
Article

Educational and Psychological
Measurement

2016, Vol. 76(2) 325–338
� The Author(s) 2015

Reprints and permissions:
sagepub.com/journalsPermissions.nav

DOI: 10.1177/0013164415576958
epm.sagepub.com

On the Relationship
Between Classical Test
Theory and Item Response
Theory: From One to the
Other and Back

Tenko Raykov1 and George A. Marcoulides2

Abstract

The frequently neglected and often misunderstood relationship between classical test
theory and item response theory is discussed for the unidimensional case with binary
measures and no guessing. It is pointed out that popular item response models can
be directly obtained from classical test theory-based models by accounting for the
discrete nature of the observed items. Two distinct observational equivalence
approaches are outlined that render the item response models from corresponding
classical test theory-based models, and can each be used to obtain the former from
the latter models. Similarly, classical test theory models can be furnished using the
reverse application of either of those approaches from corresponding item response
models.
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For much of the past century, classical test theory (CTT) was the dominant frame-

work for developing multicomponent measuring instruments in the educational, beha-

vioral, and social sciences. Part of its attraction was the simplicity of its fundamental
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observed score decomposition, which provided a very useful way of thinking about

underlying constructs of substantive relevance for scholars involved in measurement.

In the second half of the past century, interest alternatively in item response theory

(IRT, item response modeling) increased substantially, eventually turning IRT into a

major working methodology in test and scale construction, particularly during the

past few decades.

An unfortunate by-product of this enhanced attention to IRT-based approaches for

instrument development was a considerable degree of unjustified criticism of the

general CTT framework. That criticism was to a certain extent a consequence of

prior, widespread use of CTT-related procedures that were not correctly employed by

some empirical scientists in the earlier part of the 20th century, during an era charac-

terized by lack of sufficiently sophisticated statistical and methodological means

allowing proper application of CTT for the purposes of test and scale construction. A

result of that development was the tendency, especially in the second half of the past

century, to neglect CTT as a general methodology informing about various aspects of

instrument development and related issues. This tendency found various forms of

expression and dissemination, both in writing and instruction, leading to what may

be presently viewed as a preconceived and misleading notion of general deficiency

of CTT when it comes to developing new or improving existing instruments, espe-

cially in the educational and psychological disciplines.

This deficiency notion with respect to CTT is not justified and in fact not correct.

In reality there are strong relationships between CTT on one hand, when properly

used, and IRT on the other hand. These relationships can be seen as closely tied to

those between factor analysis (FA) and IRT, which have been pointed out in the

methodological literature over the past 30 years or so (e.g., Kamata & Bauer, 2008;

B. O. Muthén, Kao, & Burstein, 1991; Takane & de Leeuw, 1987; see also Kohli,

Koran, & Henn, 2014). The CTT-IRT relationships, when appropriately highlighted

and methodically clarified for empirical educational, behavioral, and social research-

ers, can in our view significantly contribute to improvements in their measurement

related work as well as to tangible progress in the entire field of measurement. This

clarification seems also to be needed because of the fact that the above methodologi-

cal literature on the FA-IRT connection was largely developed within a fairly general

framework applicable in multidimensional settings with ordinal items, and in addi-

tion was to a substantial degree of a technical nature. As a result, unfortunately it

remained to a large extent inaccessible and abstruse for empirical scientists in these

and cognate disciplines for the past several decades.

The goal of the present note is to revisit in light of that literature the relationship

between CTT and IRT within a particular setting that is widely used currently in mea-

surement contexts in educational and psychological research. By doing so, we hope

to clarify some apparent misconceptions and imprecise beliefs about the supposed

deficiencies of CTT relative to IRT. The remainder of this discussion is specifically

concerned with the equivalence between CTT-based modeling and item response

modeling for unidimensional tests or scales consisting of binary or binary scored
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measures with no guessing. The following discussion also provides a useful setup to

underscore the close connections between CTT and IRT that in our opinion need to

be highlighted and brought to the attention of empirical scientists.

Classical Test Theory Concepts for Homogeneous
Instruments With Binary Items

The well-known CTT equation for the observed score on a given measure, denoted

Xj, from a multicomponent instrument consisting of the manifest variables X1, X2, . . .,

Xp (p . 0), is

Xj = Tj + Ej, ð1Þ

where Tj and Ej are its corresponding true and error scores (e.g., Zimmerman, 1975; j

= 1, . . ., p; in the remainder, we suppress the individual subscript for simplicity of

notation). For many years, especially in the first part of the 20th century, it was widely

held that the true score could only be defined when Xj is a measure on an interval or

ratio scale. This incorrect view hampered progress in the measurement field in the

educational, behavioral, and social sciences for a number of decades. (We point out

that the CTT decomposition 1 of observed score into the sum of true and error score is

valid for any given measure, regardless of whether it is a part of a multicomponent

instrument or considered separately from any other measure; see next.)

Existence of the True Score and Error Score Construction

The observed score in Equation (1), for any prespecified individual, is a random vari-

able pertaining to the administration of the jth measure to him or her. In particular, the

mean of Xj, denoted (Xj) and equal by definition to the associated true score Tj

(Zimmerman, 1975), will exist as long as its variance, denoted Var(Xj), exists, that is,

as long as Var(Xj) \ N (e.g., Apostol, 2013; j = 1, . . ., p). The last sufficient condition

of finite variance, and hence the implied existence of the mean (Xj) = Tj, can be con-

sidered fulfilled practically in all empirically relevant cases (e.g., Lord & Novick,

1968). Therefore, for any studied person and a given measure, Xj, the existence of his

or her true score on it, Tj = (Xj), is ensured in all practically relevant cases regardless

of the nature or scale of Xj. In particular, as long as the variance of Xj is finite (1 � j

� p), Tj exists whether or not Xj is a binary, binary scored, or ordinal item, rather than

only if this item is an interval or ratio scaled measure (as has been also incorrectly

stated in several widely circulated sources over the past few decades). The error score

associated with Xj is then defined by subtraction, namely, as Ej = Xj2Tj (j = 1, . . ., p).

Thus, if for the jth binary (or binary scored) item the two possible responses on it

are denoted as follows:

Xj =
1, if answer ‘‘true, ’’ ‘‘correct, ’’ or ‘‘endorsing’’

0, otherwise

�
, ð2Þ
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then the CTT decomposition for that item is valid and of the following form:

Xj = Tj + Ej = Xj

� �
+ Ej = Pj + Ej, ð3Þ

with Pj being the probability of correct response on it (j = 1, . . ., p; for simplicity in

the remainder, we are referring to the response designated 1 in Equation 2 as

‘‘correct’’).

We present next two distinct observational equivalence approaches that can be

used to develop, starting from appropriate CTT-based models, the popular one- and

two-parameter logistic and normal ogive item response models. These approaches,

although indirectly related, can be used independently of each other in furnishing the

item response models from CTT-based models. As we will also point out, the reverse

application of either of these approaches can be utilized in order to obtain any of

these CTT-based models from a corresponding item response model.

From Classical Test Theory to Item Response Theory and
Back: Approach 1

To demonstrate the CTT-IRT equivalence for unidimensional binary items with no

guessing, which is the setting of concern in this article, we need to extend first the

notion of congeneric tests to that setup.

A Congeneric Test Model for Binary Items

For a homogeneous multicomponent measuring instrument, the most general model

relating its components within the CTT framework is the congeneric test model

(CTM; e.g., Jöreskog, 1971). The CTM is quite popular in educational and psycholo-

gical research with instrument components that are suspected of having a ‘‘common

genesis’’, that is, measuring a common construct, and is readily testable using the

latent variable modeling methodology (LVM; B. O. Muthén, 2002; see also Raykov

& Marcoulides, 2011, for a testing approach). Part of the reason for the popularity of

the standard CTM, is its assumption that the true scores pertaining to the observed

measures are perfectly linearly related among themselves. Accordingly, in the nota-

tion used with Equation (1) above,

Tj = aj + bjT ð4Þ

holds in this model, where T is the common true score for T1, . . ., Tp (T could be

taken, for instance, as T1), while aj and bj are pertinent intercept and loading para-

meters (j = 1, . . ., p). Equation (4) can also be seen as stipulating a deterministic

relationship—that is, a relationship not containing an additional stochastic term—

between any individual measure’s true score and the common true score. (In general,

a deterministic relationship need not be linear; see also below.)
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With Equations (4) and (1), the standard CTM can be defined by the following set

of observed variable equations:

Xj = aj + bjT + Ej, ð5Þ

where in addition Var(T) = 1 is assumed for model identification, and for the latter

reason usually the error terms Ej are stipulated uncorrelated across measures as well,

that is, the covariance matrix of the error score vector E = (E1, . . ., Ep)# is assumed

diagonal (with underline denoting vector and prime denoting transposition; this error

uncorrelatedness assumption is not needed in general, assuming model identification

in an application, and is typically advanced for parsimony and convenience reasons

as we will follow in the sequel; cf. Zimmerman, 1975).

An alternative representation of the standard CTM results from Equation (5) for a

given common true score (see also Equation 3; j = 1, . . ., p):

Xj

� �
= aj + bjT : ð6Þ

Since no restrictions are placed on the intercept and loading parameters, aj and bj,

we notice from Equations (3) and (6) that for a binary or binary scored item its

expectation—that is, the probability of correct response on it—is not restricted,

whereas a probability must be bounded by 0 and 1. Hence, the standard CTM cannot

be directly used or postulated in case of binary measures that are of interest in this

article. However, employing the generalized linear modeling (GLIM) framework

(e.g., Raykov & Marcoulides, 2011), the critical right-hand side of Equation (4) can

be preserved if one considers instead the logit or probit of the expected observed

score, that is, true score or the probability of correct response on the item, Pj:

ln Pj= 1� Pj

� �� �
= aj + bjT , ð7Þ

or

F�1 Pj

� �
= aj + bjT , ð8Þ

respectively, where ln(�) denotes natural logarithm, F(�) is the cumulative distribution

function of the standard normal distribution, and for simplicity the same a, b, and T

notation/symbols are used for the intercept, loading, and common construct in the

right-hand sides of Equations (7) and (8) as in Equation (4) (j = 1, . . ., p). (Strictly

speaking, these symbols denote now different quantities but are used here for empha-

sizing the common structure of Equations 4, 7, and 8).

As can be observed from Equations (7) and (8), employing a particular link func-

tion such as the logit or probit there one relates within the GLIM framework a func-

tion of the response mean, rather than this mean itself, to one or more explanatory

variables in their right-hand sides—in this case, the unobserved predictor T. In this

way, the boundaries of 0 and 1 for the response probability (i.e., response mean) are

no longer applicable since these functions of probability in their left-hand sides are
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no longer restricted. We should like to point out that Equations (7) and (8) represent

deterministic nonlinear relationships between the probability of correct response on

the jth measure—that is, its true score Tj in the present setting—and the common

construct underlying all measures that is denoted T, with their right-hand sides hav-

ing the same structure as that of Equation (4) in the model for congeneric measures,

the CTM. Models (7) and (8) can be fitted to data using the LVM methodology (B.

O. Muthén, 2002), employing for instance maximum likelihood or alternatively

weighted least squares as methods for parameter estimation and model testing (L. K.

Muthén & Muthén, 2014).

Because models (7) and (8) result from within the general setting of a congeneric

test model, either of Equations (7) or (8) can be seen as defining a congeneric test

model for binary items (CTMBI), correspondingly with the logit link or the probit

link and no guessing. When in addition the constraint

b1 = � � � = bp ð9Þ

holds, one could refer to the model defined by Equation (7) as an essentially tau-

equivalent model with binary items based on the logit link, and to the model defined

by Equation (8) as an essentially tau-equivalent model for binary items based on the

probit link (cf., e.g., Raykov & Marcoulides, 2011).

We next observe that Equations (7) and (8) are in actual fact equivalent to those

of the two-parameter logistic and two-parameter normal ogive item response models,

respectively. This equivalence is readily obtained by employing: (i) the notation T =

u, which is very popular within the IRT framework; (ii) bj as the discrimination para-

meter of the jth item; and (iii) the ratio (-aj/bj) as its difficulty parameter (j = 1, .,

p). The one-parameter logistic and one-parameter normal ogive models are then spe-

cial cases of their corresponding two-parameter counterparts just mentioned, which

result each when the restriction (9) holds in them.

This equivalence relationship can be utilized (a) to obtain a one- or two-

parameter logistic or normal ogive item response model from the respective CTT-

based model (7) or (8), correspondingly with or without the constraint (9), by

using the earlier developments in this section; or alternatively (b) to furnish from

a one- or two-parameter logistic or normal ogive item response model the corre-

sponding CTT-based model (7) or (8) (or their special cases with constraint 9).

That is, this observational equivalence relationship could be used to ‘‘move’’ from

CTT to IRT, or alternatively from IRT to CTT in the setting of concern to this

article—unidimensional binary items with no guessing. The equivalence also

demonstrates how close these two frameworks in fact are, and may also be seen as

a theoretical justification of the recent simulation-based results by Kohli et al.

(2014) that show a lack of general numerical/estimation advantage of either

framework over the other. (In actuality, the findings by Kohli et al., 2014, could

be treated as illustrations of the CTT-IRT equivalence developments in this sec-

tion; see also Conclusion section.)

330 Educational and Psychological Measurement 76(2)



From Classical Test Theory to Item Response Theory and
Back: Approach 2

As an alternative approach for obtaining item response models from appropriate

CTT-based models or conversely, one can use the following procedure based on an

important assumption made when fitting latent variable models to data from discrete

observed measures, which is attended to first.

The Underlying Normal Variable Assumption

An assumption that is usually advanced when analyzing categorical response vari-

ables in applied statistics, is that of a normal latent variable underlying an observed

discrete variable, such as the above binary measure Xj (e.g., Agresti, 2002). It is this

underlying variable, denoted Xj
*, which is of actual interest to measure, but because

of serious measurement-related problems only its crude evaluation is possible in the

associated discrete observed variable Xj (j = 1, . . ., p). This assumption has a long

history of applications that are unrelated to CTT or IRT, and has been instrumentally

used independently in genetics, attitude measurement, discrete choice, and econom-

ics, to name a few areas (e.g., Rabe-Hesketh & Skrondal, 2012); we will refer to it

as the underlying normal variable (UNV) assumption. Accordingly, in relation to

an associated unknown threshold tj the observed score on the measure of concern

results as

Xj =
1, if X �j . tj

0, if X �j � tj

�
: ð10Þ

(Note that because of the continuity of the random variable Xj
*, it is immaterial how

Xj is defined when Xj
* = tj, as long as it takes a finite value there; j = 1, . . ., p).

Classical Test Theory Decomposition Associated With Binary or Binary Scored
Measures

When all items in a given multicomponent measuring instrument are binary or binary

scored (with no guessing), the UNV assumption can be advanced with respect to each

one of them, as is usually done in applications (e.g., Raykov & Marcoulides, 2011).

Following this assumption, for each binary measure Xj there is an associated underly-

ing normal variable Xj
* and threshold tj, such that Equation (10) holds (j = 1, . . ., p).

Considering now the set of p underlying normal variables Xj
* (j = 1, . . ., p), one

easily realizes that they themselves are random variables with individual realizations

for each studied subject (in a given sample or population of interest), which are not

observed. In practically all relevant empirical cases, one may then argue as earlier in

this paper that their variance is finite, that is, Var(Xj
*) \ N (j = 1, . . ., p; cf. Lord &

Novick, 1968). Hence, the mean of each of these latent variables exists then, desig-

nated (Xj
*), which we can denote Tj

* say and treat formally as a true score of Xj
*, just
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as in case Xj
* were to be itself observed (see preceding section; j = 1, . . ., p; cf. Kohli

et al., 2014). With this in mind, for the jth underlying normal variable the following

decomposition holds:

Xj
� = Tj

� + Ej
�, ð11Þ

where Ej
* = Xj

*2Tj
* is set and could be formally considered an error score associated

with Xj
* (j = 1, . . ., p).

An Alternative Congeneric Test Model for Binary Items

For a homogeneous multicomponent instrument consisting of binary or binary scored

measures, X1, . . ., Xp, one could argue in favor of the meaningfulness of the assump-

tion that their underlying latent variables, X1
*, . . ., Xp

*, are congeneric (see preceding

discussion):

Tj
� = aj

� + bj
�T�, ð12Þ

where T* is their common underlying (true) score, while aj
* and bj

* are the associ-

ated intercepts and loadings (j = 1, . . ., p). We point out that Equation (12) represent

a model that is testable using LVM, for instance, employing the weighted least

squares approach for factor analysis with discrete variables (e.g., L. K. Muthén &

Muthén, 2014). Its testability results from the fact that this model is not empirically

distinguishable in the setting of interest in this article from the single-factor model

with discrete indicators that itself is testable (e.g., Bartholomew, Knott, & Moustaki,

2011; see next for a qualification). We may also refer to the model defined in

Equations (12) as a congeneric model with binary items, and to its special case with

b�1 = � � � = b�p as an essentially tau-equivalent model with binary items (see also

Equations 13 and 14 below; cf. Kohli et al., 2014).

Since none of the underlying normal variables X1
*, . . ., Xp

* is observed, however,

their location parameters aj
* are not uniquely estimable (identified) in the presence of

their associated threshold parameters tj (j = 1, . . ., p). This underidentification issue

is resolved by assuming aj
* = 0 (j = 1, . . ., p; cf., e.g., Agresti, 2002). Based on this

assumption, Equation (12) becomes

Tj
� = bj

�T� (j = 1, . . . , p) ð13Þ

With Equation (13), the definitional equations of the currently discussed congene-

ric model for binary items are

Xj
� = bj

�T � + Ej
�, ð14Þ

where one also assumes Var(T*) = 1 for identifiability reasons, and similarly that the

error terms Ej
* are uncorrelated—that is, the covariance matrix of the error term vec-

tor E* = (E*
1, . . ., E*

p)# is diagonal—with its main diagonal elements denoted cj (j =

1, . . ., p).
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Classical Test Theory-Based Models Leading to Item Response Theory
Models and Conversely

We denote next by h(X*) the probability density function (pdf) of the random vector

X* = (X1
*, . . ., Xp

*)# of the underlying normal variables, and by x1, . . ., xp a series

of 1s and 0s that represent a given response pattern on the original observed items

X1, . . ., Xp under consideration. (The following developments in this section that lead

up to Equation (26) are a special case in the context of CTT of the more general FA-

IRT relationship demonstrated in Takane & de Leeuw, 1987. They are presented here

merely to emphasize a main point made in the Conclusion section, viz. that the choice

between CTT and IRT in the setting of interest in this article results in actual fact

from the choice of order of integration of the product of two appropriately defined

functions; see Equation 17.)

Then because of the UNV assumption and definition of the underlying normal

variables X1
*, . . ., Xp

*, the following relationship holds for the probability of obser-

ving that response pattern:

P X1 = x1, . . . , Xp = xp

� �
=

ð
I

h(x�)dx�; ð15Þ

where I is an appropriate region of integration and dx� is a shorthand for dx�1, dx�2 . . .
dx�p.1,2 Using the law or total probability (e.g., Raykov & Marcoulides, 2012), this pdf

is on the other hand expressible as

h(x�) =

ð
Y

h(x�jT �)g(T�)dT�, ð16Þ

where Y denotes the space in which T* varies, h(�|T*) is the conditional pdf of X*

given T*, and g(�) is the pdf of T*.3 With Equation (16), Equation (15) now becomes

P X1 = x1, . . . , Xp = xp

� �
=

ð
I

ð
Y

h(x�jT�)g(T�)dT�

2
4

3
5dx�

=

ð
I

ð
Y

h(x�jT�)g(T �)dT�dx�: ð17Þ

According to Fubini’s integration theorem (e.g., Apostol, 2013), since the double

integral in the right-hand side of Equation (17) exists, it is possible to change the

order of integration in it. This leads to the following re-expression of the probability

of the response pattern under consideration:

P X1 = x1, . . . , Xp = xp

� �
=

ð
Y

g(T�)

ð
I

h(x�jT�)dx�

2
4

3
5dT�: ð18Þ
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Owing to Equation (14) and the uncorrelatedness of its error terms, the new inner

integral in (18) can be rewritten as follows:

ð
I

h(x�jT�)dx� =

ð
I

Yp

j = 1

hj(xj
�jT�)

" #
dx1
�dx2

� � � � dxp
�

=
Yp

j = 1

ð‘

tj

hj(xj
�jT �)dxj

�

" #xj

1�
ð‘

tj

hj(xj
�jT�)dxj

�

" #1�xj

; ð19Þ

where hj(�|T*) denotes the conditional pdf of Xj
* given T* (j = 1, . . ., p).

However, because of Equations (10), (14), and the assumed normality of the

underlying latent variable Xj
*,ð‘

tj

hj(xj
�jT�)dxj =F½(bj

�T� � tj)=cj� ð20Þ

holds (j = 1, . . ., p). Therefore, from Equations (18) and (19) it now follows that the

probability of the response pattern of consideration is

P X1 = x1, . . . , Xp = xp

� �
=ð

Y
g T�ð Þ

Yp

j = 1

fF½(bj
�T� � tj)=cj�gxjf1� F½(bj

�T� � tj)=cj�g1�xj dT�: ð21Þ

The right-hand side of Equation (21) is, however, precisely the expression for the

probability of a given response pattern as represented by a two-parameter normal

ogive item response model, up to notation used. Indeed, in that two-parameter nor-

mal ogive model,

P X1 = x1, . . . , Xp = xp

� �
=

ð‘

�‘

P(X1 = x1, . . . , Xp = xpju)u(u)du ð22Þ

holds, owing also to the law of total probability, where u(u) is the pdf of the random

variable u symbolizing the underlying ability evaluated by the used instrument with

components X1 through Xp. However, because of the local independence assumption

typically advanced within the IRT framework,

P(X1 = x1, . . . , Xp = xpju) =
Yp

j = 1

P(Xj = xjju)

=
Yp

j = 1

½pj(u)�xj ½1� pj(u)�1�xj , ð23Þ
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where pj(u) denotes the item characteristic curve of the jth item, Xj (j = 1, . . ., p).

Next, in the two-parameter normal ogive model,

pj(u) =

ðaju + bj

�‘

f zð Þdz =F(aju + bj) ð24Þ

holds, with f(�) being the pdf of the standard normal distribution, where aj is the

item discrimination parameter and bj is the item difficulty parameter (using the typi-

cal IRT notation of discrimination and difficulty parameters; e.g., de Ayala, 2009).

Hence, with Equations (23) and (24), Equation (22) states, in fact, that

P X1 = x1, . . . , Xp = xp

� �
=

ð‘

�‘

u(u)
Yp

j = 1

½F(aju + bj)�xj ½1� F(aju + bj)�1�xj du: ð25Þ

As can be seen by direct comparison now, Equations (25) and (21) are identical

with the following notational substitutions:

T� = u,

b�j=cj = aj,

� tj=cj = bj,

and

g �ð Þ= u �ð Þ: ð26Þ

Hence, starting from the CTT-based congeneric test model (14) for binary items, via

Equations (15) through (26) one obtains the associated probability for any prespecified

response pattern on the measures X1 through Xp, as identical to the probability for that

pattern within the two-parameter normal ogive item response model. (Thereby, the sec-

ond and third equations in (26) represent the relationship between their parameters; see

also B. O. Muthén et al., 1991.) Conversely, by backtracking—that is, performing the

above developments from (14) through (26) but in the reverse sequence—one obtains

from the probability of any response pattern within the two-parameter normal ogive item

response model, as identical that response pattern’s probability associated with a corre-

sponding CTT-based model, namely, a congeneric test model (14) with binary items.

The same argument of equivalence applies, along exactly the same lines, also for

the one-parameter normal ogive model and the essentially tau-equivalent model with

binary items, when the corresponding discrimination (loading) parameter equality is

maintained throughout these developments for all items under consideration.

Similarly, if the underlying latent variables Xj
* are assumed to begin with to be fol-

lowing a logistic distribution—practically equivalent to a corresponding normal

distribution—then the same equivalence argument will be valid for the two- and

one-parameter logistic item response models and corresponding CTT-based models
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(defined in the same way as the CTT-based models in the preceding section of this

article). Thereby, if assuming a logistic distribution for each of the underlying vari-

ables to begin with, the only change in the preceding developments in this section

will consist in substituting the cumulative distribution function L(�) of the standard

logistic distribution wherever the cumulative distribution function F(�) appears of the

standard normal distribution.

This mutual implication of identity in the probability of any response pattern

within CTT-based models on one hand and corresponding IRT-based models on the

other hand (and vice versa), as shown above, represents the logical equivalence of

the CTT and IRT frameworks that is in the center of interest of the present article.

Conclusion

For many years, CTT and IRT have represented the two major methodologies used

for the purpose of test and scale construction and development in the educational,

behavioral, and social sciences. The past several decades, however, have also wit-

nessed substantial yet unjustifiable criticism of CTT and its potential for accomplish-

ing this purpose. The concern of this article was with discussing in light of the extant

methodological literature (Takane & de Leeuw, 1987) the equivalence between the

CTT and IRT frameworks in the popular case of unidimensional multicomponent

measuring instruments with binary or binary scored items and no guessing (see also

Raykov & Marcoulides, 2011, ch. 11, 12). Unfortunately, because of the markedly

technical nature of the topic, the main findings in Takane and de Leeuw (1987) have

remained largely inaccessible and unclear for many empirical scientists. It was there-

fore the goal of this article to bring closer to the empirical behavioral and social

scientists the CTT-IRT observational equivalence relation, which is obtainable from

those prior findings, by employing the widely used setting of homogeneous dichoto-

mous items. By doing so, following the far-reaching work by Takane and de Leeuw

(1987) (see also Kamata & Bauer, 2008) on the more general FA-IRT relationship,

we hoped to deal away with misconceptions and imprecise beliefs about the sup-

posed deficiencies of CTT relative to IRT.

As demonstrated in the previous section, we wish to stress in this connection that

the CTT-IRT (observational) equivalence for the setting of interest in this article

results in the end from a simple change in the order of integration in a relevant dou-

ble (two-dimensional) integral. This result, which was first demonstrated in a much

more general setup relating FA and IRT in Takane and de Leeuw (1987), is itself

rather revealing in our view and may well be seen as the very fundament of the CTT-

IRT equivalence discussed in this article. In simple terms, it is in the end the choice

of the order of integration (at times also referred to as ‘‘marginalization’’ process),

which determines whether someone proceeds with an appropriate CTT-based model

or a corresponding item response model, as observed in the preceding section.

We thus hope that with the present highlighting of the fundamental relationship

between CTT and IRT and in particular its origin (see last two sections of this
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article), a main impediment for progress in the measurement field can be reduced

significantly. This can be achieved in our opinion by disposing of the contemporary

view concerning the assumed deficiency of CTT relative to IRT among some mea-

surement researchers in the educational and behavioral disciplines. This view is

unjustified and should be abandoned. Free from it and related misconceptions,

researchers and students alike can embark on such a unified treatment, application,

and use of CTT and IRT in the educational and behavioral disciplines, as well as

beyond them, which combines their benefits rather than positions them against one

another as in the recent and more distant past.

We conclude by pointing out that numerical illustrations of the CTT-IRT equiva-

lence in the setting of concern to this article, whose theoretical justification was dis-

cussed and highlighted in the last two sections of the paper, can be found in the

recent work by Kohli et al. (2014). Similarly, for a closely related discussion of the

relationships between factor analysis and IRT in the more general case of multiple

underlying latent variables evaluated by a set of ordinal measures, reference can be

made to the instructive and generally applicable work by Takane and de Leeuw

(1987; further related and insightful discussions in this respect are available, for

instance, in Kamata & Bauer, 2008, and B. O. Muthén et al., 1991).
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Notes

1. The integration region I is the Cartesian product of the intervals (tj, N) for all measures

with response 1, ‘multiplied’ with the Cartesian product of the intervals (-N, tj) for all

measures with 0 response (across j = 1, ., p). That is, if there are q positive and r zero

responses in a pattern (X1, ., Xp) under consideration (q + r = p), then I = (t1, N) x (t2,

N) x . x (tq, N) x (-N, tq + 1) x (-N, tq + 2) x . x (-N, tr), where ‘x’ denotes Cartesian

product, and without limitation of generality the first q responses in the pattern are taken

to be 1’s and the last r responses to be 0’s.
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2. As indicated earlier, this note is concerned with theoretical relationships between CTT

and IRT rather than with numerical evaluation of integrals of relevance for it. In order to

numerically approximate the integral in the last equation, and similarly the integrals fol-

lowing in the main text, one can make use for instance of Gauss-Hermite quadrature or

related numerical methods (e.g., Stroud & Sechrest, 1966). Compared to analytically

determined integrals, quadrature based integration can be seen as using a series of appro-

priately constructed ‘parallelepipeds’ to approximate respective multidimensional areas

under the integrated (positive) functions - by summing up their ‘volumes’, numerical

approximations are furnished in the end of the integrals of interest.

3. Since there are obviously no restrictions on T*, which could result from the preceding dis-

cussion, the pertinent interval of integration is Y = (-N, N).
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