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Abstract

Differential test functioning, or DTF, occurs when one or more items in a test
demonstrate differential item functioning (DIF) and the aggregate of these effects are
witnessed at the test level. In many applications, DTF can be more important than
DIF when the overall effects of DIF at the test level can be quantified. However, opti-
mal statistical methodology for detecting and understanding DTF has not been devel-
oped. This article proposes improved DTF statistics that properly account for
sampling variability in item parameter estimates while avoiding the necessity of pre-
dicting provisional latent trait estimates to create two-step approximations. The
properties of the DTF statistics were examined with two Monte Carlo simulation
studies using dichotomous and polytomous IRT models. The simulation results
revealed that the improved DTF statistics obtained optimal and consistent statistical
properties, such as obtaining consistent Type I error rates. Next, an empirical analy-
sis demonstrated the application of the proposed methodology. Applied settings
where the DTF statistics can be beneficial are suggested and future DTF research
areas are proposed.
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Generally speaking, differential item functioning, or DIF, refers to any situation in

which an item within a test or questionnaire measures an intended construct differ-

ently for one subgroup of a population than it does for another. Consequently, the

presence of DIF implies that test validity is compromised for a given subgroup. DIF

is often assessed using item response theory (IRT), which is a collection of models

and methods for analyzing the relative performance of individual items within a given

test and, importantly, for scoring the test (Thissen & Steinberg, 2009). In IRT, a set

of item parameters is used to establish an item response function, or trace line, which

characterizes the regression of the item response on the hypothetical construct, or

latent variable, being measured. In this context, Lord (1980) explained that ‘‘if . an

item has a different item response function for one group than for another, it is clear

that the item is biased’’ (p. 212). This article is concerned with using IRT to measure

how this item bias accumulates to produce biased test scores, or differential test func-

tioning (DTF). If true differences on the latent variable are held constant across two

or more groups, but the function relating expected test scores to the latent variable

differs across groups, then the test displays DTF.

There is an enormous literature on methods for the detection of DIF, but compara-

tively little research has been dedicated to the consequences of DIF for subsequent

test scoring, which, in turn, has ramifications for subsequent analyses and applica-

tions using tests that display DIF across known groups. If a set of items in a test has

DIF effects which consistently favor (e.g., are easier for) one group over another, then

the overall DTF may be substantial. But if a test has many items and only a few of

them have DIF, or the DIF effects are weak (see, e.g., DeMars, 2011), then the impact

of this DIF on the overall test scores may be negligible. In other situations, it might

be that there are large DIF effects in one direction for some items, but these effects

are canceled out by DIF in the opposite direction for other items. Therefore, detection

of DIF for a subset of items in a test does not necessarily imply that the overall test

itself is biased. For example, Flora, Curran, Hussong, and Edwards (2008) presented

a DIF analysis in which 7 of 13 items in a test of childhood internalizing behavior

contained DIF across age groups, yet subsequent analyses using test scores that incor-

porated the DIF effects obtained essentially the same results as parallel analyses

based on test scores that ignored DIF. Thus, on discovering DIF, it can be useful for

researchers to investigate whether, and to what extent, the DIF manifests itself at the

level of the overall test scores to produce DTF. If the DTF appears negligible, then

there may be no need to drop items with DIF (and thereby reduce reliability and con-

tent validity).

A set of methods proposed by Raju, van der Linden, and Fleer (1995) represents

the most prominent framework on testing for DTF. As we explain later, these meth-

ods have several limitations, the most important of which is that they do not ade-

quately account for sampling variability of the item parameter estimates in the

different groups. This issue is important in DTF statistics because the degree to

which the parameters are accurately estimated ultimately affects the item and test

scoring functions. To overcome these limitations, this study introduces two DTF
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statistics to measure discordant test scoring properties between two or more groups

of interest. The proposed statistics are designed to be omnibus tests of DTF, the first

of which measures the amount of overall scoring bias between groups, while the sec-

ond statistic measures the average difference between the groups across a given

range of latent trait values. Both omnibus statistics have standardized counterparts

which are useful for comparing results across tests with different lengths. A subse-

quent statistic derived as a special case of the scoring bias statistic will also be

described, and pertains to specific latent trait levels rather than over a predetermined

range of the latent trait. This statistic is used to build accurate confidence intervals as

a post hoc diagnostic tool after one or both of the omnibus statistics discover the

presence of DTF.

A statistical imputation approach to obtaining standard errors and confidence

intervals for various test-level functions for the proposed DTF statistics is evaluated

using two Monte Carlo simulation studies. These simulations were designed to deter-

mine Type I error rates and information about overall group differences using the

omnibus statistics. Finally, an empirical data set is analyzed using the proposed statis-

tics to demonstrate how researchers may apply these DTF methods to their test data.

Item Response Theory

IRT consists of a set of models that probabilistically map observed categorical item

response data onto unobserved latent variable, where the latent variable (typically

denoted by u values) represents a hypothetical construct that the set of items purport

to measure. An IRT model is selected for each item to determine the item response

function, or trace line, given u. One such model often used in educational measure-

ment for modeling dichotomously scored items (e.g., multiple-choice items scored

correct [1] or incorrect [0]) is the unidimensional three-parameter logistic model

(Birnbaum, 1968), or 3PLM. With this model, the probability of positive item endor-

sement can be expressed as

P y = 1ju, a, d, gð Þ = g + 1� gð Þ exp au + dð Þ
1 + exp au + dð Þ , ð1Þ

where y is the observed item response, u represents the participant’s value on the

latent variable, g is a lower bound parameter indicating the probability of answering

the question correctly when u = 2N (often referred to as the ‘‘guessing parameter’’),

a is the slope or discrimination parameter, and d is the intercept. When g is fixed at

zero, this model reduces to the well-known two-parameter logistic model (2PLM).

Next, the graded response model, or GRM, is a model for K-polytomous item

responses ordered from lowest to highest. This model is often used for rating-scale

items (e.g., Likert-type items) or for ability-testing scenarios when items can be

scored using a partial-credit scoring rubric. The GRM can be understood as an

ordered sequence of successive 2PLMs, where the probability of a response in a
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given category k is determined by the difference between the adjacent cumulative

probability functions

P y = kju, dk , dk + 1ð Þ= P kju, a, dkð Þ � P k � 1ju, a, dk + 1ð Þ: ð2Þ

For the first category, where k = 0, the probability term on the left of Equation 2 is

understood to be the constant 1, and for the last category, where k = K 2 1, the sec-

ond probability term on the right of Equation 2 is understood to be 0. In the unidi-

mensional GRM there are K parameters to be estimated: one slope parameter (a) and

K 2 1 ordered intercepts (dk).

Additional IRT item functions are available that can be useful for quantifying dif-

ferent item properties. The expected ‘‘score’’ for a respondent is a function that mod-

els what an individual’s expected observed item response value would be when given

a person’s u value and the item parameters. This item score function provides one

simple way to express how individuals respond to the items, and is expressed as

Sjðu;wÞ ¼
XK�1

k¼0

k � Pðy ¼ kju;wjÞ, ð3Þ

where wj is the vector of parameters relevant to the jth item. The expected score

function collapses the expected probability of each category into a single value repre-

senting the average score at a particular u value. In the special case when K = 2, the

item score function is equivalent to the trace line giving the probability of positively

endorsing the item.

Differential Item Functioning

Many different statistical approaches to detecting DIF in tests have been developed

and extensively researched (Millsap, 2011). DIF refers to how items measure indi-

viduals in different groups unequally, which creates measurement bias in favor of

one group over another at particular values along the latent variable distribution. In

general, DIF for a given item can be depicted by simultaneously plotting each

group’s item-level trace line (e.g., Equations 1 and 2) or scoring function (Equation

3). For the remainder of this exposition, we focus on the likelihood-ratio approach to

DIF because it is very flexible and allows for the computation of accurate parameter

covariance matrices when the IRT model is equated across groups (see Kolen &

Brennan, 2004, for descriptions of additional DIF approaches).

In the simplest case, there are only two groups under investigation for DIF: a ref-

erence group and a focal group. The reference group is a baseline group against

which all comparisons are to be made, while the focal group is drawn from the popu-

lation in which DIF is suspected. The choice of the reference and focal groups is

arbitrary for the likelihood-ratio approach (which is not the case for several other

DIF methods). DIF is then tested through nested-model comparisons based on the

likelihood-ratio or information statistics (such as Akaike information criterion and
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Bayesian information criterion), where various item parameters are constrained to be

equal across groups in one model (the constrained model) and free to differ in

another (the unconstrained model). Before likelihood-ratio tests can be carried out

effectively for testing each item for DIF, it is important to equate the tests so that the

group-level differences in their u distributions, such as the latent means and var-

iances, do not cause unwarranted DIF in the item parameter estimates (Kolen &

Brennan, 2004). With the likelihood-ratio method, this equating is accomplished by

selecting a subset of anchor items whose parameters are assumed to be equal across

the groups (i.e., assumed free of DIF) during the multiple-group model estimation.

After applying constraints for all anchor item parameters, the multiple-group model

is then sufficiently identified across groups such that the mean and variance of u for

the focal group(s) can be freely estimated, thereby adjusting the metric for the item-

level parameters during estimation. For more detailed information regarding the gen-

eral application of likelihood-ratio testing of DIF, see Millsap (2011).

Differential Test Functioning

Following the detection of DIF, researchers are often faced with a difficult decision

of what to do about items displaying consistent measurement bias across groups. The

most popular approach is to discard items if the detected DIF is too large; this

approach appears justified for applications such as computerized adaptive testing

designs where items are selected based on the assumption that the items are unbiased

(Wainer, 1990). Alternatively, however, one can inspect how the items containing

DIF combine across the whole test to determine whether there is an overall bias at

the test level. The inspiration for this approach is that when multiple items have

known DIF, but the DIF is not in one particular direction across groups (e.g., items

do not consistently score the focal group higher), then the effect of the bias may, on

average, ‘‘cancel out’’ over the entire item set, thereby removing the local bias gen-

erated from any given item with DIF. For instance, in a test with dichotomous items,

if two items exhibit DIF in the intercept parameters such that the focal group has a

lower intercept on one item but a higher intercept on a different item, then the com-

posite bias when measuring u may turn out to be negligible. When differences

between the groups are detectable or meaningfully large at the test level, then we can

conclude that DTF has occurred.

It is also possible, however, to obtain nontrivial DTF in applications where little

to no DIF effects have been detected. Meaningful DTF can occur in testing situations

where DIF analyses suggest that no individual item appears to demonstrate a large

amount of DIF. Specifically, substantial DTF can occur when the freely estimated

parameters systematically favor one group over another. The aggregate of these small

and individually insignificant item differences can become quite substantial at the

test level, and in turn bias the overall test in favor of one population over another.

Therefore, studying DTF in isolation and in conjunction with DIF analyses can be a

meaningful and informative endeavor for test evaluators.
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One straightforward approach to investigating DTF is to compare the expected

test score functions for each group. The test score function, when properly equated

across groups, gives an indication of whether there are differential effects between

the reference and focal group(s). The test score function has the simple relationship

to the expected item score function in Equation 3 in that it is simply the aggregate of

each item score function,

T u, wGð Þ=
Xn

j = 1

Sj u, wGð Þ, ð4Þ

where wG is the collection of all item-level parameters relevant to the Gth group.

When exploring DTF, each group has a unique test score function, and if the groups’

scales have been properly linked then the test score functions can be compared gra-

phically. The joint test score plot is useful as a visualization of potential DTF between

groups.

Although visual inspection of the joint test score functions can be suggestive of

the type of bias that may exist between groups the apparent differences should be

interpreted carefully. In empirical applications where population parameters are esti-

mated from sample data, the obtained estimates will contain some amount of sam-

pling error.1 As well, due to the additive nature in Equation 4, the standard errors for

the test score function will not be uniform about its expected values and instead can

be more variable at different values of u. Properly accounting for sampling variability

at the test level is the topic of the next section, but first we must consider which statis-

tics should be investigated at the test level before we study their sampling variability.

Statistics for Differential Test Functioning

When analytically describing the discrepancies between the reference and focal

group(s), it is beneficial to express the differences between the T(u, wG) functions

numerically using summary statistics. Two important pieces of information should

be captured about the difference between the test functions, both of which have the

common goal of quantifying the degree of DTF between the reference and focal

group(s). The first is whether there is a systematic test scoring bias, indicating that

one or more groups are consistently scored higher across a specified range of u,

and the second is whether the test curves have a large degree of overall separation

on average, suggesting that there may be nonignorable DTF at particular u levels.

An omnibus measure of the former criterion is presented below as the signed DTF

measure, while an omnibus measure of the latter is given below as the unsigned

DTF measure.

The signed DTF measure is

sDTF =

ð
T u, wRð Þ � T u, wFð Þ½ �g uð Þdu, ð5Þ
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where g(u) is a weighting function with the property that
Ð

g uð Þdu = 1: In practice,

Equation 5 is numerically evaluated using Q discrete quadrature nodes

sDTF ffi
XQ

q = 1

T Xq, wR

� �
� T Xq, wF

� �� �
g Xq

� �
, ð6Þ

where Xq is a quadrature node and g(Xq) is the associated weight. The sample esti-

mate of Equation 5, scDT F, is obtained by replacing wR and wF with ŵR and ŵF ,

respectively. To obtain the unweighted area between the response curves, all values

of g(u) are fixed to a single constant value. Equation 5 expresses the average amount

of test scoring bias between the response curves and can range from 2TS to TS,

where TS represents the highest possible test score. Negative values of sDTF indicate

that the reference group scores lower than the focal group on average, while positive

values indicate that the focal group scores higher. Note that while this function is eas-

ily generalized to represent multiple focal groups at once, it is conceptually clearer to

focus only on one focal group at a time.

Next, the unsigned DTF measure is

uDTF =

ð
T u, wRð Þ � T u, wFð Þj jg uð Þdu, ð7Þ

where g(u) has the same properties as in Equation 5. Analogous to Equation 5,

Equation 7 is also evaluated using Q quadrature nodes

uDTF ffi
XQ

q = 1

T Xq, wR

� �
� T Xq, wF

� ��� ��g Xq

� �
: ð8Þ

The sample estimate of Equation 7, ucDT F, is obtained by replacing wR and wF with

ŵR and ŵF , respectively. The uDTF measure captures the average area between the

two test curves, indicating absolute deviations in item properties that have been

aggregated over the whole test. uDTF ranges from 0 to TS because the area between

the curves is zero when the test scoring functions have exactly the same functional

form. This nonnegative lower bound limit is problematic when researchers are inter-

ested in testing whether uDTF = 0 in the population, and therefore obtaining a suit-

able test statistic for this hypothesis is difficult (see Meeker & Escobar, 1995, for

further discussion). Additionally, if the metric of uDTF is difficult to interpret directly

then a suitable standardized effect size metric may be preferred, such as

uDTF% =
uDTF

TS
� 100, ð9Þ

which represents the percent scoring difference for the overall test. Using Equation 9,

an appropriate cutoff value can be chosen which constitutes problematic DTF based

on the absolute functional separation of the test scores.
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When exploring omnibus DTF with the sDTF and uDTF statistics, there are four

extreme outcomes that can be observed; these are listed in Table 1. The qualitative

descriptors ‘‘large’’ and ‘‘small’’ are used in the table rather than specific numerical

values because the importance of specific magnitudes of these statistics will contain

different theoretical thresholds which depend on the empirical application. When

large values for an omnibus DTF statistic are observed, a selection of u values should

be further investigated to determine where DTF occurs across this range of u. This

follow-up analysis can be accomplished re-evaluating the sDTF and uDTF statistics

across a smaller u integration range, or by evaluating the sDTF statistic at particular

u values over different locations along u; the latter approach is referred to as sDTFu

for the remainder of this article.

Equations 5 and 7 are relatively similar to the test-level DTF statistic and the item-

level NCDIF statistic proposed by Raju et al. (1995), but have some fundamentally

different properties. Raju et al. (1995) defined their compensatory DTF estimate as

dDTF =
1

NF

XNF

i = 1

ðTðûi, ŵFÞ � Tðûi, ŵRÞÞ
 !2

,

where ûi is the latent trait estimate for the ith individual given the item parameter

estimates from the focal group. Their noncompensatory DIF estimate was defined as

NdCDIFj =
1

NF

XNF

i = 1

Pjðûi, ŵFÞ � Pjðûi, ŵRÞ
��� ���2,

where ûi has the same relationship as in the dDTF statistic and NF is the number of

individuals in the focal group. Raju et al. (1995) note that there are two distinct

sources of error in their statistics, ‘‘(1) estimation error resulting from the use of per-

son and item parameter estimates, and (2) sampling error resulting from using a sam-

ple from a population of examinees’’ (p. 357).

Table 1. Possible Outcomes for sDTF and uDTF Combinations.

Small sDTF Large sDTF

Small uDTF Little to no DTF present across
the entire range of u.

This is not possible to observe
because the sDTF � uDTF
property will always hold. When
the curves do not cross, sDTF
[ uDTF.

Large uDTF Test curves intersect at one or
more locations to create a
balanced overall scoring.
However, there is non-ignorable
bias at particular u levels.

Overall DTF present in total
scores, systematic bias and
noticeable overall curve
differences. Potentially, there are
larger levels of bias at different u
locations.
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In addition to these two sources of variation, several other less desirable factors

will influence the sample estimates of the dDTF and NdCDIFj statistics, including the

selection of a prediction method used to obtain û values (e.g., maximum-likelihood

[ML] estimates, maximum or expected a posteriori estimates, weighted-likelihood

estimates, etc.), test-dependent factors such as the number of items (longer tests will

generally provide better predictions of û), the use of ŵ as a stand-in estimates of w

when computing û estimates, the selection of which group is the focal group, the

type of linking method used to equate the group parameters, and so on. Furthermore,

although Raju et al. (1995) were able to derive approximate x2 and t distributional

tests for these statistics the authors demonstrated that their approximations were

overly sensitive to detecting DTF, and recommend that ad hoc cutoff values be used

instead. Unfortunately, the ad hoc cutoff values selected were specific only to the

properties investigated in the authors’ simulation study and do not appear to general-

ize to sample specific conditions (Oshima, Raju, & Nanda, 2006).

Our scDT F and ucDT F statistics have subtle but important differences compared

with the sample-based statistics proposed by Raju et al. (1995). First, sDTF and

uDTF remain in the metric of the expected test scores (i.e., they are not squared) and

therefore have a more natural interpretation. For instance, if sDTF = 1, a researcher

can conclude that the reference group total scores will, on average, be one point

higher than the focal group scores over the specified integration range; the exact

value of the difference at a particular u location, however, can be directly determined

by evaluating sDTFu statistic. Second, sDTF and uDTF do not require any particular

selection of which group is the focal or reference group; this decision is arbitrary.

This property is important because the choice of the focal group in Raju et al.’s

approach dictates how the density of the integration weights are determined when

predicting stand-in û estimates. Third, compared to NCDIF, the uDTF statistic repre-

sents the unsigned difference for the entire test rather than on the basis of specific

items, and therefore quantifies scoring differences in the test directly. Fourth, Raju

et al.’s dDTF and NdCDIFj do not account for differences in the latent trait distribu-

tions directly, and therefore require group ‘‘linking’’ methods to rescale the para-

meter estimates so that the focal and reference item-parameter estimates are agnostic

to the latent distributions (see Kolen & Brennan, 2004, for further details).

Lastly, and most importantly, the s dDTF and u dDTF statistics do not require plausi-

ble estimates for u. This is especially important because the particular observed

response patterns do not confound these statistics. Fundamentally, DTF is a property

of the test rather than a relationship among individuals who take the test. Hence,

DTF is a characteristic that exists independent of the particular û estimates and

response patterns sampled from the populations; this fundamental property is analo-

gous to how DIF is conceptualized, in that evidence of DIF can be obtained by test-

ing the item-parameter estimates without any reference to the distribution of u.2 This

essential property of DTF is not respected by Raju et al.’s (1995) family of statistics

because supporting evidence in favor of (or against) DTF can only be concluded
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within the sample of individuals from which Raju et al.’s DTF statistics were com-

puted. This limitation can be understood by constructing a simple example. Consider

a test that demonstrates substantial scoring bias for individuals in the lower tail of

the latent trait distribution, and two independent multiple-group samples which have

taken this test. In the first sample, very few individuals with lower latent trait scores

are sampled in one or more groups, while in the second sample there are many more

individuals with lower trait scores in both groups. After computing Raju et al.’s DTF

statistic on both multiple-group samples, only the second sample would provide evi-

dence of DTF; clearly, these statistics result in inconsistent conclusions about the

inherent DTF property in the measurement instrument. Both multiple-group samples

should have reached the conclusion that estimates for the lower ability individuals

are biased for one group. However, using sample-driven information about individu-

als alone does not provide evidence for this conclusion. Our sDTF and uDTF mea-

sures, on the other hand, do not have such a limitation because they pertain to all

potential abilities in the population, and therefore capture evidence of DTF for trait

levels which have not yet been observed.

Although the scDT F and ucDT F estimates are theoretically not biased by varying

sample sizes or test lengths, and also are not confounded by the use of plausible û

estimates, up to this point these statistics have only been presented as fixed point esti-

mates of the population values that converge as N tends to infinity. Therefore, in the

next section we explore an effective statistical mechanism to account for sampling

error in the proposed DTF statistics.

Approximating Sampling Variability in DTF Statistics

When using ML estimation methodology to obtain sample estimates for population

parameters, the theoretical sampling variability is often quantified as the inverse of

the observed-data information matrix (i.e., the Hessian matrix; Efron & Hinkley,

1978)

SðŵÞ= IðŵÞ�1
, ð10Þ

where ŵ is a vector of the parameter estimates at the stationary ML location. SðŵÞ
expresses the amount of parameter estimate variability (and covariation) due to ran-

dom sampling, and under standard regularity conditions has a multivariate normal

distribution

ŵ;fðw, SðŵÞÞ: ð11Þ

The SðŵÞ matrix has several other common uses, such as testing linear hypotheses

regarding one or more parameters using the Wald approximation approach (Wald,

1943), generating point-wise standard error estimates, and determining whether the

solution has reached a stable local optimum following convergence.
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Another interesting and useful application for SðŵÞ, demonstrated by Thissen and

Wainer (1990), is to use the parameter covariance matrix to obtain nonlinear confi-

dence intervals for functions in data space. Thissen and Wainer (1990) primarily used

this method as a visual inspection tool to represent the variability in item trace lines

for didactic purposes. However, this idea generalizes to the test scoring functions as

well as for point estimates that depend on the variability in the estimated parameters.

To obtain appropriate sampling variability of the test scoring functions, we follow the

reasoning proposed by Thissen and Wainer (1990): stochastically impute plausible

values of the population estimates using Equation 11, and evaluate s dDTF and u dDTF

given the imputed values. The imputation algorithm works as follows:

1. Impute a vector of plausible parameter values, w*, from the sample-obtained

estimates and their estimated variation using the multivariate normal relation-

ship fðŵ, SðŵÞÞ:
2. Evaluate the test scoring functions Tðu, w�RÞ and Tðu, w�FÞ across the range of

26 � u � 6 (or some other predefined range) using t equally spaced quad-

rature nodes.

3. Compute the values for sDTF* and uDTF* from Equations 5 and 7 using Tðu, w�RÞ
and T u, w�F

� �
instead of the ŵ estimates. Store these values for later use.

4. Repeat Steps 1 to 3 M times until a suitable set of imputations has been

collected.

After collecting M sets of sDTF* and uDTF* values from the imputed data sets, one

can use the collected values to build empirical confidence intervals for any desired a

level and obtain suitable standard error estimates by computing the standard deviation

of the collected values. For generating item- and test-level graphics that account for

parameter variability using the outlined imputation approach, refer to the recent work

of Yang, Hansen, and Cai (2012).

There are several features that make this parameter imputation approach appeal-

ing. First, because the variability in the test score function is a direct consequence of

the estimated item parameter variability, then as N!N the precision of the test score

function improves and converges to the population function with zero variation in

expectation. Second, because the nonlinearity of the test score function is handled in

parameter space, the confidence interval coverage remains optimal, even in the pres-

ence of ceiling and floor effects in the test. Third, because of how the parameter

matrix is computed, differences in sample sizes between the reference and focal

groups will be directly accounted for. Therefore, unequal sample sizes will not cause

systematic bias when computing the variability of s dDTF and u dDTF . Finally, statis-

tics based on the variability in T(u, wG) can be estimated to any degree of accuracy,

and confidence intervals for measures which are not easily approximated through

normal approximation theory (such as the uDTF) can easily be obtained. This capa-

bility also allows a formal test of the null hypothesis that a given sDTF equals zero
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(H0 :
Ð

T u, wFð Þ � T u, wRð Þð Þg uð Þ= 0), the finite-sample properties of which we

evaluate below.

In addition to determining the imputed standard errors and confidence intervals

for scDT F and ucDT F, one may also approximate the confidence interval for scDT Fu

at any fixed value of u. This method is demonstrated in the ‘‘Empirical Application’’

section below, and further augments the usefulness of sDTFu as a post hoc diagnostic

tool. When unacceptable sDTF or uDTF values are detected, the applied practitioner

will likely be interested in where along u the group differences occur, while also

being mindful of sampling uncertainties in the model. Investigating the range of u

where the selected confidence intervals are nonoverlapping provides one indication

of where the systematic bias is located.3

Observed Information Matrix in IRT Models

Statistical models that directly optimize the observed-data log-likelihood will often

be able to estimate ŵ and SðŵÞ following ML estimation by using analytic or numer-

ical methods with little effort. However, calculating the ML parameter estimates in

IRT is often difficult in practice for tests with moderate to large numbers of items,

and psychometricians have instead recommended the use of partitioned marginal ML

estimation procedures such as the Expectation-Maximization (EM) algorithm for rou-

tine use (Bock & Aitkin, 1981). An unfortunate consequence when using the EM

algorithm is that the observed-data information matrix is not readily available follow-

ing model convergence and must be estimated by other means.

Several approaches to estimating the observed-data information matrix have been

proposed in the IRT literature. These include the supplemented EM (Cai, 2008), the

exact approach outlined by Louis (1982), the cross-product and sandwich estimators

(Yuan, Cheng, & Patton, 2013), which are variants of Louis’ method, and several oth-

ers based on stochastic approximations (e.g., Cai, 2010). Most of these methods focus

on approximating the observed-data information matrix rather than the parameter

covariance matrix directly, but because of the relationship in Equation 10, inverting

the information matrix will result in the appropriate covariance form. In the following

simulation studies, only the cross-product method is used to compute the observed

information matrix because it is computationally the easiest to obtain for larger tests

compared with the other methods mentioned (Paek & Cai, 2014).

Simulation Studies

In this section, two comprehensive simulation studies using the 3PLM and GRM

were constructed to examine the properties of the proposed multiple imputation

approach to estimate variability of the sDTF and uDTF measures. The simulations

were designed to represent a situation in which a small set of anchor items contained

no DIF, while the remaining items, the studied items, contained parameters that were

free to vary across groups. Not all the studied items contained DIF, but the approach
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was set up to remain agnostic to potential DIF; if in applied settings additional items

are known to contain no DIF, then these may also be included as anchors. Type I

error rates for the omnibus test of DTF using the scDT F statistic and suitable cutoff

values for the uDTF% were collected; these are summarized below.4

The test characteristics that were expected to affect the detection of DTF included

sample size, test length, number of items with DIF, directionality of DIF relative to

group membership (unidirectional vs. bidirectional), size of the DIF effects, and the

type of DIF combinations present (i.e., DIF in the item intercepts, slopes, or both).

Unidirectional DIF occurs when the effects of the DIF items are in the same direction.

For instance, if the test has two items with DIF only in the intercept parameters, then

unidirectional DIF occurs when both intercepts are higher in one group compared with

the other. Bidirectional DIF, on the other hand, indicates that one group has larger para-

meters for some items and lower parameters for the others; this combination in turn

causes a more balanced effect on the expected total score, and in some cases the effect

of the DIF items on the test scoring functions cancel out to create negligible DTF.

Each of the test characteristics mentioned above were evaluated in the following

simulation studies (one study for 3PLM, one for GRM). Within each study, there were

three sample sizes (500, 1,000, and 3,000) evenly split between a focal and reference

group, two DIF directionality conditions (unidirectional and bidirectional), two DIF

effect sizes (0.5 and 1.0), three combinations of the type of DIF present (intercepts,

slopes, and both), three test sizes (30, 40, and 50 items for the 3PLM design; 20, 25, and

30 items for the GRM design), and three conditions for the number of DIF items (4, 8,

and 12 for the 3PLM design; 4, 6, and 8 for the GRM design). Both designs formed a

total of 324 DTF cell combinations. In addition, nine extra conditions were constructed

where no DIF was present, and therefore no DTF was present either. These conditions

were created to determine whether the Type I error rates for the test that sDTF = 0)

remain optimal under controlled conditions given various sample sizes and test length

combinations, including an extra N = 5000 to observe very large sample size behavior.

Finally, the empirical p-values for sDTF were compared to the nominal a values 0.1,

0.05, and 0.01, while the upper 95th percentile for uDTF% were compared to the cutoff

percentage values 2, 2.5, 3.0, 3.5, and 4.

We expected to observe a few trends across the simulation design. Primarily, we

expected that for the conditions with no DIF items, the sDTF estimates will obtain

nominal Type I error rates even as sample and test sizes increase, and in conditions

where DTF is present in the population, we expected an increase in power as the

sample size increased. However, we predicted the increase in power would be differ-

ent depending on the conditions because sDTF and uDTF capture different aspects

of DTF. Furthermore, larger test sizes should produce more powerful and accurate

DTF test statistics because the precision of u is better quantified during estimation,

thereby helping minimize the sampling variability caused by the parameter estimates.

At the same time, larger test sizes should also be less affected by DIF because there

are more non-DIF items present; thus, smaller DTF values should occur as the test

size increases. Finally, in the bidirectional designs which contain DIF in the intercept
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parameters only we expected the DTF statistics to approach zero due to the matched

DIF balancing which causes a cancellation effect at the test level.

The multiple-group IRT models were fitted by marginal ML with the EM algorithm

using the mirt package (Chalmers, 2012) Version 1.4 in R (R Core Team, 2013).

The mirt package was also used to generate the test data given the experimental con-

ditions under investigation. Specifically, the simdata() function was used to gener-

ate the datasets and multipleGroup() was used to compute anchored multiple-

group IRT models along with the parameter information matrix. Model convergence

in the EM algorithm was set to .0001, and if models failed to reach this criterion the

simulated data were discarded and redrawn. For the DTF statistics, the integration

range for u was set to [26, 6] with 1,000 integration nodes, and the plausible popula-

tion parameters were obtained from 1,000 independent imputations.

3PLM Study

The first study investigated the properties of the proposed DTF statistics for simu-

lated data consistent with the 3PLM. The slope parameters were drawn from a log-

normal distribution, a; log N 0:2, 0:2ð Þ, while the intercepts (d) were drawn from a

standard normal distribution, d;N 0, 1ð Þ: The lower-bound parameters (g) were all

set to 0.2 to reflect the theoretical chance of randomly guessing a correct answer

given a five-option multiple choice design for each item. However, to deter the pos-

sibility of obtaining local minima during parameter optimization with the EM algo-

rithm, the g values were all fixed to the population values of 0.2. This strategy is

common in 3PLM items and is often the default choice in IRT software such as

TESTFACT 4 (Wood et al., 2003). The latent distribution was set to a standardized

normal distribution in the reference group and uF;N 0:25, 1:5ð Þ in the focal group.

Finally, five anchor items containing no DIF were chosen in each cell of the design

whereby the a and d parameters were constrained to be equal across groups.

Simulation results for the null DTF conditions, in which no DIF items were gener-

ated in the population, are displayed in Table 2. To demonstrate the properties of the

DTF statistics in large sample sizes an N = 5,000 condition was also tested. From this

table we observe that the empirical p values for the sDTF statistic were not systemati-

cally affected by test length. However, larger sample sizes generally lead to more lib-

eral Type I error rates for the dsDTF statistic. The uDTF% confidence interval range

behaved as expected in that as N increased, the value at the 95th percentile, as well

as the uDTF% value itself, approached the population value of 0, indicating that the

group-based test curves were virtually indistinguishable in the population.

The tables available in the online Appendix contain the results of the DTF condi-

tions, separated by sample size and DIF direction. Additionally, the online Appendix

contains Type I error rates when fitting 2PLMs instead of 3PLMs with a fixed lower-

bound component. The main design effects behaved as expected, and contained vari-

ous interactions between the design elements. For both DTF statistics, unidirectional

DIF resulted in much larger rejection rates compared with the bidirectional DIF
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design, larger sample sizes increased the rejection rates, longer tests resulted in lower

rejection rates, larger numbers of DIF items increased the rate of detecting DTF, and

larger DIF sizes also resulted in detecting DTF more often. Rejection rates were

highest when there was DIF in both the a and d parameters. However, when the a

parameters alone contained DIF, the likelihood of detecting a significant sDTF was

five times less than when the d parameters alone contained DIF. Therefore, sDTF

was generally more sensitive to detecting aggregate DIF effects in intercept para-

meters compared with the slope parameters.

With respect to the sDTF statistic, we only describe the strongest interaction

effects, and these are displayed in Figure 1. The direction of the DIF effect was

dependent on the sample size condition such that larger sample sizes resulted in

higher rejection rates in the unidirectional case than the bidirectional case. This

result is not surprising because larger sample sizes increase power and unidirec-

tional DIF generally causes larger DTF effects than bidirectional DIF. There was

also an interaction between DIF direction and the number of DIF items, as well as

the size of the DIF effects, where again the unidirectional DIF demonstrated

higher rejection rates compared with the bidirectional design as the number of

DIF items and DIF sizes increased. DIF direction interacted with the type of para-

meters demonstrating DIF; however, this effect was slightly more complex. In the

bidirectional case, DTF was detected most often when both the a and d parameters

contained DIF, followed by only as, and finally the ds in isolation. In contrast,

DTF was detected in the unidirectional case more often when the ds contained

DIF compared with the as, though when both a and d contained DIF the rejection

rates were still the largest. Essentially, when there are DIF effects in the intercept

parameters they are more likely to cancel out if the intercepts are opposite in

direction. The number of DIF items also interacted with both DIF size and

Table 2. DTF Conditions for the 3PLM When No Items Contained DIF, Representing the
Type I Error Rates (sDTF) and Cutoff Values at the 95% Percentile (uDTF).

N Test length

sDTF uDTF% (a = .95)

p \ .10 p \ .05 p \ .01 . 2 . 2.5 . . 3.5 . 4

500 30 .137 .069 .017 .998 .829 .475 .273 .123
40 .096 .044 .014 .996 .834 .495 .244 .121
50 .090 .045 .010 1.000 .887 .538 .272 .124

1,000 30 .153 .094 .026 .356 .121 .034 .005 .001
40 .175 .112 .032 .302 .095 .027 .003 .001
50 .161 .106 .033 .292 .096 .025 .002 .001

3,000 30 .198 .140 .038 .003 .000 .000 .000 .000
40 .186 .129 .044 .004 .000 .000 .000 .000
50 .221 .152 .057 .002 .001 .000 .000 .000

5,000 30 .206 .116 .036 .000 .000 .000 .000 .000
40 .208 .141 .050 .000 .000 .000 .000 .000
50 .201 .122 .047 .000 .000 .000 .000 .000
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Figure 1. sDTF empirical p value interaction plots at a = .05 for 3PLM simulation.
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parameter type, such that DTF was better detected when more a and d parameters

produced DIF, and DTF was better detected when more items contained larger

DIF, sizes. Finally, the DIF effect interacted with parameter type in that larger

DIF sizes combined with DIF in both the slope and intercept parameters increased

the detection of DTF.

Regarding uDTF% the main effects detected with sDTF were also present,

although some were in the opposite direction due to the bounded nature of the statis-

tic and confidence interval cutoff approach. The unidirectional condition contained

higher uDTF% values than the bidirectional, increasing the number of DIF items and

DIF size also tended to increase detection rates for the statistic, and longer tests

negatively affected the detection of DTF. The uDTF% results differed from the sDTF

with respect to sample size such that larger sample sizes tended to result in smaller

uDTF% (a = .95) values, and with respect to parameter type, where differences in

the a parameters were largely responsible for larger values in uDTF%. Not only was

the detection rate substantially more variable in the DIF condition that manipulated

only the a parameters, but the average marginal detection rate was much higher com-

pared with the isolated d parameters. Therefore, as expected, the uDTF was better at

detecting aggregate slope parameter effects compared with the intercept parameters.

For uDTF%, there was an interaction between the DIF direction and sample size

conditions such that larger sample sizes resulted not only in smaller uDTF% (a = .95)

values but were higher and much more variable for the unidirectional condition com-

pared with the bidirectional condition. Unidirectional DIF also improved the detec-

tion of DTF when the d parameter caused DIF, but was even more effective at

detecting DTF when the a parameters contained DIF (the combination of a and d

added little to the detection rates). Increasing the DIF effect size and number of DIF

items simultaneously also improved detection rates. These interaction results are pre-

sented visually in Figure 2.

Another important property was observed in the cells of the design where only the

d parameters contained bidirectional DIF. For these conditions, regardless of test

length, DIF size and number of DIF items, the Type I error rates in sDTF were close

to the nominal level and uDTF% approached the lower asymptote of 0. This finding is

important, and indeed expected, because equal and opposite DIF intercept effects

should produce negligible scoring bias in the overall test scores. Had the simulation

designs been implemented with fixed slope coefficients (such as those in standard

Rasch IRT models), then this effect would be prevalent and likely more stable. In this

situation, the respective groups are scored with the same degree of accuracy regard-

less of the DIF effects and can offer justification for using similar scoring schemes in

fixed length tests across groups (so long as the DIF parameter estimates are included).

GRM Study

The second study investigated the properties of the proposed DTF statistics applied

to the GRM, where each item was constructed to contain five ordered response
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options. The slope parameters were again drawn from a log-normal distribution,

a; log N 0:2, 0:2ð Þ, while the ordered intercept parameters were constructed by add-

ing standard normal deviation value, s�;N 0, 1ð Þ, to each value in the vector [1.5,

0.5, 20.5, 21.5]. Intercept parameters were constructed in this manner to limit

sparse data tables. If data were drawn such that the number of categories for the item

did not equal five, then the population parameters were redrawn. The latent distribu-

tion hyper-parameters were set to the standard normal distribution in the reference

Figure 2. uDTF% interaction plots with cutoff value of uDTF% (a = .95) for 3PLM simulation.
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group and uF;N 0:5, 0:75ð Þ in the focal group. Finally, five anchor items containing

no DIF were chosen in each cell of the design, whereby the a and dk parameters were

constrained to be equal across groups.

Simulation results for the null DTF conditions in which no DIF items were gener-

ated in the population are displayed in Table 3. To demonstrate the properties of the

DTF statistics in large sample sizes, an N = 5,000 condition was also tested. The

empirical p-values for sDTF did not appear to be highly influenced by sample size or

test length; however, they were consistently conservative in the N = 500 condition.

Overall, the DTF statistics for the GRM demonstrated nominal to slightly liberal

Type I error rates, and generally provided smaller uDTF% values than the previous

3PLM simulation

The tables available in the online Appendix contain the results of the simulation

by sample size and DIF direction. The main design effects again behaved as expected,

along with various interactions. For both DTF statistics, unidirectional DIF resulted

in much larger rejection rates compared with the bidirectional DIF design, larger sam-

ple sizes increased the rejection rates, longer tests resulted in lower rejection rates,

larger numbers of DIF items increased the rate of detecting DTF, and larger DIF sizes

also resulted in detecting DTF more often. When there was DIF in both the a and dk

parameters, rejection rates were the highest; however, when the a parameters alone

contained DIF, the variability of detecting a significant sDTF was five times less than

when the dk parameters contained DIF. Again, the dsDTF statistic was generally more

sensitive to differences in intercept parameters compared with the slope parameters.

The interactions effects were also very similar to the 3PLM study above. Given

the similarity between the simulation designs, overall sDTF and uDTF estimates

appeared to capture population-level DTF effects regardless of the IRT model

selected. By and large, the sDTF statistic was more effective at capturing differences

Table 3. DTF Conditions for the GRM When No Items Contained DIF, Representing the
Type I Error Rates (sDTF) and Cutoff Values at the 95% Percentile (uDTF).

N Test length

sDTF uDTF% (a = .95)

p \ .10 p \ .05 p \ .01 . 2 . 2.5 . 3 . 3.5 . 4

500 20 .059 .029 .000 .662 .226 .078 .026 .007
25 .038 .016 .000 .833 .366 .118 .032 .007
30 .019 .008 .001 .938 .509 .197 .067 .017

1,000 20 .113 .061 .011 .059 .010 .001 .000 .000
25 .095 .047 .009 .060 .008 .000 .000 .000
30 .115 .047 .007 .060 .006 .002 .000 .000

3,000 20 .135 .084 .025 .000 .000 .000 .000 .000
25 .116 .061 .019 .000 .000 .000 .000 .000
30 .120 .066 .012 .000 .000 .000 .000 .000

5,000 20 .146 .074 .021 .000 .000 .000 .000 .000
25 .125 .062 .019 .000 .000 .000 .000 .000
30 .138 .092 .025 .000 .000 .000 .000 .000
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in unidirectional DIF in the intercept parameters, while the uDTF was more effective

at capturing DTF when the DIF was in the slopes. Furthermore, detecting DTF

improved for both statistics when both slopes and intercepts contained DIF, indicat-

ing that the complexity of DIF also contributes to the detection of DTF.

Empirical Application

To illustrate our utility of the DTF methods, we analyzed data from a study by

Marjanovic, Greenglass, Fiksenbaum, and Bell (2013). A data set containing

responses from the General Self-Efficacy Scale (GSE; Schwarzer & Jerusalem,

1995) was assessed for DIF and DTF across samples from Canada (n = 277) and

Germany (n = 219). Both samples primarily consisted of students who were female

and unmarried. The GSE was originally developed in German and translated into 31

languages, including English. The GSE includes ten rating-scale items with four

ordinal options that assess the degree to which participants generally view their own

actions as responsible for successful outcomes.

Before demonstrating the DTF effects, DIF analyses were performed between the

two countries for each of the GSE’s items using the multiple-group GRM. All DIF

analyses were conducted using the mirt package (Chalmers, 2012) with marginal ML

estimation. To establish a set of potential anchor items, we used a multigroup GRM

with no across-group equality constraints as a reference model. Next, likelihood-ratio

tests were used to compare the reference model to models that added across-group

equality constraints to the a and dk parameters one item at a time. To account for the

large number of likelihood ratio tests, we used the multiplicity control method of

Benjamini and Hochberg (1995). Based on the DIF analysis, we determined that the

third, sixth, seventh, and eighth items were invariant across the two countries.

Therefore, these items were used as anchor items in the final multigroup IRT model

so that the latent mean and variance parameters in the German group could be esti-

mated. A likelihood-ratio test comparing our final model to a multigroup IRT model

with no across-group equality constraints was not statistically significant,

x2 14ð Þ= 19:12, p = .160. Using the Canadian group as the reference group (with

latent mean fixed to 0 and variance fixed to 1), the German group had latent mean

and variance estimates of 20.115 and 0.953, respectively. Table 4 presents the item

parameter estimates for Canada and Germany with standard errors computed with

the cross-product method. Overall, the final model fitted the data well according to

the M2* family of statistics (Maydeu-Olivares & Joe, 2006), M2*(44) = 71.79, com-

parative fit index = .953, root mean square error of approximation = .035, with stan-

dardized root mean-squared residual values of .047 and .067 for the Canada and

German groups, respectively.

These results demonstrate that DIF is present in 6 of the 10 items, however, the

main purpose of these analyses is to examine differences between the groups at the

test level. On the left of Figure 3, the expected total score functions and their imputed

confidence intervals are displayed for the German and Canadian groups. As can be
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seen, there is a substantial amount overlap in the confidence regions for the two

countries’ expected total scores at most levels of u. The signed and unsigned DTF

analyses help quantify the difference though, and provide information about whether

there is biased scoring over and above sampling error. Generating 1,000 imputations

for the DTF statistics using the method described earlier resulted in a statistically sig-

nificant scDT F statistic (p \ .0001), but represented a small effect size. Specifically,

scDT F = � 0:629 (95% CI: 0.969 to –0.351) and ucDT F = 0:663 (95% CI: 0.363 to

1.001), which overall represent a bias in the total scores of approximately 0.629 raw

score points (or 1.57%) in favor of the German population. To follow up, we exam-

ined the scDT Fu across a large number of points to determine where these difference

occurred. The right of Figure 3 demonstrates the amount of scDT Fu with the 95%

confidence region. The figure demonstrates that at average to lower levels of u,

Canadians tend to score lower on the GSE.

This analysis highlights that if researchers were to naı̈vely use the unweighted

total scores to compare the relative group responses, while ignoring the ordinal item

content and differential weights due to group membership, they would come to the

conclusion that the two populations had essentially equal mean test scores

Table 4. Parameter Estimates With Standard Errors for Canada and German Samples for
Final Anchored Model.

Group Item a d1 d2 d3

Canada 1 2.08 (0.27) 6.00 (0.83) 3.47 (0.42) 21.58 (0.23)
2 1.87 (0.23) 4.80 (0.52) 1.66 (0.21) 22.77 (0.31)
3 1.75 (0.17) 5.18 (0.49) 2.06 (0.18) 22.14 (0.20)
4 3.64 (0.47) 7.55 (1.05) 2.69 (0.40) 23.17 (0.42)
5 3.25 (0.40) 7.55 (1.35) 2.21 (0.32) 23.17 (0.39)
6 2.38 (0.25) 7.02 (0.72) 3.88 (0.32) 21.23 (0.19)
7 2.61 (0.22) 5.18 (0.42) 1.82 (0.20) 22.59 (0.27)
8 2.82 (0.27) 6.31 (0.54) 2.71 (0.28) 22.89 (0.28)
9 3.02 (0.43) 8.05 (1.14) 3.56 (0.43) 22.35 (0.37)
10 3.26 (0.38) 7.59 (0.88) 3.30 (0.39) 22.89 (0.39)

Germany 1 1.55 (0.24) 5.55 (0.78) 4.72 (0.59) 20.05 (0.19)
2 2.08 (0.31) 5.96 (0.96) 3.67 (0.40) 20.60 (0.23)
3 — — — —
4 2.38 (0.30) 4.82 (0.50) 1.49 (0.26) 23.41 (0.39)
5 2.88 (0.46) 6.33 (0.74) 3.43 (0.55) 22.00 (0.31)
6 — — — —
7 — — — —
8 — — — —
9 1.79 (0.28) 4.88 (0.54) 2.61 (0.32) 21.20 (0.23)
10 1.69 (0.26) 4.89 (0.68) 3.28 (0.36) 20.57 (0.21)

Note. Standard errors were estimated using the cross-product approximation. ‘‘—’’ lines indicate

parameters that were constrained to be equal across groups.
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Figure 3. Empirical test-scoring functions with imputed 95% confidence intervals (left) for

the German (solid) and Canadian (dashed) groups, and sdDTF statistic evaluated at different
locations along u (right) with 95% confidence intervals.
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(t[478.11] = 21.314, p = .189). Therefore, researchers may wrongfully conclude the

test functions equivalently in both populations. However, IRT analyses discovered

that the German population had a lower latent mean compared with the Canadian

population and the German population was scored more favorably on the test (i.e.,

received positively biased test scores), although this bias was small. These two

events jointly contribute to the observed equivalence in the total scores, but have dif-

ferent theoretical interpretations and therefore different consequences for future

empirical work.

Discussion

This article examined how different DTF properties could be captured using two pro-

posed measures: sDTF and uDTF. The sDTF measures was designed to capture the

average test-scoring bias across a prespecified range of latent trait scores, while

uDTF measures was designed to quantify the average overall discrepancy between

the test scoring functions across known populations. While we recommend that DTF

always be examined graphically (e.g., Figure 3), these DTF measures provide valu-

able formal assessments of DTF which account for the sampling variability of the

item parameter estimates. That is, these DTF measures quantify the accumulation of

individual DIF effects across a whole test; ultimately, observing DIF in individual

items may or may not cause substantially biased test scores.

In the simulation studies of the 3PLM and GRM, when no DIF existed in the pop-

ulation, the two statistics behaved appropriately, retaining nominal or slightly liberal

Type I errors rates depending on the IRT model used, and provided evidence of

equal test scoring functions as the sample sizes increased uDTF. The tables in online

Appendices demonstrated the power to detect DTF using the sDTF and uDTF statis-

tics given known population conditions. Overall, the sDTF statistic was more effec-

tive at detecting differential scoring when there was systematic DIF due to the

intercept parameters, whereas the uDTF statistic more optimally detected differences

due to differential variation in the slope parameters. However, when bidirectional

DIF existed only in the intercept parameters the DTF statistics resembled a scenario

in which there was no DIF present in any item due to the cancellation of the individ-

ual DIF effects.

Overall, the proposed DTF statistics demonstrated desirable properties that have

not been available in previous DTF methods. Importantly, because the item para-

meter estimate variability was properly accounted for, the effect of increasing sample

size did not adversely affect the Type I errors in situations with no DIF or where DIF

effects were expected to largely cancel out. Although various test designs were

assessed in these simulations, several areas for future research remain. Namely, the

power to detect DTF may improve considerably by including additional information

about parameter invariance, where only the items with known DIF contribute to the

differences in the test-level functions. Doing so could dramatically reduce the num-

ber of parameters to estimate in the IRT model, further improve Type I error rates,
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and consequently reduce the overall sampling variability. In turn, this would reduce

variability at the test level, thereby increasing the overall power of the DTF statis-

tics. This approach was not used in this article so that the generality of the DTF

statistics could be demonstrated in more suboptimal conditions where DIF was

suspected in the majority of the test. Additionally, the DTF statistics may be fur-

ther explored for fitting models other than the 3PLM and GRM, for multidimen-

sional tests which demonstrate DIF, and for alternative test-level functions to

detect other important systematic differences (for instance, using the test standard

error functions to locate differences in measurement precision between groups).

However, multidimensional DTF introduces a different challenge for the proposed

DTF statistics due to the high-dimensional test-score surfaces that must be inte-

grated across, and therefore Monte Carlo integration techniques may be required

to maintain sufficient accuracy.

Follow-up analyses after DTF is detected can also be captured through the pro-

posed methodology by selecting isolated integration values and evaluating the test-

level differences at the respective u locations. This method of post hoc analysis was

demonstrated in the empirical analysis section of this article by utilizing sDTFu.

However, the proposed DTF statistics have the added benefit that, in addition to

evaluating single points along u between test response curves, specific regions of u

may also be evaluated and subject to the same statistical testing methodology. For

example, if a particular u region is important in a decision-theory based test, where

obtaining accurate and unbiased population measurements between, say, u = 1.5 to

u = 2.0, may be important, then researchers could specify the integration grid to

range within 15 � u � 2.0. Interpreting the results for sDTF and uDTF using this

integration range will test the DTF hypotheses specifically within the defined range

while ignoring test effects outside this location. This type of analysis has important

implications for tests that are designed specifically for diagnosing or detecting psy-

chopathologies, or ‘giftendess’ in ability tests, given specific latent-variable cut-offs

as well as other empirical situations where decisions above and below specific latent

cut-score ranges are of little interest.

Assessing DTF is an important extension of DIF for understanding tests and the

effect of scoring bias, but unfortunately it has received relatively little attention in

applied measurement literature. We believe one prevalent reason for their limited

usage has been due to the undesirable properties of the previously proposed DTF sta-

tistics, but also because researchers have not considered the overall importance of

DTF in their testing applications. This article demonstrated more optimal approaches

to investigating DTF statistics, and amended several of the undesirable DTF statisti-

cal issues present in previous DTF work. The methodology described herein offers a

powerful, flexible, and promising method for examining multiple types of DTF in

applied data analyses. With the help of these improved DTF statistics, and future

work that extends on this methodology, we believe that practitioners will have more

confidence in answering whether their DIF items really do make an overall ‘‘DIF-

erence’’ when scoring their tests.
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Notes

1. Sampling error is proportional to the sample size within each group, not just the total sam-

ple size.

2. This is the approach adopted by likelihood-based methods such as the likelihood-ratio and

Wald tests.

3. While approximating VAR(s dDTFu) using the delta method is possible, it is less desirable

because of the bounded nature of the test score function. Hence, the standard errors will

be become increasingly less accurate as u approaches the extreme ends of the distribution

(i.e., where the confidence intervals are not approximated well by a symmetric interval).

4. Tables containing the complete simulation results are available in the online Appendix,

located at http://philchalmers.github.io/On-line_Material/DTF-Appendix_2015.pdf

5. Note that if the test size was 25 for the five category GRM data uDTF = uDTF% because

TS = 100.
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