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Abstract

This study established an effect size measure for differential functioning for items and
tests’ noncompensatory differential item functioning (NCDIF). The Mantel–Haenszel
parameter served as the benchmark for developing NCDIF’s effect size measure for
reporting moderate and large differential item functioning in test items. The effect
size of NCDIF is influenced by the model, the discrimination parameter, and the diffi-
culty parameter. Therefore, tables of NCDIF’s effect size were presented at given lev-
els of a, b, and c parameters. In addition, a general effect size recommendation for
moderate and large NCDIF is also established.
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Differential item functioning (DIF), often conceptualized in the context of item

response theory (IRT), is a term used to describe test items that may favor one group

over another after being matched on ability. It is important to determine whether an

item is functioning significantly different for one group over another regardless as to

why. Hypothesis testing is used to determine statistical significant DIF items

(Monahan, McHorney, Stump, & Perkins, 2007). When hypothesis testing is con-

ducted and a test item is flagged as significant, this test item functions differently for

the examinees being measured. Typically, when test items are categorized as DIF,

test publishers may remove these test items from the test bank. Constructing
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standardized tests is an arduous and costly process (Ramsey, 1993). A cost as

described by Zieky (1993) is the fact that ‘‘the decisions associated with DIF are

likely to be scrutinized in the adversarial arenas of legislation and litigation’’ (p.

337). Given the laborious nature of test construction and its cost, flagging a test item

based only on hypothesis testing is not sufficient evidence to remove the test item.

An effect size (ES) measure can be used in conjunction with a significant finding, to

determine if DIF is large enough to warrant removal of the test item (Cohen, 1988;

Hidalgo & Lopez, 2004; Kirk, 1996; Monahan et al., 2007).

Why use an ES if an item exhibits statistically significant DIF? DIF statistical

techniques require large sample sizes. It is well known that the larger the sample

size, the higher the probability of yielding a statistical significant finding. Moreover,

an insignificant finding with a small sample may have a meaningful ES. Statistical

significance does not guarantee practical significance; therefore, an ES helps quan-

tify an insignificant finding with small samples and a statistical significant finding

with large samples. A significance test answers only one important research question.

In discussing significance testing, Hays (1981) states, ‘‘Virtually any study can be

made to show statistically significant results if one uses enough subjects’’ (p. 293).

There are two other important questions that must be answered beyond significance

testing. If the observance is real, than how large is it? Next, is the size large enough

to be useful (Kirk, 2001)? The importance of utilizing an ES with a statistical signifi-

cance finding has been demonstrated in the DIF literature (DeMars, 2009; Meade,

2010; Jodoin & Gierl, 2001).

The differential functioning for items and tests (DFIT) framework as of today con-

sists of a comprehensive set of methods for assessing DIF. Dichotomous and polyto-

mous test items can be investigated. Unidimensional and multidimensional models

can be the bases for investigating DIF. Individual test items as well as the entire test

can be analyzed for differential item/test functioning. Uniform and nonuniform DIF

can be detected equally effectively. Additional capabilities are also possible as stated

by Oshima and Morris (2008): ‘‘It has been extended to a variety of applications such

as differential bundle functioning (DBF) and conditional DIF’’ (p. 44). In addition,

DFIT is the only parametric technique capable of handling multidimensional models.

The major drawback today as related to DFIT is that it only lacks an ES measure.

Today, Mantel–Haenszel (MH) is arguably one of the most widely used

approaches to studying DIF in operational settings (Clauser & Mazor, 1998).

Consequently, other researchers have used the ES guidelines developed for MH by

Educational Testing Service (ETS) as a benchmark in proposing the ES measures for

other DIF indices.

SIBTEST’s ES guidelines were initially defined by Nandakumar (1993). These

guidelines are not comparable with the ETS’s MH categories of negligible, moderate,

and large DIF. Given the extensive research, popularity, and familiarity with the

ETS’s categories of DIF, Roussos and Stout (1996) devised a method by which val-

ues of SIBTEST’s measure of DIF b̂UNI could be interpreted using the ETS’s cate-

gories. ETS’s MH measure of DIF D̂MH and b̂UNI are different metrics not on the
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same scale; therefore, as stated by Roussos and Stout, ‘‘no strict mathematical rela-

tionship exists between the two estimators that allows D̂ cutoff values to be converted

to equivalent b̂ values’’ (p. 219). But research has shown that these two estimators

are highly correlated (Dorans & Holland, 1993). Thus, Shealy and Stout (1993) and

Roussos and Stout (1996) defined an approximate linear relationship as b̂UNI = K � D̂:
The constant K is defined as a constant with an approximate value of 215 for 1PL

and 2PL data based on research by Shealy and Stout (1993). K is defined as a constant

with an approximate value of 217 for 3PL data based on research by Roussos and

Stout (1996).

In the literature related to the logistic regression DIF procedure, many different

metrics have been reported to assess ES. These methods do not utilize instinctive

metrics that can be derived from logistic regression, more specifically the odds ratio

(Monahan et al., 2007), which is similar to MH’s odds ratio. Using Holland and

Thayer’s (1988) conversion formula, logistic regression’s measure of DIF D̂LR can

be defined similar to MH’s measure of DIF D̂MH (see Equation 1).

D̂LR = � 2:35 ln (âLR), ð1Þ

where âLR represents the reference to focal group odds ratio for answering a test item

correctly. D̂LR can be summarized similarly to MH’s categories of negligible, moder-

ate, and large DIF. Table 1 provides a summary of the most utilized nonparametric

DIF statistics today with its ES.

Importance

The purpose of this study is to establish an ES measure for DFIT noncompensatory

differential item functioning (NCDIF). More specifically, to establish the NCDIF val-

ues that correspond to ES categories related to ETS’s MH categories at given levels

of a, b, and c parameters. As did Monahan et al. (2007) and Shealy and Stout (1993),

MH parameter served as the benchmark for developing NCDIF’s ES measure, for

reporting moderate and large DIF in test items. The preliminary investigation indi-

cated that a one-size-fits-all approach may not be advisable. The ES of NCDIF is

influenced by the model, the discrimination parameter, and the difficulty parameter.

This finding supports similar findings from DeMars’s (2011) results of investigating

the comparison of ESs for DIF measures. While presenting tabled values of ES to

align MH and DFIT, another purpose of this study is to offer a general ES recom-

mendation for moderate and large NCDIF, which can be added to Table 1.

Mantel–Haenszel

MH as a practical technique to determine if a test item is functioning differently for

two groups of examinees was first proposed by Holland (1985). Holland and Thayer

(1988) provided the landmark study that explains in great detail the use of MH as a

DIF technique. The value (i.e., MH’s ES) of a indicates how much more likely (i.e.,
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multiplicative) the odds for the reference group is for answering the test item cor-

rectly over the focal group. In Equation 2, when DMH is zero, the odds ratio a is one,

indicating that the reference and focal groups odds are the same for getting a test item

correct. A negative value for DMH would indicate a test item favoring the reference

group and positive values favoring the focal group (Holland & Thayer, 1988).

DMH = � 2:35 ln(âMH ): ð2Þ

The ETS’s DIF classification rules based on ES measured by DMH is categorized

as A, B, or C. ‘‘A’’ represents negligible DIF, ‘‘B’’ represents moderate DIF, and

‘‘C’’ represents large DIF (Dorans & Holland, 1993; Hidalgo & Lopez, 2004; Zwick

& Ercikan, 1989). Equations 3, 4, and 5 define these classifications based on DMH

(see also Table 1).

A Negligible DIFð Þ= jDMH j\1, ð3Þ

B Moderate DIFð Þ= 1 � jDMH j\1:5, ð4Þ

C Large DIFð Þ= jDMH j � 1:5: ð5Þ

Roussos, Schnipke, and Pashley (1999) developed a generalized formula that cal-

culates the true MH parameter given the a, b, and c parameters in the IRT model

(see Equations 6 and 7). The specific details for Equations 6 and 7 can be found in

Roussos et al.

a =

Ð ‘

�‘
PF uð ÞQR uð Þ FR uð ÞFF uð Þ

gFFF uð Þ+ gRFR uð Þa uð Þdu
Ð ‘

�‘
PF uð ÞQR uð Þ FR uð ÞFF uð Þ

gFFF uð Þ+ gRFR uð Þ du
, ð6Þ

where

a(u) =
PR(u)QF(u)

PF(u)QR(u)
: ð7Þ

Differential Functioning for Items and Tests (DFIT)

DFIT as a statistical method primarily was developed to overcome limitations associ-

ated with Raju’s (1988) DIF area measure technique. The DFIT framework as of

today consists of a comprehensive set of methods for assessing DIF. Dichotomous

DFIT was the first significant development within the DFIT framework (Raju, van

der Linden, & Fleer, 1995). The development consisted of NCDIF, compensatory

DIF, and differential test functioning. Oshima and Morris (2008) provide this spe-

cific definition of NCDIF in stating, ‘‘. . . is defined as the average squared distance

between the ICFs for the focal and reference groups’’ (p. 46). NCDIF measures the

difference in probability of selecting a correct response to a test item between exami-

nees from two different groups of interest (e.g., members from different ethnicity
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groups). In other words, is there a difference in probability for members of different

groups endorsing a test item while having the same latent ability? The difference in

probability is taken over the entire latent ability continuum for the focal group,

denoted by EF in Equation 9. NCDIF functions similarly to other item-level DIF sta-

tistics, in that all items are assumed to be DIF free with the exception of the item

being investigated. In calculating NCDIF, squaring the difference between the item

characteristic functions allows for both uniform and nonuniform DIF to be detected

(see Equations 8 and 9).

di(us) = PiF(us)� PiR(us), ð8Þ

NCDIFi = EF ½di(us)
2�, ð9Þ

where PiF(us) and PiR(us) are the probabilities of answering item i correctly by sub-

ject s with the ability level of u for the focal group and the reference group,

respectively.

DFIT as a DIF technique is a promising new statistic in the area of DIF analysis

(Osterlind & Everson, 2009). The statistic provides breadth and depth in many impor-

tant areas lacking in other DIF statistics. The NCDIF statistical test is based on the

item parameter replication algorithm. Essentially, using the focal group’s item para-

meters for a test item, a large number of pairs (e.g., 1,000) of these parameters are

reproduced. NCDIF for each of these pairs is calculated. These replicated pairs repre-

sent the ‘‘No DIF’’ condition, and hence, any extreme differences observed would be

considered beyond chance. The 1,000 pairs form the null distribution, and cutoffs are

determined at the 90%, 95%, 99%, and 99.9% percentile rank scores. The NCDIF

values at any of these levels will be used to determine statistical significance at .10,

.05, .01, and .001, respectively. For a detailed description of the item parameter repli-

cation procedure, see Oshima, Raju, and Nanda (2006). DFIT provides a significance

test of DIF, but currently lacks a very important measure, an ES.

Method

A two-stage methodological approach was used to determine the ES values for

DFIT’s NCDIF. The first stage was to calculate and align the true parameters for

both MH and NCDIF related to moderate and large DIF. The second stage was a

Monte Carlo simulation study to validate the proposed NCDIF ES guidelines for

moderate and large DIF.

To establish NCDIF values that correspond to ES categories defined by ETS’s

MH at given levels of a parameters, b parameters, and c parameters (see Table 3),

187 conditions were defined. The a parameter had eight levels: 0.25, 0.50, 0.75,

1.00, 1.25, 1.50, 1.75, and 2.00. The b parameter had 11 levels: 23.0, 22.0, 21.5,

21.0, 20.5, 0, 0.5, 1.0, 1.5, 2.0, and 3.0. The c parameter was constant: 0.20. Thus,

the numbers of conditions for 1PL, 2PL, and 3PL are 11 (difficulty level only), 88

(difficulty and discrimination), and 88 (difficulty and discrimination), respectively.
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The ability distributions for the reference and focal groups were N(0, 1) and N(0, 1),

respectively. The calculated parameters for NCDIF and MH were based on the 1PL,

2PL, and 3PL models. The item score type for this study was dichotomous, with an

equal population size for the reference and focal groups being 1,000. Finally, the

choice of 0.20 for the pseudo-guessing parameter was associated with typical multi-

ple choice exams having five choices.

Stage 1: Calculating MH and NCDIF Parameters

In calculating the MH parameter values for each condition, Equations 6 and 7 were

used. More specifically, software developed by Roussos et al. (1999) incorporating

these formulas was utilized to calculate the true MH parameter. The software required

input for the ability distributions, the population size for the focal and reference

group, and values for the a parameter, b parameter, and c parameter. Depending on

the test item parameters provided, this would dictate the model of 1PL, 2PL, or 3PL.

NCDIF parameter values for each condition were calculated using Equations 8 and 9.

Stage 1: Determining NCDIF ES. Within each condition, DIF was embedded by manip-

ulating the focal group’s b parameter, which was modeled in the software developed

by Roussos et al. (1999). This approach allowed DIF to be measured by the difference

in b parameters for the focal and reference groups (i.e., bf2br). If the magnitude of

DIF increases, one would expect for the ES measure to also increase. The amount of

DIF varied depending on the condition. The amount of DIF varied in increments of

.0125, .025, .05, or .10. The definition of moderate DIF as defined by the MH para-

meter is 1. A large DIF is defined as 1.5. The closest MH parameter value equal to 1

was used for moderate DIF. The closest MH parameter value equal to 1.5 was used

for large DIF. The increments were chosen with the goal to be within .006 of the MH

values of 1 and 1.5. For each condition, the correspondence of MH where Category A

becomes Category B for moderate DIF, Category B becomes Category C for large

DIF to NCDIF was recorded, to establish MH-based ES at the given level of the item

parameters. In addition, given the adequate number of increments for each condition,

the correlation index for MH and NCDIF was calculated. Finally, a general NCDIF

ES value for moderate and large was proposed.

Table 2 is an illustration of how NCDIF was aligned with MH’s parameter value

for ES Categories B and C. As can be seen, a b difference of .25 was required to reach

moderate DIF, and a b difference of .37 was necessary for large DIF. For this condi-

tion, to calculate moderate DIF for NCDIF, the reference group’s b parameter used in

Equation 8 would be 23 and the focal group’s b parameter would be 22.75. To cal-

culate large DIF for NCDIF for this illustrative condition, the reference group’s b

parameter used in Equation 8 would be 23 and the focal group’s b parameter would

be 22.63. The MH’s parameter values and NCDIF’s parameter values for all other

conditions were calculated similarly to determine moderate and large DIF.
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Stage 2: Generalizability for the Calculated ESs

To establish generalizability for the calculated ESs in practice, an extensive Monte

Carlo simulation was conducted. A 61-item test was simulated where Item 61 repre-

sented the various degrees of a DIF item. The simulation was designed to reflect the

exact conditions used to calculate the true parameters for MH and NCDIF. The

IRTGEN software algorithm (Whittaker, Fitzpatrick, Williams, & Dodd, 2003) was

used to generate the item responses. IRTGEN generates item responses and known

trait scores for the 1PL, 2PL, and 3PL models, which were necessary for this simula-

tion. Ducan’s (2006) estimated item parameters from a 60-item American College

Testing administration were used for this simulation. In simulating Item 61, the refer-

ence group and focus groups’b parameters determined based on the MH and NCDIF

parameter calculations in Stage 1 were used for this stage of the study. The a para-

meter and c parameters related to Item 61 were the same for both the focal and refer-

ence groups within each condition as was the case in Stage 1. There were 187

conditions as described earlier at different levels of a parameter and b parameter for

the reference group (see Table 3). Fixed and equal sample size pairs of (1,000,

1,000) for the reference and focal groups were used. In this simulation, the sample

size was not a factor being considered; therefore, the sample size was fixed through-

out the simulation. The choice of using a sample size of 1,000 was based on sample

sizes in actual testing scenarios ranging from 250 to 3,000 (Shealy & Stout, 1993),

as well as on the recommendation by Oshima and Morris (2008) stating that DFIT

should be used with equal sample sizes of 1,000 or more.

Stage 2: Estimating NCDIF. For each of the conditions for this study, the 1-0 data sets

were simulated using SAS. The 1-0 data were then calibrated using BILOG-MG3

(Zimowski, Muraki, Mislevy, & Bock, 2003). NCDIF’s item parameter estimates

were then put on a common scale using the ST program developed by Hanson &

Table 2. Determining NCDIF Effect Size for Categories B and C.

Focal group’s b
parameter (bf)

Reference group’s
b parameter (br) bf 2 br True MH

MH (DIF)
category

True
NCDIF

23.00 23.00 .000 0.000 A .0000000
..
. ..

. ..
. ..

. ..
. ..

.

22.755 23.00 2.245 20.979 A .0000708
22.750 23.00 2.250 20.999 B .000250951
22.700 23.00 2.300 21.199 B .000375360
..
. ..

. ..
. ..

. ..
. ..

.

22.655 23.00 2.345 21.398 B .0004561
22.630 23.00 2.370 21.498 C .000602042
22.600 23.00 2.400 21.598 C .000719743

Note. NCDIF = noncompensatory differential item functioning; MH = Mantel–Haenszel; DIF = differential

item functioning. The items is bold represent the true parameter values, where Category A becomes

Category B for moderate DIF, Category B becomes Category C for large DIF to NCDIF was established.
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Zeng (1995), which incorporates the test characteristic curve method (Stocking &

Lord, 1983). NCDIF was then estimated using the software DIFCUT developed by

Nanda, Oshima, & Gagne (2006). It is recommended in practice to conduct a two-

stage linking for DFIT, in which the second linking coefficients are obtained after

removing large DIF after the first stage. In this simulation, it was assumed that this

purification process was perfect by using only Items 1 to 60 for linking. Finally, for

each of the 187 conditions, the number of replications for estimating NCDIF was

100. The estimated NCDIF values are therefore based on the average of 100

replicates.

Stage 2: Assessing Stability. To determine the veracity of the true NCDIF parameter

values used to establish the ES values, item parameter recovery was investigated

comparing the true NCDIF value and estimated NCDIF values over 100 replications

within each condition. This study focused on the item recovery of Item 61 only.

Systematic errors in an estimation can be interpreted by calibration bias. Bias for this

study is defined as follows:

Bias = EstimatedNCDIF� TrueNCDIF:

Recall that there were 187 conditions investigated in this study. In addition to

assessing bias, the simulation was modified to simulate an actual test administration,

to demonstrate the utility and necessity of the ES measures being proposed for

DFIT’s NCDIF. Nanda et al.’s (2006) DIFCUT program was modified to include the

proposed ES measure for the DIF test items related to NCDIF. To demonstrate the

utility of the proposed ESs, selected conditions from the 187 investigated items were

simulated with ‘‘no DIF,’’‘‘negligible DIF,’’‘‘moderate DIF,’’ and ‘‘large DIF.’’

Table 3. NCDIF Recommended Effect Size—Moderate DIF: Category B (1PL/2PL).

Model! 1PL 2PL 2PL 2PL 2PL 2PL 2PL 2PL 2PL
Discrimination! N/A 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Difficulty #

23 \0.001 0.006 0.002 \0.001 \0.001 \0.001 \0.001 \0.001 \0.001
22 0.001 0.009 0.004 0.002 0.001 \0.001 \0.001 \0.001 \0.001
21.5 0.001 0.009 0.006 0.003 0.002 0.001 0.001 0.001 \0.001
21 0.002 0.010 0.007 0.005 0.003 0.002 0.002 0.001 0.001
20.5 0.003 0.010 0.008 0.006 0.005 0.003 0.003 0.002 0.002
0 0.003 0.010 0.008 0.006 0.005 0.004 0.003 0.002 0.002

0.5 0.002 0.009 0.007 0.006 0.004 0.003 0.002 0.002 0.002
1 0.002 0.009 0.006 0.004 0.003 0.002 0.001 0.001 0.001
1.5 0.001 0.008 0.004 0.002 0.001 0.001 0.001 \0.001 \0.001
2 0.001 0.006 0.003 0.001 0.001 \0.001 \0.001 \0.001 \0.001
3 0.000 0.004 0.001 \0.001 \0.001 \0.001 \0.001 \0.001 \0.001

Note. NCDIF = noncompensatory differential item functioning; DIF = differential item functioning.
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Each of the selected conditions with the various DIF amounts was simulated with

100 replicates.

Results

Stage 1

The ES recommendation is based on the fact that a clear relationship exists between

the MH parameter and the NCDIF parameter. The conditions investigated revealed

through scatterplots a curvilinear relationship between MH and NCDIF. NCDIF by

definition is the average squared distance between the focal and reference group’s

ICCs. Applying a nonlinear transformation to NCDIF by taking the square root of

each data point produced an acceptable linear relationship. Given the almost linear

relationship between the two parameters, the relationship between MH and NCDIF

can be now expressed as

NCDIF = (DMH=K)2: ð10Þ

Each of the other conditions had similar results after applying the transformation.

For each condition, the correlation between the MH parameter and NCDIF was .87

or higher, with the majority being .99 after the transformation. In general, the 3PL

conditions had the lower correlation indexes. In this study, the a parameter was held

constant between the focal and reference groups, hence, essentially, modeling a spe-

cial case of the 1PL model. Past research has shown the MH statistic to be reliable

for 1PL and 2PL data.

The recommended ESs for DFIT’s NCDIF are presented in Tables 3, 4, 5, and 6.

For example, for an item with medium difficulty and medium discrimination (b = 0

and a = 1, respectively), the moderate ES for NCDIF is .005 (see Table 3), while the

large ES is .011 (see Table 5) for the 1PL/2PL model. Those values change to .007

(see Table 4) and .016 (see Table 6) for the 3PL model. The ES values vary substan-

tially in each table. For example, moderate ES ranges from \.001 to .010 for the

1PL/2PL model (see Table 3). The variation is slightly larger for the 3PL model,

ranging from \.001 to .011 (see Table 4). These tables suggest that a one-size-fits-

all approach to develop a relationship between MH and DFIT is not advisable. In

other words, a single constant K in Equation 10 cannot relate MH and DFIT.

As noted in Tables 4 and 6, there were quite a few problem conditions (indicated

by the asterisk) related to the MH’s inability to detect DIF when DIF was lucidly

apparent. These conditions are associated with the 3PL model. In using the b differ-

ence for the focal and reference groups (i.e., bf2br) in defining large amounts of

DIF, Swaminathan and Rogers (1990) used .64 as the baseline for purporting large

DIF (Category C). Furthermore, they defined large DIF (Category C) as having an

area measure of .80 or more. For all of the conditions with the asterisk in Tables 4

and 6, the b difference was at or above 1.0, and the area measure was greater than

.80, clearly large DIF. There were 14 conditions (see Table 4) in which MH did not
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reach moderate DIF and 18 conditions (see Table 6) in which MH did not reach large

DIF. Given MH’s inability to detect DIF in those conditions, there is no correspond-

ing MH-NCDIF ES. To remedy the missing MH-NCDIF ESs for the conditions with

the asterisk, one possible practical solution is to use the NCDIF value immediately

above the asterisk within the same discrimination column.

Table 4. NCDIF Recommended Effect Size—Moderate DIF: Category B (3PL).

Model! 3PL 3PL 3PL 3PL 3PL 3PL 3PL 3PL
Discrimination! 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Difficulty #

23 0.005 0.001 \0.001 \0.001 \0.001 \0.001 \0.001 \0.001
22 0.007 0.003 0.001 0.001 \0.001 \0.001 \0.001 \0.001
21.5 0.008 0.005 0.003 0.002 0.001 0.001 \0.001 \0.001
21 0.009 0.006 0.004 0.003 0.002 0.002 0.001 0.001
20.5 0.010 0.008 0.006 0.005 0.004 0.003 0.003 0.003
0 0.011 0.009 0.008 0.007 0.006 0.005 0.005 0.004
0.5 0.011 0.010 0.009 0.008 0.007 0.007 0.006 0.006
1 0.011 0.009 0.008 0.008 0.007 0.007 0.006 0.006
1.5 0.010 0.009 0.008 0.007 0.007 0.007 * *
2 0.010 0.008 0.007 * * * * *
3 0.009 * * * * * * *

Note. NCDIF = noncompensatory differential item functioning; DIF = differential item functioning.

*MH never reached moderate DIF (Category B). Therefore, no corresponding NCDIF value is reported.

Table 5. NCDIF Recommended Effect Size—Large DIF: Category C (1PL/2PL).

Model! 1PL 2PL 2PL 2PL 2PL 2PL 2PL 2PL 2PL
Discrimination! N/A 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Difficulty #

23 0.001 0.016 0.004 0.001 \0.001 \0.001 \0.001 \0.001 \0.001
22 0.002 0.020 0.010 0.004 0.002 0.001 0.001 \0.001 \0.001
21.5 0.003 0.022 0.014 0.008 0.004 0.003 0.002 0.001 0.001
21 0.005 0.023 0.017 0.011 0.008 0.005 0.004 0.003 0.002
20.5 0.006 0.023 0.019 0.014 0.010 0.008 0.006 0.005 0.004
0 0.006 0.022 0.018 0.014 0.011 0.008 0.007 0.005 0.004
0.5 0.005 0.020 0.016 0.012 0.009 0.007 0.005 0.004 0.004
1 0.004 0.018 0.012 0.008 0.005 0.004 0.003 0.002 0.002
1.5 0.003 0.016 0.008 0.005 0.003 0.002 0.001 0.001 0.001
2 0.002 0.013 0.005 0.002 0.001 0.001 \0.001 \0.001 \0.001
3 \0.001 0.008 0.002 \0.001 \0.001 \0.001 \0.001 \0.001 \0.001

Note. NCDIF = noncompensatory differential item functioning; DIF = differential item functioning.
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Figures 1 and 2 depict the effects of b parameter and a parameter on MH-based

ES for NCDIF (moderate). A similar trend was observed for the large ES. The

effects are clear; items with medium difficulty tend to have a higher MH-based ES

for NCDIF. Items with lower discrimination tend to have a higher MH-based ES

for NCDIF. In addition, related to the 3PL model (Figure 2), as the item becomes

more difficult in comparison with the 2PL model, a higher MH-based ES for

NCDIF is observed. This suggests that more DIF is required to observe moderate

DIF.

Table 6. NCDIF Recommended Effect Size—Large DIF: Category C (3PL).

Model! 3PL 3PL 3PL 3PL 3PL 3PL 3PL 3PL
Discrimination! 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Difficulty #

23 0.012 0.003 0.001 \0.001 \0.001 \0.001 \0.001 \0.001
22 0.017 0.008 0.003 0.002 0.001 \0.001 \0.001 \0.001
21.5 0.019 0.012 0.006 0.004 0.002 0.002 0.001 0.001
21 0.021 0.015 0.011 0.008 0.006 0.004 0.003 0.003
20.5 0.023 0.019 0.015 0.012 0.010 0.008 0.007 0.006
0 0.024 0.021 0.018 0.016 0.014 0.012 0.011 0.010
0.5 0.024 0.022 0.020 0.017 0.016 0.015 0.015 0.014
1 0.024 0.021 0.019 0.017 0.016 0.016 0.015 0.015
1.5 0.023 0.019 0.017 * * * * *
2 0.021 0.017 * * * * * *
3 0.019 * * * * * * *

Note. NCDIF = noncompensatory differential item functioning; DIF = differential item functioning.

*MH never reached large DIF (Category C). Therefore, no corresponding NCDIF value is reported.

Figure 1. 2PL conditions: Effects of b parameter and a parameter on NCDIF’s moderate ES.
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Stage 2

In assessing bias for the item recovery investigation, the average difference between

NCDIF estimated and true parameters for Item 61 was .0014 for items with moderate

DIF and .0029 for large DIF. Recall, moderate means the lower bound for MH

Category B, and large means the lower bound for MH Category C, which is 1 and

1.5, respectively. Overall, estimated NCDIF is slightly higher than true NCDIF

(Meade, 2010). The correlation between true and estimated NCDIF is high, .90 for

moderate DIF and .89 for large DIF. Figure 3 is a summary of bias for estimated

NCDIF at various levels of difficulty and discrimination for the cutoff of moderate

DIF. For large DIF (not reported in the figure), similar patterns were observed,

except bias values were slightly more (about .001 more on the average). The follow-

ing observations can be stated: (a) the difference is fairly small for 2PL across each

of the levels of difficulty and discrimination; (b) the difference is larger for 1PL than

2PL. In addition, the difference was the largest at the medium difficulty range; and

(c) for 3PL, problems occur at high discrimination and difficulty levels. This beha-

vior was observed in Stage 1 with the true parameter calculations and has already

been discussed. Marginal means were calculated to observe the effect of model, item

difficulty, and item discrimination (see Table 7). The 11 levels of item difficulty

were grouped into three categories, where the b parameters for ‘‘easy,’’‘‘medium,’’

and ‘‘hard’’ were ‘‘23, 22, and 21.5’’; ‘‘21, 20.5, 0, 0.5, and 1’’; and ‘‘1.5, 2,

and 3,’’ respectively. Similarly, the a parameters were grouped into three categories:

‘‘low,’’‘‘medium,’’ and ‘‘high’’ for ‘‘0.25 and 0.50’’; ‘‘0.75, 1.00, and 1.25’’; and

‘‘1.50, 1.75, and 2.00,’’ respectively. As related to Table 7, for the effect of model,

2PL has the lowest bias between estimated NCDIF and true NCDIF; for the effect of

difficulty, for 1PL, medium difficulty equals more difference between estimated and

parameter values for NCDIF; and for discrimination, not much effect was observed.

In summary, the recommended NCDIF values for ES (Tables 3-6), which were based

Figure 2. 3PL conditions: Effects of b parameter and a parameter on NCDIF’s moderate ES.
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on the true NCDIF values, may be slightly underestimating the cutoff for moderate

and large DIF when facing the estimated item parameters in practice.

Stage 2: Utility of the Proposed Effect Size for NCDIF. As stated by DeMars (2009), in

referencing a study by Jodoin and Gierl (2001) related to the importance of ES,

‘‘Taking effect size into account greatly decreases the false hit rate’’ (p. 157). This is

also demonstrated with the proposed ES for NCDIF in this study. Table 8 shows that

false positives can be reduced by using both the significance test and the proposed

ES. By nature of the significance test, where a = .05, 5 out of 100 replications are

expected to show significance—that is, Type I error. In Table 8, the Type I error rate

was inflated for 2PL but not for the 1PL and 3PL models. Despite the inflated Type I

error for the 2PL model, the false positives rate was controlled if both significance

test and ES were used. More important, Table 9 shows that the combination method

of significance and ES is also useful where there is DIF. Negligible DIF should not

be flagged in practice, although technically it should be detected by a significance

test. The numbers of flagged items for negligible DIF were reduced from 16 to 2 for

1PL, from 25 to 3 for 2PL, and from 15 to 3 for 3PL. For moderate DIF, ES is essen-

tial, as it shows a variety of sizes: A, B, and C. The occurrence of A and B are

expected as the size of DIF embedded for moderate is the lower bound of Category

Table 7. Average Bias for the Three Factors for Moderate DIF.

(a) Effect of model

Model

1PL 0.0020
2PL 0.0009
3PL 0.0020

(b) Effect of item difficulty

1PL 2PL 3PL

Easy 0.0008 0.0009 0.0008
Medium 0.0033 0.0009 0.0023
Hard 0.0017 0.0008 0.0036

(c) Effect of item discrimination

2PL 3PL

Low 0.0007 0.0008
Medium 0.0010 0.0024
High 0.0009 0.0025

Wright and Oshima 351



B. The occurrence of C for the 2PL moderate case supports the earlier finding, that

NCDIF estimates tend to be slightly inflated in comparison with true NCDIF. Finally,

for large DIF, the combination method is not required. The agreement of significance

at a = .05 and ES of C was almost perfect (see Table 9).

Last, with an attempt to come up with a general ES for moderate and large for

NCDIF, all the NCDIF values for the tables for moderate DIF and large DIF were

averaged, respectively.

Figure 3. Bias of estimated NCDIF, at various levels of difficulty and discrimination at the
cutoff for moderate DIF.
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As discussed earlier, MH-based ES exhibited some problem conditions especially

with extreme regions of difficulty. To exclude those conditions (i.e., outliers), the

trimmed mean (Staudte & Sheather, 1990) using a criterion of 20% deletion of the

smallest and largest NCDIF values was utilized in calculating the means. The result-

ing NCDIF’s general ES for moderate was .003. For large ES, it was .008.

Discussion

In determining a comparable ES for DFIT’s NCDIF, the MH-DIF measure, which is

widely used today, served as the benchmark for this study. It is important to under-

stand the results already presented related to the behavior of the MH-DIF measure.

There is a plethora of empirical research on the MH-DIF measure in observing its

behavior (Allen & Donoghue, 1996; Clauser, Mazor, & Hambleton, 1994; Donoghue,

Holland, & Thayer, 1993; Holland & Thayer, 1988; Roussos et al., 1999; Roussos &

Stout, 1996). The MH measure of DIF overestimates the amount of DIF for easy and

hard test items related to the 1PL Rasch and 2PL models. There were 37 conditions

where the MH parameter corresponded to moderate DIF (Category B) or large DIF

(Category C) size, where the corresponding NCDIF value was less than .001 (see

Tables 4 and 5). Those small values can be attributed to the very nature of MH men-

tioned above coupled with the way in which NCDIF is calculated. Unlike the area

measure, NCDIF takes the number of examinees into account. Recall, the ability (u)

Table 8. NCDIF Values for Item 61 (With no DIF) Over 100 Replications From Selected
Conditions (1PL: b = 0, 2PL: b = 0 and a = 1.25, and 3PL b = 0, a = 1.25, and c = 0.20).

1PL 2PL 3PL

Rep NCDIF Sig ES NCDIF Sig ES NCDIF Sig ES

1 0.0040 *** B 0.0038 *** B 0.0025 ** A
2 0.0022 * A 0.0034 *** B 0.0019 ** A
3 0.0021 * A 0.0029 *** A 0.0019 ** A
4 0.0021 * A 0.0028 *** A 0.0018 ** A
5 0.0016 * A 0.0025 ** A 0.0017 ** A
6 0.0016 * A 0.0019 ** A 0.0015 ns A
7 0.0014 ns A 0.0016 ** A 0.0014 ns A
8 0.0014 ns A 0.0015 ** A 0.0013 ns A
9 0.0013 ns A 0.0014 ** A 0.0013 ns A
10 0.0013 ns A 0.0013 ** A 0.0012 ns A
11 0.0012 ns A 0.0012 ** A 0.0011 ns A
12 0.0011 ns A 0.0010 ns A 0.0010 ns A
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

100 \0.0001 ns A \0.0001 ns A \0.0001 ns A

Note. NCDIF = noncompensatory differential item functioning; DIF = differential item functioning; ES =

effect size. 100 replications are ordered by the magnitude of NCDIF (largest to smallest).

***Indicates significance at .001. **Indicates significance at .01. *Indicates significance at .05.

Wright and Oshima 353



T
a
b

le
9
.

T
h
e

N
u
m

b
er

o
f

N
C

D
IF

V
al

u
es

D
et

ec
te

d
as

D
IF

fo
r

It
em

6
1

(W
it
h

T
h
re

e
Le

ve
ls

o
f

D
IF

)
O

ve
r

1
0
0

R
ep

lic
at

io
n
s

Fr
o
m

Se
le

ct
ed

C
o
n
d
it
io

n
s

(1
P
L:

b
=

0
,2

P
L:

b
=

0
an

d
a

=
1
.2

5
,a

n
d

3
P
L

b
=

0
,a

=
1
.2

5
,a

n
d

c
=

0
.2

0
).

1
P
L

2
P
L

3
P
L

N
eg

lig
ib

le
M

o
d
er

at
e

La
rg

e
N

eg
lig

ib
le

M
o
d
er

at
e

La
rg

e
N

eg
lig

ib
le

M
o
d
er

at
e

La
rg

e

#
E
S

=
A

9
8

1
2

0
9
7

3
6

0
9
7

2
8

0
#

E
S

=
B

2
4
0

0
3

5
0

2
3

4
2

0
#

E
S

=
C

0
4
8

1
0
0

0
1
4

9
8

0
3
0

1
0
0

#
Si

gn
ifi

ca
n
ce

at
.0

5
1
6

9
8

1
0
0

2
5

9
8

1
0
0

1
5

9
2

1
0
0

#
Si

gn
ifi

ca
n
ce

at
.0

5
+

E
S

(B
o
r

C
)

2
8
8

1
0
0

3
6
4

1
0
0

3
7
2

1
0
0

N
ot

e.
N

C
D

IF
=

n
o
n
co

m
p
en

sa
to

ry
d
iff

er
en

ti
al

it
em

fu
n
ct

io
n
in

g;
D

IF
=

d
iff

er
en

ti
al

it
em

fu
n
ct

io
n
in

g;
E
S

=
ef

fe
ct

si
ze

.
Fo

r
1
P
L,

em
b
ed

d
ed

D
IF

fo
r

n
eg

lig
ib

le
,

m
o
d
er

at
e,

an
d

la
rg

e
w

as
.0

5
,.

2
5
,
an

d
.5

0
,
re

sp
ec

ti
ve

ly
.
Fo

r
2
P
L,

em
b
ed

d
ed

D
IF

w
as

.0
5
,.

2
0
,
an

d
.3

5
,
re

sp
ec

ti
ve

ly
.
Fo

r
3
P
L,

em
b
ed

d
ed

D
IF

w
as

.0
5
,.

2
5
,
an

d
.5

0
,

re
sp

ec
ti
ve

ly
.

354



parameters for this study were randomly drawn from the normal distribution N(0, 1)

for the focal group. The number of examinees in the extreme regions are limited,

hence, the very small NCDIF values.

Specifically related to the 3PL model, MH underestimates the amount of DIF for

16% to 20% of the conditions; see the conditions with the asterisk in Tables 4 and 6.

In other words, in those conditions, no item is flagged as DIF by using MH. In gen-

eral, the underestimation and overestimation is more pronounced for all conditions in

comparison with the 2PL model. Overall, in comparison with the 2PL model, the

MH-DIF measure underestimates the amount of DIF. This behavior was identified in

another study by Donoghue et al. (1993), in which the behavior is contributed to the

fact of using a fixed c parameter for the reference and focal groups. This study uti-

lized a fixed c parameter. The noise associated with random guessing may be contri-

buting to the difficulty in measuring DIF between the focal and reference groups

(Donoghue et al., 1993; Lord, 1980). Zwick, Thayer, and Wingersky (1994) provide

the following as a possible explanation: ‘‘The more difficult the item, the closer the

probability of correct response is to guessing value, and the more difficult the groups

are to differentiate’’ (p. 135). Allen and Donoghue (1996) further purport that a b

parameter of 0, 1, or 2 corresponds, respectively, with a z score of 0.875, 2.125, and

3.375. Given these z scores, the area to the right, hence, the number of examinees in

this region, is limited. Allen and Donoghue further assert that given difficult test

items, ‘‘It is not surprising that MH has little power to detect DIF’’ (p. 248). In sum,

MH may not be reliable for specific 3PL conditions (DeMars, 2011).

Hence, it is clearly the limitation of this study that our proposed ES for NCDIF is

tied to the ES for MH. However, it is a practical solution as the ES for MH is already

widely used in practice. What constitutes ‘‘moderate’’ and ‘‘large’’ amounts of DIF,

apart from the definition of ESs by MH, needs further investigation.

In summary, we propose a tables-based approach to define MH-based ES for

DFIT (Tables 3 to 6). These tables were incorporated into the existing DFIT com-

puter programs, which clearly demonstrated the utility of the proposed ESs. In addi-

tion, this study offers a general recommendation of the sizes of ‘‘moderate’’ and

‘‘large’’ ES for NCDIF (.003 and .008, respectively). The general recommendation

should help DFIT users interpret the metric of NCDIF. For example, when one

obtains NCDIF of .008, it is a ‘‘large’’ value in general. However, how large it is

depends on the item parameters and the IRT model. For example, if the item is

highly discriminating as well as very easy, the .008 value is very large, as MH-based

ES for NCDIF is expected to be low under those conditions. On the other hand, if

the item has low discrimination and medium difficulty, then the .008 value is not that

large and may be even in the range of ‘‘moderate,’’ as MH-based ES for NCDIF

under those conditions are expected to be high. It is analogous to saying that, given

the average height for women is 5’4’’, 5’7’’ is ‘‘tall’’ for a woman in general but not

so for a professional female basketball player. Therefore, those general values for

‘‘moderate’’ (.003) and ‘‘large’’ (.008) should be used as a general rule of thumb
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only. We recommend the use of Tables 3 to 6 for the specific MH-based ES for

NCDIF.
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