accurate results in four condi-

tions; and the two methods yielded approximately the same degree of accuracy in the

remaining three conditions (within .02 of each other). In all four conditions in which

R-PA outperformed T-PA, the factor loadings were .7s. The differences in accuracies

were substantial (.143 to .236) in three of four of these conditions and were due to the

lower proportion of data sets with an underestimated number of factors.

Finally, for the eight conditions with two-factor, bifactor models, the relative

accuracies for T-PA and R-PA were generally similar to those for conditions with

highly correlated, perfect-clusters models. The most substantial differences were for

three conditions in which the factor loadings were .7s on the general factor; these dif-

ferences were in favor of R-PA.

Regardless of which PA method was applied, accuracies tended to deteriorate with

heterogeneous thresholds. We suspect the deterioration is due to sampling variability

in the eigenvalues.

Comparison of Accuracies for Parallel Analysis on Binary and Continuous
Data

We compared the accuracies for our current study involving binary data with the

accuracies from a previous study based on continuous, normal data (Green et al.,

2014). We present these results in Table 3. It should be noted that the factor loadings

and correlations between factors were for the underlying normal scores of the binary

data. In most cases, the performance with binary data suffered relative to continuous

normal data, which is consistent with the notion that binary or ordered discrete data

pose challenges to factor modeling in general (e.g., Mislevy, 1986; Olsson, 1979).

Overall, it is quite apparent that we must be careful in designing studies with binary

data relative to continuous data. To yield results more similar to those obtained with

normally distributed data, we need to design studies with measures that have a higher

saturation of the underlying factor(s) and/or with larger sample sizes.

Conclusion

In general, the results are supportive of the revised PA method, although T-PA can

yield more accurate results under some conditions. The advantages of R-PA are

threefold. First, R-PA was more accurate than T-PA in most conditions, particularly

for conditions most likely observed with well-designed studies. By well-designed

studies, we mean those with measures with high factor loadings and large sample

sizes. Second, R-PA demonstrated better control of Type I error rates in the current

study with binary data as well as in a previous study with continuous, normal data

(Green et al., 2014). Third, R-PA is more defensible on theoretical grounds. To assess
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a hypothesis about the adequacy of k – 1 factors, it is necessary to create a sampling

distribution of eigenvalues based on an underlying structure of k 2 1 factors.

The results indicated that R-PA performed best relative to T-PA for one-factor

models with unique indicators and for highly correlated two-factor models and bifac-

tor models with high factor loadings and large sample sizes. In contrast, the results

suggest that the T-PA can yield superior results that are not due to inflated Type I

error rates if factor loadings are small and sample sizes are small. With small sample

sizes, the factor loadings used to conduct R-PA are less stable, producing greater

variability in the eigenvalue distributions based on the comparative data sets, which

potentially reduces the accuracy of R-PA. In addition, the advantage of R-PA over

T-PA diminishes as the population factor loadings approach zero in that T-PA essen-

tially assumes that these loadings are zero in contrast to R-PA, which uses estimates

of these loadings. It is possible that R-PA may yield improved results if the number

of comparison data sets is increased beyond the typical number of 100 for conditions

with small samples and/or low factor loadings.

Additional research is required to evaluate the revised PA method under addi-

tional data conditions likely to occur in practice. In particular, other factor structures,

such as those with varied factor loadings, should be investigated. Also, it is important

to assess whether the findings with binary data extend to ordered categorical data

with more than two response options. In addition, the performance of revised PA

should be explored for conditions in which measures have nonnormal, continuous

distributions or in which item data have nonnormal, continuous distributions underly-

ing ordered categorical responses.
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