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Abstract

Partially compensatory models may capture the cognitive skills needed to answer
test items more realistically than compensatory models, but estimating the model
parameters may be a challenge. Data were simulated to follow two different partially
compensatory models, a model with an interaction term and a product model. The
model parameters were then estimated for both models and for the compensatory
model. Either the model used to simulate the data or the compensatory model gen-
erally had the best fit, as indexed by information criteria. Interfactor correlations
were estimated well by both the correct model and the compensatory model. The
predicted response probabilities were most accurate from the model used to simu-
late the data. Regarding item parameters, root mean square errors seemed reason-
able for the interaction model but were quite large for some items for the product
model. Thetas were recovered similarly by all models, regardless of the model used
to simulate the data.
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Responding to test items correctly may require multiple skills, and thus multidimen-

sional models are needed for these responses. The most commonly used multidimen-

sional item response theory (MIRT) models are compensatory. An increase in any

ability will increase the probability of correct response. In contrast, partially
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compensatory MIRT models do not allow high levels of one ability to compensate

fully for low levels of another ability required for correctly responding to the item.

The purpose of this research is to assess the recovery of two partially compensatory

models and to explore whether data generated to follow one partially compensatory

model can be fit as well by another partially compensatory model or by a compensa-

tory model. These models are described next, followed by a brief review of applica-

tions of partially compensatory models and studies of parameter recovery.

In its most general form, the compensatory MIRT model is

Pi(u) = ci + (1� ci)
e a0 iu�dið Þ

1 + e a0 iu�dið Þ , ð1Þ

where Pi(u) is the probability of correct response on item i given the u vector of abil-

ities for an examinee (examinee subscript omitted from the model) and the item para-

meters, ci is the lower asymptote, ai is a vector of discrimination parameters, and di is

the item difficulty. Equation 1 is often labelled the 3-parameter-logistic (3PL) MIRT

model; clearly, it has more than three item parameters, but it is an extension of the

3PL unidimensional model.

For short-answer items, or for multiple-choice items with very good distractors

such that low-ability examinees are unlikely to guess the correct answer, the 2PL-

MIRT model can be formed by fixing c to zero, thus removing it from the model. For

the 1PL-MIRT model, the as within each dimension are set equal. Or equivalently,

for the multidimensional Rasch model, the as are set to 1, removing them from the

model, and the variance of the us is a free parameter—the more discriminating the

items on dimension ‘, the greater the variance of u‘.

Partially compensatory or noncompensatory MIRT models are less frequently used

than compensatory models. The terms partially compensatory and noncompensatory

are used interchangeably in the literature and do not necessarily apply to different

models. Some have argued that partially compensatory is more accurate, so that term

will be applied throughout the remainder of this article. The product model and the

interaction model are partially compensatory models.

Partially compensatory models may take the form of a product of probabilities,

such that the probability of correct response is limited by the examinee’s lowest abil-

ity. Sympson’s (1977) model, with some changes in notation for consistency with

Equation 1, is

Pi(u) = ci + (1� ci)
YL

‘ = 1

e ai‘u‘�di‘ð Þ

1 + e ai‘u‘�di‘ð Þ, ð2Þ

where Pi(u) is the probability of correct response on item i given the examinee’s u
vector of abilities and the item parameters, u‘ is the element of that vector corre-

sponding to ability ‘, ci is the lower asymptote, ai‘ is the item’s discrimination for

ability ‘, and di‘ is the item’s difficulty for ability l. Sympson proposed the model in

an exploratory context, with each item loading on all abilities, but it can also be used
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in a confirmatory manner. The model can be constrained to 1PL and 2PL forms.

Maris (1995) labelled the 1PL variant the conjunctive Rasch model.

Embretson (initially writing under the name of Whitely, 1980) described several

partially compensatory models; her independent components model is similar to

Sympson’s (1977) model but with no discrimination parameter. As in unidimensional

Rasch models, the discrimination is displaced onto the ability variance and thus is the

same for all items measuring that trait. Unlike Rasch models, this model allowed for

a guessing parameter if the model were used with multiple-choice items. Embretson

(1984) later added an upper asymptote and used the label multicomponent latent trait

model. She originally conceptualized the model in terms of separate scores for each

ability the item measured. She later modified the estimation to enable the use of the

model when there is a single score for each item (Embretson & Yang, 2006).

An alternative to Sympson’s (1977) and Embretson’s (1984) product models is an

additive model with interaction terms. An additive model might present fewer estima-

tion difficulties than a product model. An additive interaction model for two us is

Pi(u) = ci + (1� ci)
e a1iu1 + a2iu2 + a3iu1u2�dið Þ

1 + e a1iu1 + a2iu2 + a3iu1u2�dið Þ : ð3Þ

Examples of an interaction model with a positive interaction coefficient, a product

model, and a compensatory model are shown in Figure 1. The item measures both us

equally, so a1 = a2, and in the product model d1 = d2. In the compensatory model,

P(u) approaches c when both us are low and approaches 1 when both us are high,

with increases in P(u) as either u increases. In the interaction model, P(u) is low

whenever either u is low, but does not quite approach c. The product model looks

fairly similar to the interaction model, except that P(u) approaches c as both us

decrease simultaneously.

Conceptually, a large positive interaction means the item is largely noncompensa-

tory; it takes both us to solve the item. A small positive interaction indicates increases

in either u will increase the probability of correct response but increases in both

together provide an added boost. One potential problem is that ‘‘if the interaction

coefficient (a3) becomes too large, then the response surface may actually increase as

u values decrease’’ (Chalmers & Flora, 2014, p. 345). Buchholz (2014) described this

as ‘‘double-winged’’ (p. 8). For a two-dimensional interaction model, the lowest (or

highest) point of the function occurs at (2a2/a3, 2a1/a3). If a3 is positive, predicted

probabilities will increase as u values decrease below this point. If a3 is negative, pre-

dicted probabilities will decrease as u values increase above this point.

Applications of the Models

Buchholz (2014) fit 2PL compensatory, product, and interaction models to data from

a reading test with two hypothesized dimensions. The interaction model fit better than

the others but yielded the complication of increasing probabilities with decreasing u
within the range where there were nonnegligible proportions of examinees.
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Bolt and Lall (2003) estimated a 2PL compensatory model and a 1PL product

model for an English placement test intended to measure two skills. The estimates of

the standard errors were lower for the compensatory model, and the log-likelihoods

were higher in cross-validation samples.

Rizopoulos and Moustaki (2008) used a 2PL interaction model with data from a

survey on communication related to workplace changes. They did not compare the

model to other MIRT models. The results were conceptually interpretable.

Simpson (2005) applied a 1PL exploratory GMIRT model to matrix completion

items theorized to measure correspondence finding and executive control. The

GMIRT model is a hybrid of a compensatory and a product partially compensatory

model. If the compensation parameter m = 0, the model simplifies to the compensa-

tory model, and if m = 1 it simplifies to the product model. m can take any value

between 0 and 1 to combine the models. In the matrix completion data, most items

had estimated ms between 0 and 0.2, and more difficult items had higher estimated

ms, suggesting that the skills were less compensatory for harder items. Simpson also

fit a 1PL compensatory model (equivalent to a GMIRT model with m fixed to 0) and

a 1PL product model (equivalent to a GMIRT model with m fixed to 1) to the data.

The estimated item difficulties were highly correlated across models. Predicted

response probabilities were also similar in the regions where most examinees were.

Model Recovery

In this section, the term exploratory will be used to indicate that all items were free to

load on all us, and the term confirmatory will be used for models in which some items

were specified to measure a subset of the us. This distinction is relevant because of

the rotational indeterminacy in exploratory models, which may make estimation more

difficult.

Spray, Davey, Reckase, Ackerman, and Carlson (1990) found that the exploratory

compensatory and product models fit partially compensatory data almost equally

well; using the ideal observer index they were nearly indistinguishable. However, the

parameters for the product model data generation were selected by generating com-

pensatory data and finding the product model parameters which best fit the data, then

using these product model parameters to generate the data. Other parameters for par-

tially compensatory models might generate data that did not fit the compensatory

model as well.

Bolt and Lall (2003) studied recovery of a 1PL product model with two dimen-

sions using Monte Carlo Markov chains. They used an exploratory mode; all items

measured both us. The correct model provided better cross-validated fit than the com-

pensatory model did. However, root mean square errors (RMSEs) of the b-parameters

were large, much larger than typically seen with compensatory models, especially

when the correlation between the us was 0.6, the highest correlation they studied,

although this would be quite low for cognitive us. The covariance between the us was

recovered better as the number of examinees and items increased.
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Simpson (2005) simulated data for a two-dimensional 1PL GMIRT model, a com-

bination of the compensatory and product models, with all items loading on both fac-

tors. She found generally poor recovery of the item and person parameters, except for

the compensation parameter that indicates the proportional weights of the compensa-

tory and product models. Increasing the sample size or the correlation between the us

made little difference in the accuracy of parameter recovery. The GMIRT item diffi-

culties were recovered much better if the model was specified with a single item diffi-

culty, as is conventional for the compensatory model, instead of separate difficulties

for each dimension, as is conventional for the product model.

Babcock (2011) explored a confirmatory 2PL product model with two dimensions.

Unidimensional items were included to help anchor the axes. RMSE and bias in the

item parameter estimates decreased as the number of unidimensional items increased,

sample size increased, or correlation between the us decreased. Babcock concluded

that item parameter recovery was acceptable only with at least six unidimensional

items on each dimension and a sample size of at least 4,000. Recovery of u and of

the correlation between the us was less dependent on sample size. In contrast to the

RMSEs for the item parameters, the RMSEs for the u estimates decreased as the cor-

relation between the us increased, likely because information about one u could be

used in estimating the other u.

Chalmers and Flora (2014) studied recovery of Sympson’s product model using

an MH-RM algorithm in a confirmatory mode. Correlations among the dimensions

were estimated well, especially for the 2PL data. u recovery was also reasonably

accurate. However, RMSE between the estimated and true item parameters tended to

be quite large, much larger than the RMSEs for the unidimensional items included to

anchor the rotation. RMSE was larger for 3PL data than for 2PL data, and larger for

three dimensions than for two. For the 3PL data, as were considerably positively

biased, ds, parameterized as item easiness, were negatively biased, and cs were some-

what positively biased; items appeared to be more discriminating and more difficult.

For the two-dimensional, 2PL data, decreases in the correlation between abilities,

increases in sample size or increases in number of simple structure items decreased

the RMSE.

There has been even less work on recovery of parameters for the interaction

model. Rizopoulos and Moustaki (2008) simulated data for a 2PL interaction model

with two uncorrelated dimensions. All items measured both dimensions, so the analy-

sis was exploratory. Bias was fairly small. RMSEs of item parameters decreased as

sample size or test length increased. They did not examine the accuracy of recovery

of u, although they discussed procedures for estimating u. Rizopoulos and Moustaki’s

simulated data may not correspond well to cognitive tests; the main-effect a-para-

meter for one of the us was negative, and the us were uncorrelated. They suggested

estimation might be more difficult for the interaction model if the us were correlated.

Chalmers and Flora (2014) also examined how well the interaction model fit 2PL

data generated using Sympson’s product model. Convergence was much faster, but

the log-likelihood was lower. For the u estimates, RMSE was only slightly larger.
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In summary, there has been little research on parameter recovery with the linear

interaction model. The only simulation studies to estimate this model were the fol-

lowing: (1) Chalmers and Flora (2014), who examined only a 2PL two-dimensional

model, and only with data generated from a product model and (2) Rizopoulos and

Moustaki (2008) who examined only an exploratory 2PL two-dimensional model

with uncorrelated dimensions. Research is needed on the 3PL model, models with

more dimensions, and data generated to fit the interaction model in addition to data

generated to fit a product model. The interaction model may have the same difficul-

ties as the product model with estimating the 3PL model or more than two dimen-

sions, but it may prove easier to estimate under these conditions. Additionally,

Chalmers and Flora appear to be the only published study of recovery of the 3PL

product model or product models with more than two factors, so it is worthwhile to

examine this model further.

The purpose of the current study is to assess the accuracy of parameter recovery

for the interaction and product partially compensatory models, using data generated

to fit 2PL and 3PL versions of both models with two or four dimensions, with varying

numbers of unidimensional items and varying correlations among the us. Accuracy

will be judged by the bias and SE for the estimated correlations among us, the RMSE

between the true and estimated item response surfaces, bias and RMSE between the

true and estimated item parameters, and correlations, bias, and RMSE between the u
true values and estimates. The information criteria from alternate models will also be

compared.

Method

Each u was measured by 25 items. As the number of us changes, the total number of

items and the number of items measuring each u are necessarily confounded.

Because in compensatory models the number of items measuring each u seems to

have the biggest influence, especially on u recovery, this factor was kept constant

such that the total number of items changed as the number of us changed. For the 2-

u condition, there were 5 unidimensional items for each u and 20 multidimensional

items, for a total of 30 items. For the first 10 multidimensional items, both us were

conceptualized as equally weighted, a prototypical conjunctive relationship. In the

product model, this was operationalized as equal item difficulties for both us. In the

interactive model, this was operationalized as equal a-parameters for both us. For the

next 10 multidimensional items, in the product model the item difficulty for u2 was

kept constant, while the difficulty for u1 varied so that it was sometimes lower and

sometimes higher than the difficulty for u2. This represents a conjunctive context in

which a small amount of one skill is needed. In the interactive model, the main-effect

a-parameters varied, sometimes higher for u1 and sometimes higher for u2, so that

the item tapped one u or the other more strongly.

For the 4-u condition, there were 5 unidimensional items for each u and 35 multi-

dimensional items, for a total of 55 items. The first 30 multidimensional items
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measured one pair of us, with each possible pair of us mapped to 5 items. Each u in

the pair had the same difficulty (product model) and same a-parameter. The final 5

multidimensional items measured all 4 us. Items that measure four distinct skills may

not be very realistic, but were intended to challenge the algorithms.

Item difficulties were selected to keep observed proportion-correct between

approximately 0.25 and 0.85 for the 2PL models. The difficulties and the theoretical

proportion-corrects are shown in Tables 1 and 2 (4-u condition available on request)

for a multivariate standard normal population with no correlation among the us.

Aside from relatively equal proportion-correct, there was no effort to make the inter-

action item response functions (IRFs) similar to the product model IRFs to avoid pri-

vileging one model.

For the unidimensional and product items, the a-parameters were 1.5 (0.88 on the

normal metric) for low-to-moderate discrimination. The main effect a-parameters

for the interaction items were 0.9 (0.53 on the normal scale). The last 10 items in

the 2-u condition were an exception: The main effect a-parameters varied, withffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 + a2
2

p
= 1:3: The interaction a-parameters were 0.3, so the point at which

probabilities began increasing for decreasing u would occur at 23, 23 (except for

the last 10 items in the 2-u condition), a region where there were few examinees.

Items 51 to 55 were exceptions; all six interaction a-parameters within each item

equaled 0.1.

us followed a standard multivariate normal distribution with correlations among

the factors of 0, 0.7, or 0.9. A correlation of zero might occur between a cognitive u

and a u that represented a personality factor. The zero correlation also served as a base-

line for the other correlations. A correlation of 0.7 is the low end of what one might see

for different content areas, and a correlation of 0.9 is the higher end of what one might

see for different content areas or the lower end for what one might see for different sub-

scales within a content area, such as algebra, geometry, probability, and number sense

within mathematics. The lower asymptote was either 0 or 0.2 for all items.

In summary, the conditions were the following: Two generating models by two

levels of number of us by three correlations by two lower asymptotes. The data was

generated for 100 replications.

Table 1. Unidimensional Item Parameters.

Item numbers: 2-u Item numbers: 4-u d P, c = 0 P, c = 0.2

1, 6 1, 6, 11, 16 22.250 0.84 0.87
2, 7 2, 7, 12, 17 21.125 0.69 0.75
3, 8 3, 8, 13, 18 20.750 0.63 0.70
4, 9 4, 9, 14, 19 0.000 0.50 0.60
5, 10 5, 10, 15, 20 1.125 0.31 0.45

Note. For items 1 to 5, a1 = 1.5 (0.88 on the normal metric); for Items 6 to 10, a2 = 1.5; for items 11 to

15, a3 = 1.5; for items 16 to 20, a4 = 1.5. All other as = 0. P is the theoretical proportion correct

integrating over a standard multivariate normal distribution with 0 correlations among the us.
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For both the interaction and product model data, item parameters were estimated

using each of the partially compensatory models as well as the compensatory model.

The model was correctly specified as either 2PL or 3PL; the lower asymptote was

not estimated when it was 0 in the data. Version 1.5 of the package mirt (Chalmers,

2012) in R 3.1.1 was used for estimation. The EM algorithm was selected, with 21

quadrature points per u in the 2-u condition and 15 quadrature points per u in the 4-u

condition. The stopping criteria was set at a largest change of \0.001. Preliminary

runs suggested that the interaction model needed only a few more iterations to con-

verge at 0.0001, but the product model needed far more iterations, if it converged at

all, for a criterion of 0.0001. Priors for the item parameters were selected to be rela-

tively diffuse to avoid a large impact on the estimates, yet informative enough to pre-

vent unreasonable values. They were also chosen not to perfectly match the true item

parameters. Priors were N(1.7, 0.82) for the main effect as, N(0, 1) for the interaction

as, N(0, 32) for the interaction and compensatory ds and the ds for the unidimensional

items, N(1, 22) for the multidimensional item ds in the product model, and N(21.73,

0.42) for the logit cs (corresponding to mean c = 0.15). Based on the estimated item

parameters, expected-a-posteriori (EAP) qs were estimated.

Table 2. Multidimensional Item Parameters: 2-u Conditions.

Item

Interaction model Product model

d a1 a2 P, c = 0 P, c = 0.2 d1 d2 P, c = 0 P, c = 0.2

11 22.3 0.9 0.90 0.86 0.89 23.375 23.375 0.86 0.89
12 21.9 0.9 0.90 0.81 0.85 23.000 23.000 0.82 0.85
13 21.5 0.9 0.90 0.76 0.81 22.625 22.625 0.76 0.81
14 21.1 0.9 0.90 0.69 0.75 22.250 22.250 0.70 0.76
15 20.7 0.9 0.90 0.62 0.70 21.875 21.875 0.63 0.71
16 20.3 0.9 0.90 0.55 0.64 21.500 21.500 0.56 0.65
17 0.1 0.9 0.90 0.47 0.58 21.125 21.125 0.48 0.58
18 0.5 0.9 0.90 0.40 0.52 20.750 20.750 0.40 0.52
19 0.9 0.9 0.90 0.33 0.46 20.375 20.375 0.32 0.46
20 1.3 0.9 0.90 0.26 0.41 0.000 0.000 0.25 0.40
21 22.3 1.2 0.50 0.86 0.89 24.500 22.250 0.81 0.85
22 21.9 1.1 0.65 0.81 0.85 23.900 22.250 0.80 0.84
23 21.5 1.0 0.80 0.76 0.81 23.300 22.250 0.77 0.82
24 21.1 1.0 0.80 0.69 0.75 22.700 22.250 0.74 0.79
25 20.7 1.2 0.50 0.62 0.70 22.100 22.250 0.69 0.75
26 20.3 1.2 0.50 0.55 0.64 21.500 22.250 0.63 0.70
27 0.1 1.0 0.80 0.47 0.58 20.900 22.250 0.55 0.64
28 0.5 1.0 0.80 0.40 0.52 20.300 22.250 0.46 0.57
29 0.9 1.1 0.65 0.33 0.46 0.300 22.250 0.37 0.50
30 1.3 1.2 0.50 0.27 0.41 0.900 22.250 0.29 0.43

Note. For the interaction model, a3 = 0.3 for items 11 to 30. For the product model, all as = 1.5. P is the

theoretical proportion correct integrating over a standard multivariate normal distribution with 0

correlations among the us.
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Results

Model Fit

Model fit was assessed using information criteria: Akaike information criterion

(AIC), Bayesian information criterion (BIC), and sample-size-adjusted Bayesian

information criterion (SA-BIC). These indices include a penalty for the number of

parameters estimated, but the penalty is greatest for the BIC. The indices are defined

as follows:

AIC = � 2LL + 2p, ð4Þ

BIC = � 2LL + p ln Nð Þð Þ, ð5Þ

and

SA� BIC = � 2LL + p ln N + 2ð Þ=24ð Þð Þ, ð6Þ;

where LL is the log-likelihood, p is the number of parameters estimated, and N is the

sample size. Smaller indices indicate better fit, but there is no statistical significance

test. In the 2-u condition, both partially compensatory models have the same number

of estimated parameters, 20 more than the compensatory model because each multi-

dimensional item has an additional interaction term in the interaction model or an

additional item difficulty in the product model. In the 4-u condition, compared to the

compensatory model the last five items each have an additional six parameters in the

interaction model but an additional three parameters in the product model. Thus, the

interaction model has 15 more parameters than the product model, and 60 more than

the compensatory model.

To summarize fit, the estimation model with the smallest value for an index was

labelled the selected model for that index, with the results tabulated in Table 3. All

three indices tended to select the correct model when the data were generated by the

interaction model and c = 0. This was also true for the product model when r = 0,

for both levels of c. In other conditions, the AIC tended to choose the correct model

(except for the product data with c = 0.2 and r = .7 or .9), but the BIC and SSA-BIC

tended to choose the more parsimonious compensatory model.

Correlations Among us

Recovery of the correlations was measured by bias and SE and reported in Table 4.

These were the direct estimates of the correlations, not the correlations between the

estimated ûs: Generally, the correlations were estimated reasonably well when either

the correct model or the compensatory model was used for estimation, with the

exception of the .9 correlation with c = 0.2. In this condition, the correlation was

consistently underestimated by all models, especially when there were only 2 us. In

all other conditions, using the product model on interaction data led to overestimates
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of the correlation. In a few conditions, using the interaction model on product data

yielded underestimates of the correlation.

Item Response Functions

Overall recovery of the item response function (IRF) was assessed by RMSE, defined as

X
u1

X
u2

X
r

g(u1, u2) P̂(u1, u2)� P(u1, u2)
� �2,

R,

where g(u1, u2) is the density from a bivariate normal distribution, P̂ is the estimated

probability based on the estimated item parameters, which may be from a different

model than the true parameters, P is the probability based on the true parameters,

and R is the number of replications. The equation can be generalized for more

dimensions. The integration was approximated at 625 points in the 2-u conditions or

390,625 points in the 4-u conditions, 25 for each dimension.

Table 5 shows the mean RMSE. Across items, the RMSE was lowest for the cor-

rect model. The compensatory RMSE was lower than the product RMSE for the

interaction data, but the interaction RMSE was as low or lower than the compensa-

tory RMSE for the product data. However, these means masks differences among

items. Figure 2 shows the RMSE for each item in the 2-u condition. Items 1 to 10

were unidimensional items. All three models are identical for these items, so in isola-

tion, these items should be recovered well by any of the models, but the presence of

the multidimensional items might have impacted the recovery of the IRF for the uni-

dimensional items. However, this does not seem to have occurred, except to a small

degree for the most difficult items when r = 0.

For the remainder of the items, the IRF was better recovered by the correct model

(plotted as circles for the interaction model and triangles for the product model),

although the differences were quite small for the product model data when r = .9.

When one of the wrong models was used (product or compensatory for the interaction

data, or interaction or compensatory for the product data), the 3PL version (filled

shapes) of the wrong model tended to fit better than the 2PL version (open shapes).

Recall that the data and estimation model were not crossed; 2PL data were fit only by

2PL models and 3PL data were fit by 3PL models, so one might expect the 2PL data

to be easier to recover. However, the extra parameter in the 3PL models apparently

gave greater flexibility to fitting the IRF when the wrong model form was used. Item

difficulty also impacted the recovery of the IRF. Each set of 5 or 10 items increased

in difficulty. When the correct model was applied to the data, the RMSE increased

slightly as item difficulty increased for the 3PL data and stayed constant for the 2PL

data. When the wrong model was applied, for r = 0 (and r = .7 for the product data),

the middle difficulty items had the largest RMSEs. For the other three conditions

when the wrong model was applied, the trend depended on an interaction between

estimation model, data model, and r.
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Finally, Items 51 to 55 in the 4-u conditions (not shown) loaded on all four us

instead of pairs of u. For the interaction data, the RMSE tended to be larger for these

items for all three estimation models. For the product data, there was no clear trend,

depending on the combination of estimation model and r.

Individual Item Parameters

When the generated model was the same as the estimation model, recovery of indi-

vidual item parameters was also studied. The IRF might be recovered well even when

the item parameters were poorly estimated because errors in one parameter could

compensate for errors in another parameter. The values are averaged across items in

Tables 6 and 7. For both models, note that d in Equations 1 to 3 was the item diffi-

culty, not the item easiness, so negative bias indicates the item was estimated to be

easier than the true value. Although this is opposite the conventional direction used

in the compensatory model, it is consistent with the typical direction of the item diffi-

culty in the product model.

Figures 3 and 4 show the bias in each parameter for the 2-u conditions. Whenever

two or more parameters had the same true value within an item, their bias was aver-

aged. The interaction and product models should not be directly compared because

the parameters have different meanings, except for the c-parameter.

Interaction Model. Averaged across items, bias in the a-parameters was small but the

RMSEs were about twice as large for the 3PL data compared with the 2PL data. The

d-parameters had both more negative bias and larger RMSEs for the 3PL data.

Looking at individual items, bias in the a-parameters for the main effects was gener-

ally quite small for the unidimensional items and for the items with equal as (Items

1-20). When r = .9, the easiest item in each set had positive bias, followed by less

positive, or sometimes negative, bias for more difficult items. For the 2-u conditions,

when r = 0, bias remained small for Items 21 to 30, but when r = .9, a1 was nega-

tively biased and a2 was positively biased. Items 21 to 30 had larger a1 but smaller

a2, so this pattern indicates that when there was a high correlation between the us the

as were estimated to be of similar magnitude. This same pattern was seen for Items

51 to 55 in the 4-u conditions (not shown), which measured all 4 us but to differing

degrees. Bias in the a-parameters for the interaction effects was small for all items

and conditions, except that in the 4-u, c = 0, r = .9 condition the easiest item in each

set showed the most positive bias.

Averaged across items (Table 6), bias in the d-parameters was nearly zero for

r = 0, c = 0, and slightly negative for higher correlations with c = 0. Bias was more

negative for c = 0.2. Considering individual items, bias in the d-parameters was near

0 for all items when r = 0, c = 0, except for the easiest items in the 4-u condition, in

which bias was slightly negative. Bias was slightly negative for c = 0, r = .9, and

more negative when c = .2, perhaps because of the bias in c. The c-parameters tended

to have a small negative bias, with the bias more negative for the easier items and for
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r = 0.9. The easier items were pulled more toward the prior (mean = .15) because

there was less information for estimating c for the easier items. Negative bias in the

c-parameter should make items look slightly easier and slightly less discriminating.

Figure 3. Parameter recovery, 2-u interaction model.

248 Educational and Psychological Measurement 76(2)



This was evident for the ds, and to a lesser extent in the main effect as, where the

small positive bias for c = 0 decreased to nearly zero for c = 0.2.

Product Model. Bias in the a-parameters was slightly positive on average (Table 7),

increasing as r increased. The RMSE, however, was large, indicating there was a

great deal of variance across replications. Looking at the individual items, bias was

generally quite small for the unidimensional items (Items 1-10). For the items that

measured both us equally (Items 11-20), the bias was somewhat positive, especially

for r = .9. In the 2-u conditions when d1 was lower than d2 (Items 21-23), a1 was

negatively biased and a2 was positively biased, but when d1 was considerably higher

than d2 (Items 27-30), a1 was positively biased and a2 was negatively biased. In other

words, the item was estimated to discriminate slightly better than it really did for the

Figure 4. Parameter recovery, 2-u product model.
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harder skill. However, this pattern did not seem to hold for Items 52 to 55 in the 4-u

conditions; the bias of the as within each item varied less systematically.

Averaged across items, bias in the d-parameters was near 0 for the 2-u 2PL data

and negative for the other conditions. As with the a-parameters, the RMSEs were

large. Focusing on individual items, the d-parameters was near 0 for the unidimen-

sional items and for the items that measured both us equally (Items 11-20). Bias

remained near zero for the other items when r = 0, but when r = .9 the bias depended

on the relative size of the d. When d1 was lower than d2 (Items 21-23), d1 was posi-

tively biased and d2 was negatively biased, but when d1 was higher than d2 (Items

27-30), d1 was negatively biased and d2 was positively biased. In other words, the

easy skill appeared to be harder than it was, and the difficult skill appeared to be

somewhat easier than it was.

Similar to the interaction model, the c-parameters tended to have a small negative

bias, with the bias more negative for the easier items. This in turn led to slightly more

negative bias in the d-parameter for the easiest items.

u Estimation

Finally, accuracy in u estimation was indexed by the correlation between true u and û

(the square root of reliability), and conditional bias and standard error in the 2-u con-

ditions. The correlations, shown in Tables 8 and 9, were based on the multivariate-

normal data simulated to estimate the item parameters. For the 4-u conditions, results

were averaged across the us because each u was measured by identical parameters,

unlike the 2-u conditions where some of the interaction items measured u1 more than

u2 and some of the product model items had different difficulties for u1 and u2. The

standard error (standard deviation across replications) is not shown because it was

quite small, with a maximum of 0.005. The correlation based on the correct estima-

tion model was always as high or higher than the correlation from the wrong models,

but differences were small. Correlations were reduced when c = 0.2 because there is

less information when the data includes some degree of correct guessing.

Even though the correlations between true and estimated us were similar regard-

less of the estimation model, there might be systematic differences in the bias. For

the conditional bias and standard error of u (2-u conditions only), a new set of 169

(13 for each u) uniformly spaced us were generated. These same us were replicated,

with new random responses, 100 times; each replication was scored based on a dif-

ferent set of item parameter estimates from the multivariate-normal data. The fixed

us were useful to get a precise estimate of the conditional bias and standard error at

each point, but they would not be an appropriate sample for estimating the item para-

meters. Using the item parameter estimates from the multivariate normal samples

allowed for a realistic degree of error in the item parameter estimates to contribute to

error in the u estimates.

To summarize the information across the u distribution, the bias, error variance,

and RMSE values were weighted by the density at each point and averaged, as shown
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in Table 10. Bias averaged nearly to zero across us and thus was not included in the

table. Overall, it made little difference whether the correct or an alternative model

was used to estimate the us. For a given condition and data generation model, the SE

and RMSE were quite similar for all three estimation models.

The difference between the SE and RMSE reflects the fact that the conditional

bias was nonnegligible for some levels of u even though the average bias was nearly

zero. Because multidimensional plots can be hard to compare, Figure 5 shows the

bias in u1 as a function of u1 at three fixed values of u2, cross-sections of the 3-D plot

projected into the plane. To save space, only r = .9 and r = 0 are shown. Patterns

were similar across c-parameters so only c = 0 is shown. When r = .9, the cross-

sections of the prior were ellipsoidal and estimates of u1 were pulled toward the esti-

mate of u2 as well as toward the mean of u1. Thus for more extreme u1, the bias was

smallest in absolute value when u1 and u2 had the same sign. When r = 0, the prior

for u1 was independent of u2; thus the relationship between u1 and u2 was not because

of the prior. Rather, it was because of the effect that u2 has on the function relating

u1 to the probability of correct response in partially compensatory models. Reckase

(2007) noted that in the product model this conditional function reaches an upper

asymptote of P(u2). When u2 is low, the slope of the conditional function is almost

flat; little information is provided about the value of u1. The influence of the prior is

inversely proportional to the information, so estimates of u1 are pulled into the mean

more when u2 is low. Wang and Nydick (2015) also described this concept in terms

of information.

Discussion and Implications

In terms of information criteria, when the us were highly correlated, the 2PL com-

pensatory model fit the 2PL product data better than the correct model did. Looking

back at Figure 1, the hardest areas for the compensatory model to fit partially com-

pensatory data seem to be the areas where one u is high and the other is low. These

areas have very few examinees when the us are highly correlated, and thus have little

impact on the parameter estimation. These are the same areas where the discrepancy

between the 2PL compensatory and the 2PL interaction model is greatest also, but

the compensatory model did not generally fit better in that comparison. Perhaps this

is because the interaction model is only slightly harder to fit than the compensatory

model, but the product model is much more complicated. Model complexity often

refers simply to the number of parameters, but in this context the product model may

present additional estimation difficulties because of the model form. However, for

the 3PL data, the compensatory model tended to fit both the interactive and the prod-

uct model data better than the correct models when the us were moderately or highly

correlated. The flattening of the response surface because of the c-parameter may

have made the partially compensatory function easier to fit with the compensatory

model. Or possibly the extra parameter gave the compensatory model additional flex-

ibility. The information criteria might lead to selecting the compensatory model, but
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it likely would not lead to selecting the wrong partially compensatory model. This is

consistent with Chalmers and Flora’s (2014) finding that the LL was lower when

product model data were fit to the product model rather than the interaction model.

Bolt and Lall (2003) also found that the product model slightly but consistently fit

1PL product model data better than the compensatory model.

The compensatory model estimated the correlations among the us as well as the

correct model did. When the correlation was zero, the product model tended to over-

estimate the correlation in interaction data and the interaction model tended to under-

estimate the correlation in product model data. With higher correlations, the match

of the model to the data made little difference. Researchers primarily interested in

the correlations might prefer to use the simpler compensatory model, but the results

would not vary too much if the wrong partially compensatory model were applied.

The RMSE of the response function was lower when the correct model was fit to

the data. Thus, researchers who want to model the response probabilities accurately

would benefit from using the correct model. This may be difficult with real data,

where the RMSE of course is unknown and the information criteria may suggest the

compensatory model is a better fit. Fortunately, the compensatory model is most likely

to be erroneously selected when the correlations among the us are high, which is also

the context in which the compensatory model has RMSE closest to the correct model.

The response surface is still misestimated, but the density is low in the most proble-

matic regions so the response probabilities are estimated well for most examinees.

Although the response function as a whole had reasonable RMSE when the correct

model was used, the RMSE for the item parameters seemed quite large for the product

model, consistent with the results of Bolt and Lall (2003) and Chalmers and Flora

(2014). For both models, individual item parameters had little bias for most items.

However, in the interaction model the items that had different a-parameters for each u

tended to have biased a-parameters when the correlation between the us was high.

Similarly, in the product model the items that had different d-parameters for each u

tended to have bias in both the a-parameters and the d-parameters when the correlation

between the us was high. The bias was particularly large for some of the d-parameters;

Chalmers and Flora (2014) also found large bias in d for 3PL data, but in the current

study the bias was almost as severe for some 2PL items and the direction of the bias

depended on the size of the d relative to other ds in the same item. The bias for c was

small both in the current study and in Chalmers and Flora’s work but in opposite direc-

tions. The negative bias in the current study was likely because of the influence of the

prior on the easiest items. Overall, highly correlated us, as are generally seen for cogni-

tive constructs, seem to present a particular challenge for estimating individual item

parameters, even if the response function as a whole and the us are estimated accurately.

Babcock (2011), Bolt and Lall (2003), and Chalmers and Flora (2014) each found corre-

lated us increased the bias and/or RMSE in item parameters for the product model.

Corroborating Babcock’s findings, RMSE of the u estimates decreased, and corre-

lations with the true parameters increased, as r increased, in contrast to the opposite

pattern for item parameter or response function RMSE. More correlated us can share

DeMars 255



information, increasing accuracy. u estimates appear to have approximately the same

correlation with the true value and RMSE regardless of the model applied. Chalmers

and Flora (2014) reported similar findings regarding the u estimates from the interac-

tion model applied to product model data. Researchers interested only in the u esti-

mates would get reasonable results from the simpler compensatory model.

Limitations and Further Study

As with all simulations, the number and types of conditions were limited. To give a

good chance of accurate estimation, five unidimensional items were included for each u

to help anchor the solution. Further research should explore fewer unidimensional items

or purely exploratory models in which all items are free to potentially load on all us.

Many of the multidimensional items measured both us equally. Recovery of the indi-

vidual item parameters, although not recovery of the item response function, was worse

for items which measured one u more than the other, operationalized in the interaction

model as different a-parameters and in the product model as different d-parameters.

Including more of these types of items might be more interesting and more realistic.

Additionally, different as, as well as different ds, could be simulated within some prod-

uct model items, as Chalmers and Flora (2014) did. Furthermore, parameterizing the

product model to have a single difficulty might yield more accurate parameter estimates

when the difficulties vary by dimension, as Simpson (2005) found with the GMIRT

model, although separate difficulties are appealing for cognitive interpretation.

In brief, the results of this study suggest that both of the partially compensatory

models can be estimated with reasonable accuracy, with the exception of the product

model item parameters. However, if one is primarily interested in either the correla-

tions or the u estimates, the compensatory model appears to work almost as well.
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