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A Note on a Direct Interval
Estimation Procedure
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Abstract

A latent variable modeling procedure that can be used to evaluate intraclass correla-
tion coefficients in two-level settings with discrete response variables is discussed.
The approach is readily applied when the purpose is to furnish confidence intervals
at prespecified confidence levels for these coefficients in setups with binary or ordi-
nal outcome measures and nesting of subjects within higher order units. The method
can aid educational and behavioral researchers in their study of sources of observed
outcome variability and model choice considerations in multilevel settings, and is illu-
strated with empirical survey data.
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Data are commonly termed multilevel, nested, or hierarchical when they are obtained,

described, or organized through various levels of clustering or aggregation of units of

analyses. For example, data about the attitudes and beliefs of university employees
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can be hierarchically organized by department or by school. Such multilevel data

may be considered the rule rather than the exception in the behavioral, educational,

medical, psychological, organizational, and social disciplines. Nesting or clustering

in studied populations in them is a phenomenon that tends to exist prior to an empiri-

cal investigation, and makes it quite likely that observed subjects’ dependent variable

scores at the time of data collection will be correlated within higher order units (e.g.,

departments, schools, colleges, teams, counselors, clinicians, etc.). These and related

reasons have contributed over the past few decades to a great deal of interest in the

use of multilevel modeling in the educational, behavioral, and social sciences. Given

this enhanced attention to multilevel settings, having a readily available method for

evaluating clustering effects in empirical studies becomes essential.

A popular measure for evaluating clustering effects is the intraclass correlation

coefficient (ICC; e.g., Raudenbush & Bryk, 2002). While its point estimation can be

straightforwardly accomplished with many widely circulated modeling software (e.g.,

HLM, Mplus, SPSS, Stata, or R), its interval estimation has received considerably

less attention in the past but has been recently also made routinely available in some

of them (e.g., Stata; see also Raykov, 2011). However, the underlying interval estima-

tion procedures typically assume continuous response variables, while it is widely

appreciated that outcome measures in many empirical studies may be binary, binary

scored, or ordinal (such as true/false answers or Likert-type responses on individual

items obtained via multicomponent measuring devices). In such situations, interval

estimation of ICCs becomes particularly important. Unfortunately, to date, no routi-

nely applicable procedure seems to be available for discrete or categorical outcomes

that accounts adequately for the sampling distribution of the ICC.

The present note addresses this gap by discussing an interval estimation approach

that can be used to obtain intervals of plausible population values of the ICCs in two-

level settings with categorical response measures. The resulting confidence intervals

can aid empirical researchers in studying observed variance decomposition and pro-

portion between-group variance under these circumstances. In addition, the outlined

procedure can be useful for making more informed decisions on model choice, in

particular when considering whether to proceed with single- or two-level analysis,

with the former being typically associated with simpler result interpretations. The

method discussed below is developed within the framework of latent variable model-

ing (LVM) and is directly applicable and illustrated with the popular LVM software

Mplus (Muthén & Muthén, 2014).

Background, Assumptions, and Notation

In the remainder of this note we consider a two-level setting, such as the one arising

for instance when examined students are nested within schools, employees within

departments, patients within clinicians, interviewees within interviewers, and so on.

In this setup, denote by Yij the observed score on an outcome variable for the ith

level-1 unit (e.g., student) in the jth level-2 unit (e.g., school; i = 1, . . ., nj, j = 1, . . .,
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J, with J being the number of sampled level-2 units and nj the size of the sample of

level-1 units within the jth level-2 unit). We assume in this discussion that Yij is a

categorical response measure (e.g., a binary or binary scored item or a Likert-type

item with more than 2 but relatively limited number of possible response options).

The (fully) unconditional two-level model, which this discussion is based on, is

defined as follows (e.g., Raudenbush & Bryk, 2002):

Yij = b0j + rij, ð1Þ

and

b0j = g00 + u0j, ð2Þ

where rij denotes the deviation of the individual score Yij from the mean b0j in the jth

level-2 unit and u0j is the deviation of this mean from the response grand mean g00,

with these two deviations assumed uncorrelated.

Equations (1) and (2) are typically used as the basis for defining the ICC with

continuous outcome, in terms of the ratio of between-group to observed response

variance (e.g., Rabe-Hesketh & Skrondal, 2012). When the outcome variable is cate-

gorical, however, while one could still work out this ratio as a potentially informative

quantity associated with observed variance, interval estimation of the ICC cannot

proceed along the same lines as in the continuous outcome case since the distribution

of the response is not continuous. For this case, however, one can invoke the routi-

nely made assumption in latent variable modeling of an underlying latent variable Y �ij
‘‘behind’’ the response, which variable is of actual interest but not directly observa-

ble or measurable (i = 1, . . ., nj, j = 1, . . ., J; see also Snijders & Bosker, 2012).

Specifically, if the outcome has k possible response options (k . 1), the existence

of k21 thresholds is also assumed, which are denoted t1, t2, . . ., tk21, and their rela-

tionships to the underlying variable and response measure is as follows:

Yij =

0, if �‘\Y �ij � t1

1, if t1\Y �ij � t2

..

.

k � 1 if tk�1\Y �ij\‘ (i = 1, . . . , nj, j = 1, . . . , J ):

ð3Þ

The underlying variable Y �ij plays an important role in the rest of this note. A test

of the assumption of existence of such variables, under certain conditions, is provided

in Raykov and Marcoulides (2015).

Interval Estimation of Intraclass Correlation Coefficients
With Discrete Outcomes

Intraclass Correlation Coefficients for a Categorical Outcome

When the outcome variable is categorical, Snijders and Bosker (2012) proposed to

estimate the ICC, denoted below r, as the ratio
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r = t2=(t2 + p2=3), ð4Þ

where t2 is the between group variance and p denotes the popular constant

3.1416 . . . (see also Rabe-Hesketh & Skrondal, 2012).1Equation (4) is based on the

logistic regression analysis approach that can be used to fit a two-level model with a

discrete outcome (e.g., Raudenbush & Bryk, 2002), and the well-known fact that the

standard logistic distribution of relevance has a variance of p2/3. The ICC in

Equation (4) is interpretable as the proportion of between group variance for the

underlying latent variable Y*
ij (Snijders & Bosker, 2012).

Interval Estimation of the Intraclass Correlation

While point estimation of the ICC in Equation (4) is straightforward using for instance

LVM accounting for the discrete nature of the response variable, in particular employing

the LVM software Mplus (e.g., see details in the appendix), its interval estimation with

large samples needs to attend to the fact that the ICC cannot be negative or larger than

1. To account for this lower and upper bounds of the ICC, the approach followed in

Raykov and Marcoulides (2011) can be used. Accordingly, after an initial logit transfor-

mation of the ICC, whose sampling distribution approximates better a normal distribu-

tion, a delta method-based standard error (SE) can be obtained for the logit of the ICC

(e.g., Raykov & Marcoulides, 2004). With that SE, a symmetric confidence interval

(CI) is furnished for that transformed ICC, by subtracting and adding 1.96 times the SE

from the estimated logit of the ICC at a given confidence level (in this case, of 95%).

Finally, using the logistic distribution that is the inverse of the logit function one obtains

the endpoints of a large-sample CI of the ICC, which is of actual interest (see below).

Empirical Implementation of ICC Interval Estimation Procedure

In an empirical study, the large-sample SE for the logit of the ICC can be readily

obtained using LVM and the popular software Mplus. The source code needed

thereby is provided in the appendix. Once this SE is available, the CI for the ICC

itself, which interval is of main interest, is furnished by employing the R-function

‘‘ci.rel’’ from Raykov and Marcoulides (2011, chap. 7). For completeness of this

note, that R-function is also provided in the appendix, with a minor adaptation for

the purposes of this discussion.

We demonstrate next the discussed ICC interval estimation procedure for discrete

outcomes using empirical data.

Illustration on Empirical Data

In this section, we use data from the General Social Survey of 2006 (Hamilton,

2012). For our aims, we consider the binary responses to the question ‘‘Should mari-

juana be legalized?’’ from that survey as the outcome variable, and the census divi-

sions as level-2 units where respondents can be considered nested within. If one is

1066 Educational and Psychological Measurement 75(6)



interested in finding out the intraclass correlation coefficient associated with this

dichotomous item, as outlined in the preceding discussion one can fit the two-level

model (1) and (2) accounting for the discrete nature of the response. To this end, as

indicated earlier, we can use the LVM software Mplus (see also Raykov, 2011, for a

latent variable modeling conceptualization of the currently considered setting, and

the appendix to this note for the needed source code.)

Fitting this model to the data from the 652 respondents with answers on this ques-

tion yields the between-group variance estimate t̂2= .204, with an SE of .147. With

this estimate, based on Equation (4) (see also the appendix), the used software fur-

nishes the estimated ICC value as

r̂ = :204= :204 + 3:289ð Þ= :058, ð5Þ

which it also reports as being associated with an SE = .040. The R-function ‘‘ci.rel’’

from Raykov & Marcoulides (2011, chap. 7, see also the appendix) yields then with

the estimate in Equation (5) and its SE of .40 the following 95% CI of the ICC for this

survey question:

:014, :205ð Þ ð6Þ

That is, the set of plausible population values for the percentage of between cen-

sus division differences ranges (at the 95% confidence level) between 1.4% through

20.5%. Although the left end-point of the confidence interval (6) appears to be quite

close to 0, its right end-point suggests that as high as 20% (rounded off) of the var-

iance in the underlying propensity/inclination for agreement with marijuana

legalization—the survey question of interest here—could be due to census division

differences, that is, stem from potential geographic region differences. One could

thus also conclude that it would be recommendable that subsequent analyses of the

data on this survey question proceed within a two-level modeling framework.2

Conclusion

This note was concerned with confidence interval estimation of the popular ICC in

two-level settings where the outcome variable is discrete, such as binary or binary

scored answers or Likert-type item/question responses. The discussed procedure pro-

vides a large-sample CI for this coefficient, which yields a range of plausible values

for the population proportion of between group outcome variance. This CI can there-

fore significantly assist educational, behavioral, and social scientists seeking to

describe the sources of individual differences on a discrete response measure in a

study where examined subjects are nested or clustered in higher order units. The

method has also the potential to help scholars in the difficult and at times controver-

sial model selection process in empirical research, especially when they consider

choosing between single- and two-level modeling approaches.

The discussed approach has also several limitations. As indicated earlier, the

underlying estimation procedure is best used with large samples both with respect to
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number of level-2 units as well as subjects within them (e.g., Rabe-Hesketh &

Skrondal, 2012; Raudenbush & Bryk, 2002; Raudenbush & Xiao-Feng, 2001). This

follows from the fact that the outlined method instrumentally relies on maximum

likelihood estimation (cf. the appendix) that is itself grounded in a large-sample sta-

tistical theory. We encourage future research for developing possible guidelines or

procedures that may be followed in evaluating sample size requirements for the

underlying asymptotic maximum likelihood estimation theory to obtain practical

relevance in an empirical setting. Furthermore, we would like to point out that our

aim in this note is not to suggest any minimal threshold for the ICC below which

one could employ single-level models in a two-level setting. In our view such a

threshold, if at all possible to arrive at, will typically be at least related if not mostly

dependent on substantive considerations, prior research and accumulated knowledge

in a subject matter domain of application, as well as on the particular research ques-

tion(s) and study details and aims.

In conclusion, this note provides educational, behavioral, and social scientists with

a readily used method for interval estimation of ICCs when the dependent variable

cannot be considered approximately continuous but should instead be treated as dis-

crete (categorical). The confidence intervals furnished by the discussed procedure are

likely to be a helpful aid for (a) better understanding of the variation in clustered data

with discrete responses and (b) potentially facilitating more informed conclusions

about model choice in hierarchical design studies.

Appendix

Mplus Source Code for Point and Estimation of the Proportion of Second-Level Variation

TITLE: EMPIRICAL EXAMPLE OF ICC INTERVAL ESTIMATION
WITH DISCRETE RESPONSE.

DATA: FILE =\NAME OF RAW DATA FILE.;
VARIABLE: NAMES =\NAMES OF VARIABLES IN FILE.;

USEV = MARIJUAN; ! SELECT RESPONSE VARIABLE OF INTEREST
CLUSTER = CENDIV; ! NAME OF LEVEL-2 UNITS
CATEGORICAL = MARIJUAN;

ANALYSIS: TYPE = TWOLEVEL;
ESTIMATOR = ML;

MODEL: %WITHIN%
%BETWEEN%
MARIJUAN (BETW_VAR);

MODEL CONSTRAINT:
NEW(ICC);
ICC = BETW_VAR/(BETW_VAR + 3.2899); ! CONSTANT IS pi^2/3

OUTPUT: CINTERVAL;

Note. After a title and indication of the location of the data to be analyzed, the VARIABLE

command assigns names to the measures in the file. The following ANALYSIS command

requests two-level modeling, while the subsequent MODEL command defines the two-level
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model of relevance (see Equations 1 and 2) and assigns a symbol/label to the between var-

iance. The MODEL CONSTRAINT subsection first introduces a ‘place holder’ for the ICC

parameter r (Equation 5), and then defines it formally. (For further details on the Mplus syn-

tax, see Muthén & Muthén, 2012.)

R-Function for Interval Estimation of Intraclass Correlation With Discrete Outcome

ci.icc_do = function(icc_do, se){
l = log(icc_do/(1-icc_do))
sel = se/(icc_do*(1-icc_do))
ci_l_lo = l-1.96*sel
ci_l_up = l+1.96*sel
ci_lo = 1/(1+exp(-ci_l_lo))
ci_up = 1/(1+exp(-ci_l_up))
ci = c(ci_lo, ci_up)
ci

}

Note. At the R prompt, paste this R-function, and call it subsequently by entering for ‘‘icc_do’’

and ‘‘se’’ correspondingly the estimate and standard error of the ICC with discrete outcome,

which are obtained with the Mplus command file above in this appendix. (This function is an

adaptation for the present purposes of the R-function ‘‘ci.rel’’ in Raykov & Marcoulides, 2011,

chap. 7.)
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Notes

1. In this article, all population (and sample estimates of) variances are assumed to be posi-

tive, which is at most a rather mild assumption in educational and behavioral studies. This

ensures that the ICC in Equation (5) exists, like its logit transformation that is used in a

later section.

2. Throughout this note, we purposely dispense with presentation of p-values associated with

possible statistical tests. For the aims of the note, and in particular for evaluation of propor-

tion between group variance, in our view confidence intervals contain a great deal of
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relevant information about outcome and related variability. For this reason, we are exclu-

sively concerned throughout with confidence intervals instead of p-values (e.g., Schmidt,

1996).
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