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Abstract

Rasch mixture models can be a useful tool when checking the assumption of mea-
surement invariance for a single Rasch model. They provide advantages compared to
manifest differential item functioning (DIF) tests when the DIF groups are only
weakly correlated with the manifest covariates available. Unlike in single Rasch mod-
els, estimation of Rasch mixture models is sensitive to the specification of the ability
distribution even when the conditional maximum likelihood approach is used. It is
demonstrated in a simulation study how differences in ability can influence the latent
classes of a Rasch mixture model. If the aim is only DIF detection, it is not of interest
to uncover such ability differences as one is only interested in a latent group struc-
ture regarding the item difficulties. To avoid any confounding effect of ability differ-
ences (or impact), a new score distribution for the Rasch mixture model is
introduced here. It ensures the estimation of the Rasch mixture model to be inde-
pendent of the ability distribution and thus restricts the mixture to be sensitive to
latent structure in the item difficulties only. Its usefulness is demonstrated in a simula-
tion study, and its application is illustrated in a study of verbal aggression.
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Introduction

Based on the Rasch model (Rasch, 1960), Rost (1990) introduced what he called the

‘‘mixed Rasch model,’’ a combination of a latent class approach and a latent trait

approach to model qualitative and quantitative ability differences. As suggested by

Rost (1990), it can also be used to examine the fit of the Rasch model and check for

violations of measurement invariance such as differential item functioning (DIF).

Since the model assumes latent classes for which separate Rasch models hold, it can

be employed to validate a psychological test or questionnaire: if a model with two or

more latent classes fits better than a model with one latent class, measurement invar-

iance is violated and a single Rasch model is not suitable because several latent

classes are present in the data that require separate Rasch models with separate sets

of item difficulties. These classes are latent in the sense that they are not determined

by covariates.

As the model assesses a questionnaire—or instrument as it will be referred to in

the following—as a whole, it works similar to a global test like the likelihood ratio

(LR) test (Andersen, 1972; Gustafsson, 1980), not an itemwise test like the Mantel–

Haenszel test (Holland & Thayer, 1988). Hence, it is the set of item parameters for

all items, which is tested for differences between groups rather than each item para-

meter being tested separately.

The mixed Rasch model—here called Rasch mixture model to avoid confusion

with mixed (effects) models and instead highlight its relation to mixture models—has

since been extended by Rost and von Davier (1995) to different score distributions

and by Rost (1991) and von Davier and Rost (1995) to polytomous responses. The

so-called ‘‘mixed ordinal Rasch model’’ is a mixture of partial credit models (PCM;

Masters, 1982) and includes a mixture of rating scale models (RSM; Andrich, 1978)

as a special case.

The original dichotomous model as well as its polytomous version have been

applied in a variety of fields. Zickar, Gibby, and Robie (2004) use a mixture PCM to

detect faking in personality questionnaires, while Hong and Min (2007) identify

three types/classes of depressed behavior by applying a mixture RSM to a self-rating

depression scale. Another vast field of application is tests in educational measure-

ment. Baghaei and Carstensen (2013) identify different reader types from a reading

comprehension test using a Rasch mixture model. Maij-de Meij, Kelderman, and van

der Flier (2010) also apply a Rasch mixture model to identify latent groups in a voca-

bulary test. Cohen and Bolt (2005) use a Rasch mixture model to detect DIF in a

mathematics placement test.

Rasch mixture models constitute a legitimate alternative to DIF tests for manifest

variables such as the LR test or the recently proposed Rasch trees (Strobl, Kopf, &

Zeileis, 2013). These methods are usually used to test DIF based on observed covari-

ates, whereas Maij-de Meij et al. (2010) show that mixture models are more suitable

to detect DIF if the ‘‘true source of bias’’ is a latent grouping variable. The simula-

tion study by Preinerstorfer and Formann (2011) suggests that parameter recovery

works reasonably well for Rasch mixture models. While they did not study in detail
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the influence of DIF effect size or the effect of different ability distributions, they

deem such differences relevant for practical concern but leave it to further research

to establish just how strongly they influence estimation accuracy.

As the Rasch model is based on two aspects, subject ability and item difficulty,

Rasch mixture models are sensitive not only to differences in the item difficulties—

as in DIF—but also to differences in abilities. Such differences in abilities are usually

called impact and do not infringe on measurement invariance (Ackerman, 1992). In

practice, when developing a psychological test, one often follows two main steps.

First, the item parameters are estimated, for example, by means of the conditional

maximum likelihood (CML) approach, checked for model violations and problematic

items are possibly excluded or modified. Second, the final set of items is used to esti-

mate person abilities. The main advantage of the CML approach is that, for a single

Rasch model, the estimation and check of item difficulties are (conditionally) inde-

pendent of the abilities and their distribution. Other global assessment methods like

the LR test and the Rasch trees are also based on the CML approach to achieve such

independence. However, in a Rasch mixture model, the estimation of the item diffi-

culties is not independent of the ability distribution, even when employing the CML

approach. DeMars and Lau (2011) find that a difference in mean ability between DIF

groups affects the estimation of the DIF effect sizes. Similarly, other DIF detection

methods are also affected by impact, for example, inflated Type I error rates occur in

the Mantel–Haenszel and logistic regression procedures if impact is present (DeMars,

2010; Li, Brooks, & Johanson, 2012).

When using a Rasch mixture model for DIF detection, an influence of impact

alone on the mixture is undesirable as the goal is to uncover DIF groups based on

item difficulties, not impact groups based on abilities. To avoid such confounding

effects of impact, we propose a new version of the Rasch mixture model specifically

designed to detect DIF, which allows for the transfer of the crucial property of CML

from a single Rasch model to the mixture: estimation and testing of item difficulties

is independent of the abilities and their distribution.

A simulation study is conducted to illustrate how previously suggested versions

and this new version of the Rasch mixture model react to impact, either alone or in

combination with DIF, and how this affects the suitability of the Rasch mixture

model as a DIF detection method.

In the following, we briefly discuss the Rasch model and Rasch mixture models

to explain why the latter are sensitive to the specification of the score distribution

despite employing a conditional maximum likelihood approach for estimation. This

section is concluded with our suggested new score distribution. We illustrate and dis-

cuss the behavior of Rasch mixture models with different options for the score distri-

bution in a Monte Carlo study in the next section. Then, the suggested approach for

DIF detection via Rasch mixture models is illustrated through an empirical applica-

tion to a study on verbally aggressive behavior. Concluding remarks are provided in

the last section.
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Theory

The Rasch Model

The Rasch model, introduced by Georg Rasch (1960), models the probability for a

binary response yij 2 f0, 1g by subject i to item j as dependent on the subject’s abil-

ity ui and the item’s difficulty bj. Assuming independence between items given the

subject, the probability for observing a vector yi = (yi1, . . . , yim)T with responses to

all m items by subject i can be written as

P(Yi = yijui, b) =
Ym
j = 1

expfyij(ui � bj)g
1+ expfui � bjg

, ð1Þ

depending on the subject’s ability ui and the vector of all item difficulties

b = (b1, . . . , bm)T: Capital letters denote random variables, and lower case letters

denote their realizations.

Since joint maximum likelihood (JML) estimation of all abilities and difficulties is

not consistent for a fixed number of items m (Molenaar, 1995), conditional maximum

likelihood (CML) estimation is employed here. This exploits that the number of cor-

rectly scored items, the so-called raw score Ri =
Pm

j = 1 Yij, is a sufficient statistic for

the ability ui (Molenaar, 1995). Therefore, the answer probability from Equation 1

can be split into two factors where the first factor is conditionally independent of ui:

P(Yi = yijui, b) = P(Yi = yijri, ui, b)P(Ri = rijui, b)

= P(Yi = yijri, b)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
h(yijri , b)

P(Ri = rijui, b)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
g(rijui , b)

:

Due to this separation, consistent estimates of the item parameters b can be obtained

by maximizing only the conditional part of the likelihood h( � ):

h(yijri, b) =
expf�

Pm
j = 1 yijbjg

gri
(b)

, ð2Þ

with gj( � ) denoting the elementary symmetric function of order j. The resulting

CML estimates b̂ are consistent, asymptotically normal, and asymptotically efficient

(Molenaar, 1995).

If not only the conditional likelihood but the full likelihood is of interest—as in

Rasch mixture models—then the score distribution g( � ) needs to be specified as well.

The approach used by Rost (1990) and Rost and von Davier (1995) is to employ some

distribution for the raw scores ri based on a set of auxiliary parameters d: Then the

probability density function for yi can be written as

f (yijb, d) = h(yijri, b)g(rijd): ð3Þ
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Based on this density, the following subsections first introduce mixture Rasch models

in general and then discuss several choices for g( � ). CML estimation is used through-

out for estimating the Rasch model, that is, the conditional likelihood h( � ) is always

specified by Equation 2.

Rasch Mixture Models

Mixture models are essentially a weighted sum over several components, that is,

here over several Rasch models. Using the Rasch model density function from

Equation 3, the likelihood L( � ) of a Rasch mixture model with K components for

data from n respondents is given by

L(p(1), . . . , p(K), b(1), . . . , b(K), d(1), . . . , d(K)) =
Yn

i = 1

XK

k = 1

p(k)f (yijb(k), d(k))

=
Yn

i = 1

XK

k = 1

p(k)h(yijri, b(k))g(rijd(k)),

ð4Þ

where the (k)-superscript denotes the component-specific parameters: the component

weight p(k), the component-specific item parameters b(k), and the component-specific

score parameters d(k) for k = 1, . . . , K:
This kind of likelihood can be maximized via the expectation-maximization (EM)

algorithm (Dempster, Laird, & Rubin, 1977), which alternates between maximizing

the component-specific likelihoods for obtaining parameter estimates and computing

expectations for each observations belonging to each cluster.

More formally, given (initial) estimates for the model parameters p̂(k), b̂(k), d̂(k)

for all components k = 1, . . . , K, posterior probabilities of each observation i belong-

ing to a component, or latent class, k are calculated in the E-step. This is simply i’s

relative contribution to component k compared to the sum of all its contributions:

p̂ik =
p̂(k)f (yijb̂

(k)
, d̂

(k)
)PK

‘ = 1 p̂(‘)f (yijb̂
(‘)

, d̂
(‘)

)
=

p̂(k)h(yijri, b̂
(k)

)g(rijd̂
(k)

)PK
‘ = 1 p̂(‘)h(yijri, b̂

(‘)
)g(rijd̂

(‘)
)
: ð5Þ

In the M-step of the algorithm, these posterior probabilities are used as the weights in

a weighted ML estimation of the model parameters. This way, an observation deemed

unlikely to belong to a certain latent class does not contribute strongly to its estima-

tion. Estimation can be done separately for each latent class. Using CML estimation

for the Rasch Model, the estimation of item and score parameters can again be done

separately. For all components k = 1, . . . , K:

(b̂
(k)

, d̂
(k)

) = argmax
b(k), d(k)

Pn
i = 1

p̂ik log f (yijb(k), d(k))

= argmax
b(k)

Pn
i = 1

p̂ik log h(yijri, b(k)); argmax
d(k)

Pn
i = 1

p̂ik log g(rijd(k))

( )
:

ð6Þ
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Estimates of the class probabilities can be obtained from the posterior probabilities

by averaging:

p̂(k) =
1

n

Xn

i = 1

p̂ik : ð7Þ

The E-step (Equation 5) and M-step (Equations 6 and 7) are iterated until conver-

gence, always updating either the weights based on current estimates for the model

parameters or vice versa.

Note that the above implicitly assumes that the number of latent classes K is

given or known. However, this is typically not the case in practice and K needs to be

chosen based on the data. As K is not a model parameter—regularity conditions for

the likelihood ratio test are not fulfilled (McLachlan & Peel, 2000)—it is often cho-

sen via some information criterion that balances goodness of fit (via the likelihood)

with a penalty for the number of model parameters. Since the various information

criteria differ in their penalty term, the decision which model is considered ‘‘best’’

may depend on the information criterion chosen. In the following, the BIC (Bayesian

information criterion; Schwarz, 1978) is used, which Li, Cohen, Kim, and Cho

(2009) found to be a suitable model selection method for dichotomous mixture item

response theory models. Note that this is not a formal significance test because one

does not control a Type I error rate.

Score Distribution

In a single Rasch model, the estimation of the item parameters is invariant to the

score distribution because of the separation in Equation 3. In the mixture context,

this invariance property holds only given the weights in Equation 6. However, these

posterior weights depend on the full Rasch likelihood, including the score distribu-

tion (Equation 5). Therefore, the estimation of the item parameters in a Rasch mix-

ture model is not independent of the score distribution for K . 1, even if the CML

approach is employed. Hence, it is important to consider the specification of the

score distribution when estimating Rasch mixture models and to assess the conse-

quences of potential misspecifications.

Saturated and Mean-Variance Specification. In his introduction of the Rasch mixture

model, Rost (1990) suggests a discrete probability distribution on the scores with a

separate parameter for each possible score. This requires m� 2 parameters per latent

class as the probabilities need to sum to 1 (and the extreme scores, r = 0 and r = m,

do not contribute to the likelihood).

Realizing that this saturated specification requires a potentially rather large num-

ber of parameters, Rost and von Davier (1995) suggest a parametric distribution with

one parameter each for mean and variance.

Details on both specifications can be found in Rost (1990) and Rost and von

Davier (1995), respectively. Here, the notation of Frick, Strobl, Leisch, and Zeileis

Frick et al. 213



(2012) is adopted, which expresses both specifications in a unified way through a

conditional logit model for the score r = 1, . . . , m� 1:

g(rjd(k)) =
expfzT

r d(k)gPm�1
j = 1 expfzT

j d(k)g
,

with different choices for zr leading to the saturated and mean-variance specification,

respectively. For the former, the regressor vector is (m� 2)-dimensional with

zr = (0, . . . , 0, 1, 0, . . . , 0)T

and the 1 at position r � 1. Consequently, if r = 1, zr is a vector of zeros. For the

mean-variance specification, the regressor vector is two-dimensional and given by

zr =
r

m
,

4r(m� r)

m2

� �T

:

Restricted Specification. In the following we suggest a new specification of the score

distribution in the Rasch mixture model, which aims at obtaining independence of

the item parameter estimates from the specification of the score distribution and

therefore enabling the Rasch mixture model to distinguish between DIF and impact.

Other global DIF detection methods like the LR test and Rasch trees are able to make

this distinction (Ankenmann, Witt, & Dunbar, 1999; Strobl et al., 2013) because they

are based only on the conditional part of the likelihood (Equation 2). Analogously,

we suggest a mixture of only this conditional part rather than the full likelihood

(Equation 3) of the Rasch model so that the mixture model will only be influenced

by differences in the item parameters.

Mixing only the conditional likelihood h( � ) means that the sum over the K latent

classes in the likelihood of the Rasch mixture model in Equation 4 only applies to

h( � ) but not to the score distribution g( � ). The mixture is then only based on latent

structure in the item difficulties, not on latent structure in both difficulties and scores.

Moreover, such a Rasch mixture model based only on the conditional likelihood with-

out any score distribution is equivalent to a Rasch mixture model where the score dis-

tribution is independent of the latent class k = 1, . . . , K:

g(rjd(k)) = g(rjd) (k = 1, . . . , K),

because then the factor g(rjd) is a constant that can be moved out of the sum over

the components k in Equation 4. Consequently, compared to the case without any

score distribution, the log-likelihood just changes by an additional constant without

component-specific parameters. In either case, the estimation of the component-

specific parameters item parameters as well as the selection of the number of compo-

nents K is independent of the specification of the score distribution.

This equivalence and independence from the score distribution can also be seen

easily from the definition of the posterior weights (Equation 5): If restricted, g( � )
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can be moved out of the sum and then cancels out, preserving only the dependence

on h( � ). Thus, the p̂ik depend only on p̂(k) and b̂(k) but not d̂(k): Therefore, the com-

ponent weights and component-specific item parameters can be estimated without

any specification of the score distribution.

Subsequently, we adopt the restricted perspective rather than omitting g( � ) com-

pletely, when we want to obtain a mixture model where the mixture is independent of

the score distribution. From a statistical point of view this facilitates comparisons of

the restricted Rasch mixture model with the corresponding unrestricted counterpart.

Overview. The different specifications of the score distribution vary in their properties

and implications for the whole Rasch mixture model.

� The saturated model is very flexible. It can model any shape and is thus never

misspecified. However, it needs a potentially large number of parameters,

which can be challenging in model estimation and selection.
� The mean-variance specification of the score model is more parsimonious as

it only requires two parameters per latent class. While this is convenient for

model fit and selection, it also comes at a cost: since it can only model unim-

odal or U-shaped distributions (see Rost & von Davier, 1995), it is partially

misspecified if the score distribution is actually multimodal.
� A restricted score model is even more parsimonious. Therefore, the same

advantages in model fit and selection apply. Furthermore, it is invariant to the

latent structure in the score distribution. If a Rasch mixture model is used for

DIF detection, this is favorable as only differences in the item difficulties

influence the mixture. However, it is partially misspecified if the latent struc-

ture in the scores and item difficulties coincides.

Monte Carlo Study

The simple question DIF or no DIF? leads to the question whether the Rasch mixture

model is suitable as a tool to detect such violations of measurement invariance.

As the score distribution influences the estimation of the Rasch mixture model in

general, it is of particular interest how it influences the estimation of the number of

latent classes, the measure used to determine Rasch scalability.

Motivational Example

As a motivation for the simulation design, consider the following example: The

instrument is a knowledge test that is administered to students from two different

types of schools and who have been prepared by one of two different courses for the

knowledge test. Either of the two groupings might be the source of DIF (or impact).

If the groupings are available as covariates to the item responses of the students, then

a test for DIF between either school types or course types can be easily carried out
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using the LR test. However, if the groupings are not available (or even observed) as

covariates, then a DIF test is still possible by means of the Rasch mixture model.

The performance of such a DIF assessment is investigated in our simulation study

for different effects of school and course type, respectively.

In the following we assume that the school type is linked to ability difference

(i.e., impact but not DIF) while the course type is the source of DIF (but not impact).

This can be motivated in the following way (see also Figure 1): When the students

from the two school types differ in their mean ability, this is impact between these

two groups. The courses might be a standard course and a new specialized course.

While the standard course covers all topics of the test equally, the specialized course

gives more emphasis to a relatively advanced topic and due to time constraints less

emphasis to a relatively basic topic. This may lead to DIF between the students in

the standard and the specialized course. See the left panel of Figure 2 for illustrative

item profiles of the standard course (in dark gray) and the specialized course (in light

gray).

Finally, the ability groups by school and the DIF groups by course can either coin-

cide or not. If all students in the first school type are being taught the standard course

while all students in the second school type are being taught the specialized course,

the DIF groups coincide with the ability groups. The DIF and ability groups do not

coincide but only overlap partly if both course types are taught in both school types:

each DIF group (based on the type of course taught) consists of a mix of students

from both schools and therefore from both ability groups. An illustration of coincid-

ing and not coinciding ability and DIF groups is provided in the upper and lower

rows of Figure 1, respectively. Ability groups, based on school type, are shown in

the columns, while DIF groups, based on course type, are illustrated with dark and

light gray for the standard course and specialized course, respectively. This differ-

ence of coinciding or not coinciding DIF and ability groups might have an influence

on the Rasch mixture model’s ability to detect the DIF because in the former case

the score distributions differ between the two DIF groups while in the latter case they

do not.

Subsequently, a Monte Carlo study is carried out to investigate how the Rasch

mixture model performs in situations where such groupings are present in the

Not coinciding

Coinciding

School type I
(low ability)

School type II
(high ability)

Course type
(source of DIF)

standard
specialized

Figure 1. Grouping structure in the motivational example.
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underlying data-generating process but are not available as observed covariates.

Moreover, we vary whether or not all students come from the same school type (i.e.,

from the same ability distribution), whether or not all students receive the standard

course (i.e., whether there is DIF), and whether both school types use the same or

different courses (i.e., whether the groupings coincide or not). For all computations,

the R system for statistical computing (R Core Team, 2013) is used along with the

add-on packages psychomix (Frick et al., 2012) and clv (Nieweglowski, 2009).

Simulation Design

The simulation design combines ideas from the motivational example with aspects

from the simulation study conducted by Rost (1990). Similar to the original simula-

tion study, the item parameters represent an instrument with increasingly difficult

items. Here, 20 items are employed with corresponding item parameters bI which

follow a sequence from �1:9 to 1.9 with increments of 0.2 and hence sum to zero.

bI = (� 1:9,�1:7, . . . , 1:7, 1:9)T

bII = (� 1:9,�1:7, . . . , �1:1 + D, . . . , 1:1� D, . . . , 1:7, 1:9)T

To introduce DIF, a second set of item parameters bII is considered where Items 5

and 16 are changed by 6D. This approach is similar in spirit to that of Rost (1990)—

who reverses the full sequence of item parameters to generate DIF—but allows for

gradually changing from small to large DIF effect sizes. Subject abilities are drawn

with equal weights from two normal distributions with means �Y=2 and +Y=2 and

standard deviation 0.3, thus creating a sample with two groups of subjects: one group

with a lower mean ability and one with a higher mean ability.

In the simulations below, the DIF effect size D ranges from 0 to 4 in steps of 0.2

D 2 f0, 0:2, . . . , 4g

while the impact Y covers the same range in steps of 0.4:

Y 2 f0, 0:4, . . . , 4g:

Impact and DIF, or lack thereof, can be combined in several ways. Table 1 pro-

vides an overview and Figures 2, 3, and 4 show illustrations. In the following, the dif-

ferent combinations of impact and DIF are explained in more detail and connected to

the motivational example:

� If the simulation parameter D for the DIF effect size is set to zero, both sets of

item parameters, bI and bII , are identical and no DIF is present. Since CML

is employed, model selection and parameter estimation is typically expected

to be independent of whether or not an impact is present (Scenarios 1 and 3 in

Table 1).

In the example: Only the standard course is taught and hence no DIF exists.
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Table 1. Simulation Design. The Latent-Class-Specific Item Parameters bI and bII Differ by D

for Two Elements and Thus Coincide for D = 0, Leaving Only a Single Latent Class.

Latent Class I Latent Class II

Scenario Mean abilities Difficulties Mean abilities Difficulties

No impact (Y= 0)
1. No DIF (D = 0) f0g bI — —
2. DIF (D . 0) f0g bI f0g bII

Impact (Y. 0)
3. No DIF (D = 0) f�Y=2, +Y=2g bI — —
4. DIF (D . 0), not

coinciding
f�Y=2, +Y=2g bI f�Y=2, +Y=2g bII

5. DIF (D . 0),
coinciding

f�Y=2g bI f+Y=2g bII
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Figure 3. Scenario 3. Left: Item difficulties without DIF (D = 0). Right: Histogram of bimodal
score distribution with impact (Y= 2).
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Figure 2. Scenario 2. Left: Item difficulties with DIF (D = 2). Right: Stacked histogram of
unimodal score distribution with homogeneous abilities (Y= 0).
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� If D . 0, the item parameter set bII is different from bI . Hence, there is

DIF and two latent classes exist (Scenarios 2, 4, and 5). Both classes are cho-

sen to be of equal size in this case. For an illustration, see the left panel of

Figure 2.

In the example: Both courses are taught, thus leading to DIF. The standard

course corresponds to the straight line as the item profile while the specialized

course corresponds to the spiked item profile with relatively difficult Item 16

being easier and the relatively easy Item 5 being more difficult for students in

this specialized course than for students in the standard course.
� If the simulation parameter Y for the impact is set to zero (Scenarios 1 and

2), then the resulting score distribution is unimodal. For an illustration of such

a unimodal score distribution see the right panel of Figure 2. This histogram

illustrates specifically Scenario 2 where no impact is present but DIF exists.

The histogram is shaded in light and dark gray for the two DIF groups and

thus to be read like a ‘‘stacked histogram.’’

In the example: All students are from the same school and hence there is no

impact. However, both types of courses may be taught in this one school, thus

leading to DIF as in Scenario 2.
� If Y. 0, subject abilities are sampled with equal weights from two normal

distributions with means f�Y=2, +Y=2g, thus generating impact. When no

DIF is included (Scenario 3), the resulting score distribution moves from being

unimodal to being bimodal with increasing Y. The two modi of high and low

scores represent the two groups of subjects with high and low mean abilities,

respectively. However, only a medium gray is used to shade the illustrating

histogram in Figure 3 as no DIF groups are present.

In the example: Only the standard course is taught in both school types. Hence

no DIF is present but impact between the school types.
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Figure 4. Stacked histograms of score distributions for Scenarios 4 (left) and 5 (right) with
DIF (D = 2). Left: impact and DIF, not coinciding (Y= 2). Right: impact and DIF, coinciding
(Y= 2). For item difficulties see Figure 2 (left).
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� If there is DIF (i.e., D . 0) in addition to impact (i.e., Y. 0), subjects can be

grouped both according to mean ability (high vs. low) and difficulty (straight

vs. spiked profile in bI and bII , respectively).

These groups can coincide: For subjects with low mean ability �Y=2, item dif-

ficulties bI hold, while for subjects with high mean ability +Y=2, item difficul-

ties bII hold. This is simulated in Scenario 5 and labeled Impact and DIF,

coinciding. The resulting score distribution is illustrated in the right panel of

Figure 4. Subjects for whom item difficulties bI hold are shaded in dark gray,

and as they also have lower mean abilities, their scores are all relatively low.

Conversely, subjects for whom item difficulties bII hold are shaded in light gray,

and as they also have higher mean abilities, their scores are all relatively high.

Additionally, the DIF groups and ability groups can also not coincide:

Subjects in either DIF group may stem from both ability groups, not just one.

This is simulated in Scenario 4 and labeled Impact and DIF, not coinciding.

The resulting score distribution is illustrated in the left panel of Figure 4.

Again, subjects for whom item difficulties bI and bII hold are shaded in dark

and light gray, respectively. As subjects stem from both ability groups (high

vs. low abilities), both score distributions are bimodal.

In the example: Students from both school types and from both course types

are considered, thus leading to both impact and DIF. Either both courses are

taught at both schools (Scenario 4, not coinciding) or the standard course is

only taught in the first school and the specialized course is only taught at the

second school (Scenario 5, coinciding).

Note that Scenario 1 is a special case of Scenario 2 where D is reduced to zero as

well as a special case of Scenario 3 where Y is reduced to zero. Therefore, in the fol-

lowing, Scenario 1 is not inspected separately but included in both the setting of No

impact with DIF (Scenario 2) and the setting of Impact without DIF (Scenario 3) as

a reference point. Similarly, Scenarios 4 and 5 both can be reduced to Scenario 3 if

D is set to zero. It is therefore also included in both the setting of Impact and DIF,

not coinciding (Scenario 4) and the setting of Impact and DIF, coinciding (Scenario

5) as a reference point.

For each considered combination of D and Y, 500 data sets of 500 observations

each are generated. Larger numbers of data sets or observations lead to very similar

results. Observations with raw scores of 0 or m are removed from the data set as they

do not contribute to the estimation of the Rasch mixture model (Rost, 1990). For

each data set, Rasch mixture models for each of the saturated, mean-variance, and

restricted score specifications are fitted for K = 1, 2, 3.

False Alarm Rate and Hit Rate

The main objective here is to determine how suitable a Rasch mixture model, with

various choices for the score model, is to recognize DIF or the lack thereof.
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For each data set and type of score model, models with K = 1, 2, 3 latent classes

are fitted and the K̂ associated with the minimum BIC is selected. Choosing one

latent class (K̂ = 1) then corresponds to assuming measurement invariance while

choosing more than one latent class (K̂ . 1) corresponds to assuming violations of

measurement invariance. While Rasch mixture models do not constitute a formal sig-

nificance test, the empirical proportion among the 500 data sets with K̂ . 1 corre-

sponds in essence to the power of DIF detection if D . 0 (and thus two true latent

classes exist) and to the associated Type I error of a corresponding test if D = 0 (and

thus only one true latent class exists). If the rate corresponds to power, it will be

referred to as hit rate, whereas if it corresponds to a type I error it will be referred to

as false alarm rate.

In the following subsections, the key results of the simulation study will be visua-

lized. The exact rates for all conditions are included as a data set in the R package

psychomix; for details, see the section on computational details.

Scenario 2: No Impact With DIF. This scenario is investigated as a case of DIF that

should be fairly simple to detect. There is no impact as abilities are homogeneous

across all subjects so the only latent structure to detect is the group membership based

on the two item profiles. This latent structure is made increasingly easy to detect by

increasing the difference between the item difficulties for both latent groups. In the

graphical representation of the item parameters (left panel of Figure 2) this corre-

sponds to enlarging the spikes in the item profile.

Figure 5 shows how the rate of choosing a model with more than one latent class

(K̂ . 1) increases along with the DIF effect size D. At D = 0, this is a false alarm rate.

It is around 7% for the saturated model and very close to zero for the mean-variance

and the saturated score model (\1%). With increasing D . 0, the rate is a hit rate.

For low values of D the two more parsimonious versions of the Rasch mixture model

(with mean-variance and restricted score distribution) are not able to pick up the DIF,

but at around D = 3 the hit rate for the two models increases and almost approaches 1

at D = 4. Not surprisingly, the restricted score specification performs somewhat better

because in fact the raw score distributions do not differ between the two latent

classes. The baseline hit rate of the saturated model for low values of D is the same

as the false alarm rate for D = 0. It only increases beyond the same threshold (D = 3)

as the hit rate of the other two models. However, its rate is much lower compared to

the other two score model (only around 30%). The reason is that it requires 18 addi-

tional score parameters for an additional latent class, which is ‘‘too costly’’ in terms

of BIC. Hence, K̂ = 1 is chosen for most Rasch mixture models using a saturated

score distribution.

The number of iterations in the EM algorithm that are necessary for the estimation

to converge is much lower for the mean-variance and the restricted model than for

the saturated model. Since the estimation of the saturated model is more extensive

due to the higher number of parameters required by this model, it does not converge

in about 10% of the cases before reaching the maximum number of iterations which
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was set to 400. The mean-variance and saturated model usually converge within the

first 200 iterations.

Brief summary. The mean-variance and restricted model have higher hit rates than

the saturated model in the absence of impact.

Scenario 3: Impact Without DIF. Preferably, a Rasch mixture model should not only

detect latent classes if the assumption of measurement invariance is violated but it

should also indicate a lack of latent structure if indeed the assumption holds. In this

scenario, the subjects all stem from the same class, meaning each item is of the same

difficulty for every subject. However, subject abilities are simulated with impact

resulting in a bimodal score distribution as illustrated in Figure 3.

Here, the rate of choosing more than one latent class can be interpreted as a false

alarm rate (Figure 6). The restricted score model is invariant against any latent struc-

ture in the score distribution and thus almost always (� 0.2%) suggests K̂ = 1 latent

class based on the DIF-free item difficulties. The rate does not approach any specific

significance level as the Rasch mixture model, regardless of the employed score dis-

tribution, is not a formal significance test. The saturated model also picks K̂ = 1 in

most of the simulation. This might be due to its general reluctance to choose more

than one latent class as illustrated in Figure 5 or the circumstance that it can assume

any shape (including bimodal patterns). However, the mean-variance score distribu-

tion can only model unimodal or U-shaped distributions as mentioned above. Hence,

with increasing impact and thus increasingly well-separated modes in the score dis-

tribution, the Rasch mixture model with this score specification suggests K̂ . 1 latent

classes in up to 53% of the cases. Note, however, that these latent classes do not rep-

resent the DIF groups (as there are none) but rather groups of subjects with high
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Figure 5. Rate of choosing a model with K̂ . 1 latent classes for data from Scenario 2 (DIF
without impact, i.e., Y= 0).
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versus low abilities. While this may be acceptable (albeit unnecessarily complex)

from a statistical mixture modeling perspective, it is misleading from a psychometric

point of view if the aim is DIF detection. Only one Rasch model needs to be esti-

mated for this type of data, consistent item parameter estimates can be obtained via

CML and all observations can be scaled in the same way.

Brief summary. If measurement invariance holds but ability differences are pres-

ent, the mean-variance model exhibits a high false alarm rate while the saturated and

restricted model are not affected.
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Figure 7. Rate of choosing a model with K̂ . 1 latent classes for data from Scenario 4
(impact and DIF, not coinciding).
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Figure 6. Rate of choosing a model with K̂ . 1 latent classes for data from Scenario 3
(impact without DIF, i.e., D = 0).
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Scenario 4: Impact and DIF, Not Coinciding. In this scenario, there is DIF (and thus two

true latent classes) if D . 0. Again, Scenario 3 with D = 0 (and thus without DIF) is

included as a reference point. However, unlike in Scenario 2, the abilities within the

latent classes are not homogeneous but two ability groups exist, which do not coin-

cide with the two DIF groups. Nonetheless, the score distribution is the same across

both latent classes (illustrated in the left panel of Figure 4).

Figure 7 again shows the rate of choosing K̂ . 1 for increasing DIF effect size D

for two levels of impact (Y= 2:4 and 3:6), exemplary for medium and high impact.

If impact is small (e.g., Y = 0:4), the rates are very similar to the case of completely

homogeneous abilities without impact (Figure 4 with Y = 0) and thus not visualized

here. While the rates for the restricted and the saturated score model do not change

substantially for an increased impact (Y= 2:4 and 3:6), the mean-variance model is

influenced by this change in ability differences. While the hit rate is increased to

around 20% over the whole range of D, the false alarm rate at D = 0 is increased to

the same extent. Moreover, the hit rate only increases noticeably beyond the initial

false alarm rate at around D = 3, that is, the same DIF effect size at which the

restricted and mean-variance specifications have an increasing hit rate given homo-

geneous abilities without impact. Thus, given rather high impact (Y = 3:6) the hit

rate is not driven by the DIF detection but rather the model’s tendency to assign sub-

jects with high vs. low abilities into different groups (as already seen in Figure 6).

As Rasch mixture models with K = 1, 2, 3 classes are considered, selecting K̂ . 1

classes can either mean selecting the correct number of K = 2 or overselecting K̂ = 3

classes. For the saturated and restricted specifications overselection is rare (occurring

with rates of less than 9% or less than 1%, respectively). However, similar to

Scenario 3 overselection is not rare for the mean-variance specification. Figure 8

depicts the rates of selecting K̂ = 2 and K̂ = 3 classes, respectively, for increasing D

at Y = 3:6. If the chances of finding the correct number of classes increase with the

DIF effect size D, the rate for overselection (K̂ = 3) should drop with increasing D.

For Scenario 4, denoted with hollow symbols, this rate stays largely the same

(around 25%) and even slightly increases beyond this level, starting from around

D = 3. This illustrates again the pronounced tendency of the mean-variance model for

overselection in cases of high impact.

Brief summary. If impact is simulated within DIF groups, the mean-variance model

has higher hit rates than the saturated and restricted models. However, the latent

classes estimated by the mean-variance model are mostly based on ability differences

if the DIF effect size is low. If the DIF effect size is high, the mean-variance model

tends to overestimate the number of classes.

Scenario 5: Impact and DIF, Coinciding. In Scenario 5, there is also DIF (i.e., D . 0) and

impact. However, in contrast to Scenario 4 the ability and DIF groups coincide (see

the right panel of Figure 4). Furthermore, Scenario 3 is included also here as the refer-

ence point without DIF (D = 0).
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Again, small ability differences do not strongly influence the rate of choosing

more than one latent class (rates for low levels of impact, such as Y= 0:4, are similar

to those for Y = 0 as depicted in Figure 5). Recall, both mean-variance and restricted

specification have comparable hit rates for DIF detection starting from around D = 3

while the saturated specification has lower hit rates.

As impact increases (Figure 9), the hit rates of all models increases as well

because the ability differences contain information about the DIF groups: separating

subjects with low and high abilities also separates the two DIF groups (not separating

subjects within each DIF group as in the previous setting). However, for the mean-

variance model these increased hit rates are again coupled with a highly increased

false alarm rate at D = 0 of 26% and 50% for Y = 2:4 and 3:6, respectively. The

restricted score model, on the other hand, is invariant to latent structure in the score

distribution and thus performs similarly as in previous DIF scenarios, suggesting

more than one latent class past a certain threshold of DIF intensity, albeit this thresh-

old being a bit lower than when ability groups and DIF groups do not coincide

(around D = 2). The saturated model detects more than one latent class at a similar

rate to the restricted score model for medium or high impact but its estimation con-

verges more slowly and requires more iterations of the EM algorithm than the other

two score models.

Finally, the potential issue of overselection can be considered again. Figure 8

(solid symbols) shows that this problem disappears for the mean-variance specifica-

tion if both DIF effect size D and impact are large and coincide. For the restricted

model overselection is again very rare throughout (occurring in less than 1% of all

cases) while the saturated model overselects in up to 29% of the datasets.
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Brief summary. If abilities differ between DIF groups, the mean-variance model

detects the violation of measurement invariance for smaller DIF effect sizes than the

saturated and restricted model. While the mean-variance model does not overselect

the number of components in this scenario, the high hit rates are connected to a high

false alarm rate when no DIF is present but impact is high. This does not affect the

other two score models.

Quality of Estimation

Although here the Rasch mixture model is primarily used analogously to a global

DIF test, model assessment goes beyond the question whether or not the correct num-

ber of latent classes is found. Once the number of latent classes is established/esti-

mated, it is of interest how well the estimated model fits the data. Which groups are

found? How well are the parameters estimated? In the context of Rasch mixture mod-

els with different score distributions, both of these aspects depend heavily on the pos-

terior probabilities p̂ik (Equation 5) as the estimation of the item parameters depends

on the score distribution only through these. If the p̂ik were the same for all three

score specifications, the estimated item difficulties were the same as well. Hence, the

focus here is on how close the estimated posterior probabilities are to the true latent

classes in the data. If the similarity between these is high, CML estimation of the

item parameters within the classes will also yield better results for all score models.

This is a standard task in the field of cluster analysis and we adopt the widely used

Rand index (Rand, 1971) here: Each observation is assigned to the latent class for

which its posterior probability is highest yielding an estimated classification of the

data which is compared to the true classification. For this comparison, pairs of obser-

vations are considered. Each pair can either be in the same class in both the true and

the estimated classification, in different classes for both classifications, or it can be in

the same class for one but not the other classification. The Rand index is the
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proportion of pairs for which both classifications agree. Thus, it can assume values

between 0 and 1, indicating total dissimilarity and similarity, respectively.

In the following, the Rand index for models with the true number of K = 2 latent

classes in Scenarios 4 and 5 (with DIF) is considered. Thus, the question of DIF

detection (or model selection) is not investigated again but only the quality of latent

class recovery (assuming the number of classes K to be known or correctly selected).

The top row of Figure 10 depicts the average Rand index for data from Scenario 4

(impact and DIF, not coinciding). Here, all three score specifications find similarly

well-matching classifications, while the Rand index generally decreases with increas-

ing impact (left to right panel). In particular, while the mean-variance score model

has problems finding the correct number of latent classes in this scenario, it only per-

forms slightly worse than the other two specifications in determining the correct

classes if the number were known. Similarly, if it is provided with the correct num-

ber of classes, the saturated model also identifies the correct classes equally well

compared to the other models—despite its difficulties with convergence for higher

DIF effect sizes.

However, in Scenario 5 where the score distribution contains information about

the DIF groups, the three score specifications perform very differently as the bottom

row of Figure 10 shows. Given the correct number of classes, the mean-variance
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Figure 10. Average Rand index for models with K = 2 latent classes. Top row: Scenario 4
(impact and DIF, not coinciding). Bottom row: Scenario 5 (impact and DIF, coinciding).
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model is most suitable to uncover the true latent classes, yielding Rand indices close

to 1 if both DIF effect size and impact are large. The saturated specification follows

a similar pattern albeit with poorer results, reaching values of up to 0.87. However,

the classifications obtained from the restricted score specification do not match the

true groups well in this scenario, remaining below 0.52 if impact is high. The reason

is that the restricted score model is partially misspecified as the score distributions

differ substantially across DIF groups.

Summary and Implications for Practical Use

Given various combinations of DIF and ability impact, the score models are differ-

ently suitable for the two tasks discussed here—DIF detection and estimation of item

parameters in subgroups. Starting with a summary of the results for DIF detection:

� The saturated score model has much lower hit rates than the other two specifi-

cations, that is, violation of measurement invariance remains too often unde-

tected. Only if high impact and high DIF effect sizes coincide does the

saturated model perform similarly well as the restricted model.
� The mean-variance model has much higher hit rates. However, if impact is

present in the abilities, this specification has highly inflated false alarm rates.

Hence, if the mean-variance model selects more than one latent class it is

unclear whether this is due to DIF or just varying subject abilities. Thus, mea-

surement invariance might still hold even if more than one latent class is

detected.
� The restricted score model also has high hit rates, comparable to the mean-

variance model if abilities are rather homogeneous. But unlike the mean-

variance specification, its false alarm rate is not distorted by impact. Its per-

formance is not influenced by the ability distribution and detecting more than

one latent class reliably indicates DIF, that is, a violation of measurement

invariance.

Hence, if the Rasch mixture model is employed for assessing measurement invar-

iance or detecting DIF, then the restricted score specification appears to be most

robust. Thus, the selection of the number of latent classes should only be based on

this specification.

DeMars (2010) illustrates how significance tests based on the observed (raw)

scores in reference and focal groups suffer from inflated Type I error rates with an

increased sample size if impact is present. This does not apply to the false alarm rate

of Rasch mixture models because not a significance test but rather model selection

via BIC is carried out. The rate of the BIC selecting the correct model increases with

larger sample size if the true model is a Rasch mixture model. Since consistent esti-

mates are employed, a larger sample size also speeds up convergence, which is par-

ticularly desirable for the saturated model if the number of latent classes and thus the

number of parameters is high.
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Given the correct number of classes, the different score models are all similarly

suitable to detect the true classification if ability impact does not contain any addi-

tional information about the DIF groups. However, if ability impact is highly corre-

lated with DIF groups in the data and the ability groups thus coincide with the DIF

groups, this information can be exploited by the unrestricted specifications while it

distracts the restricted model.

Thus, while the selection of the number of latent classes should be based only on

the restricted score specification, the unrestricted mean-variance and saturated speci-

fications might still prove useful for estimating the Rasch mixture model (after K̂ has

been selected).

We therefore recommend a two-step approach for DIF detection via a Rasch mix-

ture model. First, the number of latent classes is determined via the restricted score

model. Second, if furthermore the estimation of the item difficulties is of interest, the

full selection of score models can then be utilized. While the likelihood ratio test is

not suitable to test for the number of latent classes, it can be used to establish the best

fitting score model, given the number of latent classes. If this approach is applied to

the full range of score models (saturated and mean-variance, both unrestricted and

restricted), the nesting structure of the models needs to be kept in mind.

Empirical Application: Verbal Aggression

We use a data set on verbal aggression (De Boeck & Wilson, 2004) to illustrate this

two-step approach of first assessing measurement invariance via a Rasch mixture

model with a restricted score distribution and then employing all possible score mod-

els to find the best fitting estimation of the item difficulties.

Participants in this study are presented with one of two potentially frustrating

situations (S1 and S2)

� S1: A bus fails to stop for me
� S2: I miss a train because a clerk gave me faulty information

and a verbally aggressive response (cursing, scolding, shouting). Combining each sit-

uation and response with either ‘‘I want to’’ or ‘‘I do’’ leads to the following 12

items:

First, we assess measurement invariance with regard to the whole instrument: we

fit a Rasch mixture model with a restricted score distribution for K = 1, 2, 3, 4 and

employ the BIC for model selection. Note that the restricted versions of the mean-

variance and saturated model only differ in their log-likelihood by a constant factor

and therefore lead to the same model selection. Results are presented in Table 2.

S1WantCurse S1DoCurse S1WantScold S1DoScold S1WantShout S1DoShout
S2WantCurse S2DoCurse S2WantScold S2DoScold S2WantShout S2DoShout
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The BIC for a Rasch mixture model with more than one latent class is smaller than

the BIC for a single Rasch model, thus indicating that measurement invariance is vio-

lated. The best fitting model has K̂ = 3 latent classes. Given this selection of K, we

want to gain further insight in the data and thus want to establish the best fitting

Rasch mixture model with K = 3 latent classes. Four different models are conceivable:

either using a restricted or unrestricted score model, and either using a saturated or

mean-variance specification. The results for all four options are presented in Table 3.

Note that the models with restricted saturated score distribution and restricted mean-

variance score distribution lead to identical item parameter estimates. However, it is

still of interest to fit them separately because each of the restricted specifications is

nested within the corresponding unrestricted specification. Furthermore, the mean-

variance distribution is nested within the saturated distribution.

As K = 3 is identical for all of these four models, standard likelihood ratio tests

can be used for comparing all nested models with each other. Testing the most parsi-

monious score model, the restricted mean-variance model, against its unrestricted

version and the restricted saturated model at a 5% level shows that a more flexible

score model does not yield a significantly better fit. The p values are .051 and .685,

respectively. Hence, the restricted mean-variance distribution is adopted here which

also has the lowest BIC.

To visualize how the three classes found in the data differ, the corresponding item

profiles are shown in Figure 11.

� The latent class in the right panel (with 108 observations) shows a very regu-

lar zig-zag pattern where for any type of verbally aggressive response actually

‘‘doing’’ the response is considered more extreme than just ‘‘wanting’’ to

Table 2. DIF Detection by Selecting the Number of Latent Classes K̂ Using the Restricted
Rasch Mixture Model.

Model k #df log L BIC

Restricted (mean-variance) 1 13 �1900:9 3874.6
Restricted (mean-variance) 2 25 �1853:8 3847.8
Restricted (mean-variance) 3 37 �1816:9 3841.4
Restricted (mean-variance) 4 49 �1792:0 3858.8

Table 3. Selection of the Score Distribution Given the Number of Latent Classes K̂ = 3.

Model k #df log L BIC

Saturated 3 65 �1795:2 3955.1
Restricted (saturated) 3 45 �1814:1 3880.6
Mean-variance 3 41 �1812:2 3854.4
Restricted (mean-variance) 3 37 �1816:9 3841.4
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respond a certain way as represented by the higher item parameters for the

second item, the ‘‘do-item,’’ than the first item, the ‘‘want-item,’’ of each

pair. The three types of response (cursing, scolding, shouting) are considered

increasingly aggressive, regardless of the situation (first six items vs. last six

items).
� The latent class in the left panel (with 112 observations) distinguishes more

strongly between the types of response. However, the relationship between

wanting and doing is reversed for all responses except shouting. It is more dif-

ficult to agree to the item ‘‘I want to curse/scold’’ than to the corresponding

item ‘‘I do curse/scold.’’ This could be interpreted as generally more aggres-

sive behavior where one is quick to react a certain way rather than just want-

ing to react that way. However, shouting is considered a very aggressive

response, both in wanting and doing.
� The remaining latent class (with 53 observations considerably smaller),

depicted in the middle panel, does not distinguish that clearly between

response types, situations or wanting versus doing.

Therefore, not just a single item or a small number of items have DIF but the

underlying want/do relationship of the items is different across the three classes. This

instrument thus works differently as a whole across classes.

In summary, the respondents in this study are not scalable to one single Rasch-

scale but instead need several scales to represent them accurately. A Rasch mixture

model with a restricted score distribution is used to estimate the number of latent

classes. Given that number of classes, any type of score model is conceivable. Here,

the various versions are all fairly similar and the restricted mean-variance specifica-

tion is chosen based on likelihood ratio tests. Keep in mind that the resulting fits can

be substantially different from each other as shown in the simulation study, in partic-

ular for the case of impact between DIF classes. The latent classes estimated here
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Figure 11. Item profiles for the Rasch mixture model with K̂ = 3 latent classes using a
restricted mean-variance score distribution for the verbal aggression data.
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differ mainly in their perception of the type and the ‘‘want/do’’ relationship of a

verbally aggressive response.

Conclusion

Unlike in a single Rasch model, item parameter estimation is not independent of the

score distribution in Rasch mixture models. The saturated and mean-variance specifi-

cations of the score model are both well established. A further option is the new

restricted score specification introduced here. In the context of DIF detection, only

the restricted score specification should be used as it prevents confounding effects of

impact on DIF detection while exhibiting hit rates positively related to DIF effect

size. Given the number of latent classes, it may be useful to fit the other score mod-

els as well, as they might improve estimation of group membership and therefore

estimation of the item parameters. The best fitting model can be selected via the like-

lihood ratio test or an information criterion such as the BIC. This approach enhances

the suitability of the Rasch mixture model as a tool for DIF detection as additional

information contained in the score distribution is only employed if it contributes to

the estimation of latent classes based on measurement invariance.

Computational Details

An implementation of all versions of the Rasch mixture model mentioned here is

freely available under the General Public License in the R package psychomix from

the Comprehensive R Archive Network. Accompanying the package at http://

CRAN.R-project.org/package=psychomix is a data set containing all the simulation

results and a vignette with a replication of the verbal aggression example.
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