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Abstract

Existing tests of interrater agreements have high statistical power; however, they lack
specificity. If the ratings of the two raters do not show agreement but are not ran-
dom, the current tests, some of which are based on Cohen’s kappa, will often reject
the null hypothesis, leading to the wrong conclusion that agreement is present. A
new test of interrater agreement, applicable to nominal or ordinal categories, is pre-
sented. The test statistic can be expressed as a ratio (labeled QA, ranging from 0 to
infinity) or as a proportion (labeled PA, ranging from 0 to 1). This test weighs informa-
tion supporting agreement with information supporting disagreement. This new test’s
effectiveness (power and specificity) is compared with five other tests of interrater
agreement in a series of Monte Carlo simulations. The new test, although slightly less
powerful than the other tests reviewed, is the only one sensitive to agreement only.
We also introduce confidence intervals on the proportion of agreement.
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Introduction

Quantifying interrater agreement is useful in contexts where two raters must judge

into what categories a series of observations shall be classified. If agreement between

raters is perfect, all judgments will be identical, whereas if both raters use completely
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different criteria, agreement will occur only by chance. Agreement is often assessed

using Cohen’s kappa (Cohen, 1960), for which a value greater than 0.40 is com-

monly considered a moderate agreement (Landis & Koch, 1977). Recently, Kraemer,

Periyakoil, and Noda (2002) explained that a Cohen’s kappa for more than two cate-

gories is equal to a weighted average of individual kappas. The individual kappa kj

indicates the agreement of the two raters with respect to category j only. Hence, if

one category shows a very strong agreement but the others do not, the mean kappa

may nevertheless be high.

As an example, consider the following situation in which two psychiatrists exam-

ine N = 100 patients suffering from depression in order to appraise the category of

depression (this example is inspired from von Eye, Schauerhuber, & Mair, 2006).

The psychiatrists used k = 3 categories of severity. Raters’ categorizations are sum-

marized in Table 1 using a k3k judgment matrix in which cell fi, jg contains the

number of observations that were classified as instances of the ith category by the

first rater and of the jth category by the second one. Perfect agreement would result

in the main diagonal summing to N, and off-diagonal cells containing zero

observations.

As seen, both raters share the belief that most patients belong to the first category

of severity. This high prevalence does not explain the large number of concordant

judgments in that category, as chance would only predict approximately 70 agree-

ment ratings for the first category. Hence, there is good agreement regarding

Category 1. On the other hand, the two psychiatrists rarely agree on Categories 2 and

3. For example, Psychiatrist 2 found a total of 8 cases belonging to the third category

of severity; of those, only 2 cases are also put in the third category by Psychiatrist 1,

a figure below what chance would predict. Instead, the results seem to indicate that

what looks like a Level 2 depression to Rater 1 is a Level 3 depression to Rater 2

and vice versa. This suggests disagreement between the two raters on these two

categories.

Table 1. Example Data of Ratings Performed by Two Raters (Psychiatrist 1 and Psychiatrist
2) Appraising the Severity of Depression of 100 Patients (N = 100) Using Three Categories of
Depression (k = 3).

Psychiatrist 2
Category of depression

1 2 3 Row sums

Psychiatrist 1 1 81 1 1 83
Category of depression 2 1 3 5 9

3 1 5 2 8

Column sums 83 9 8 N = 100
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Overall, 86% of the cases are judged identically by the two raters (the cases found

in the main diagonal). Should we conclude that, overall, the two raters are in good

agreement? Cohen’s kappa suggests a moderate but significant agreement

(k = 0:528, z = 3.43, p \ .001), despite the fact that agreement is missing for two out

of three categories.

Similarly, consider the results of Table 2. In this example, 127 cases were classi-

fied by two raters in one of 5 categories. Again, agreement is not clear. The raters

seem to agree well regarding Categories 2 and 5. They also agree very well on

Category 1 (nearly half of the ratings in this category are agreements). However,

they agree little regarding Categories 3 and 4. Inspection of the data in Table 2, out-

side the diagonal, shows that the two raters have opposite interpretations regarding

Categories 3 and 4: cases that are instances of Category 3 for Rater 1 are instances

of Category 4 for the other. The two raters are not responding randomly, but they are

not agreeing. Hence, whereas the rate of agreement is moderately good (32.3%), it

does not mean that the two raters agree a little on all categories. The results instead

suggest that the raters agree well on a few categories. Overall agreement is missing.

Yet Cohen’s kappa is weak but still significantly different from zero (k = 0:148, z =

3.30, p \ .001).

These two examples show the need for a statistic of agreement that can distinguish

situations with much agreement for a few categories from situations with some agree-

ment for most categories.

The purpose of this article is to present two new measures of interrater agreement,

which we call QA and PA. The first is more convenient as it uses the Fisher F tables

for critical values, whereas the second is possibly more intuitive, as it is a proportion

between 0 and 1. In the next section, we describe these measures, which can be used

on nominal or ordinal classifications. Next, we examine the reliability of these mea-

sures along with their confidence intervals. Finally, we assess the statistical power

but, more important, the specificity of this approach, that is, the ability of a test based

Table 2. An Example Where Agreement for Three Categories Accompanies Disagreement
for Two Categories.

Rater 2

1 2 3 4 5 Row sums oi, �

Rater 1

1 8 2 1 2 4 17
2 4 11 5 5 2 27
3 2 1 5 12 7 27
4 1 4 15 7 3 30
5 4 6 2 4 10 26

Column sums o�, j 19 24 28 30 26 N = 127

Note. Contrary to Table 1, there is no significant difference in prevalence between the categories.
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on QA (or PA) to make the difference between mixtures of agreeing and disagreeing

category ratings from solely agreeing ratings. The approach developed is akin to

analysis of variance, as it partitions variances found in each cell (not just those in the

main diagonal) as supporting agreement or supporting disagreement.

In the remainder of this article, the judgments are structured in the form of a

square k3k table of observed frequencies. Observed frequencies in cell {i, j} will be

noted oi,j. As per the x2 test on contingency table, we note ei,j the expected frequency

in cell {i, j}, estimated from the marginal frequencies with ei, j = oi, �3o�, j=N , where

oi, � is the total of the ith column and o�, j is the total on the jth row.

Pearson’s chi-square test of independence has been used on occasion to ascertain

the significance of the agreement. However, this test only examines the null hypoth-

esis (H0) of by-chance co-occurrences in any fi, jg cell. It can be seen as an omnibus

test in the sense that any type of nonrandom structure can lead to the rejection of the

null hypothesis. Therefore, as already noted by Cohen (1960), a significant x2 statis-

tic calculated from a judgment matrix indicates the presence of any type of category

coupling between the two raters, whether they be in agreement (in the main diagonal)

or disagreeing (anywhere else in the matrix).

The reader can find a brief description of five alternative tests of interrater agree-

ments in Appendix A. These tests will be compared to the present approach in the

subsequent section.

Measures of the Global Structure of the Judgment Matrix

The new approach is a nonparametric one based on the same assumptions as Cohen’s

kappa (Brennan & Prediger, 1981). As will be seen, it is sensitive because it uses

information outside the main diagonal as well as in the main diagonal. The crucial

observation is that high agreement rates in the diagonal cells necessarily imply a

shortage of cases outside the diagonal, and conversely. Hence, the whole matrix, not

just the diagonal, is informative as to whether there is agreement or not.

The present approach partitions the matrix based on whether the observed cell fre-

quencies deviates from chance (judged by whether the observed count is different

from its expected value) and whether such ratings are supportive of agreement or not.

More formally, under H0 (no agreement), the observed frequencies oi,j in the k2

cells of the judgment matrix should fluctuate near their expected values ei,j. Hence,

about half of the cells should have a frequency count above their respective ei,j, and

the other half, below.1 As in the x2 test, the difference between observed and

expected frequencies is standardized with zi, j = (oi, j � ei, j)=
ffiffiffiffiffiffi
ei, j
p

, which under H0

and for reasonably large counts is normally distributed.

The first statistic, QA, is a ratio of cells favorable to agreement against cells unfa-

vorable to agreement, the former being those that (i) on the main diagonal have

counts higher than expected and (ii) off the main diagonal have counts smaller than

expected, whereas the latter are those that (iii) on the main diagonal have counts
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smaller than expected and (iv) off the main diagonal have counts larger than

expected. Hence, QA is computed as

QA =
Sum of z2 over cells supporting agreement

Sum of z2 over cells supporting disagreement

=
(i) + (ii)

(iii) + (iv)

=

Pk
i = 1

(zþi, i)
2 +
Pk
i = 1

Pk
j = 1, j6¼i

(z�i, j)
2

Pk
i = 1

(z�i, i)
2 +
Pk
i = 1

Pk
j = 1, j6¼i

(zþi, j)
2

ð1Þ

where the terms in the sums (the components) will be added depending on the sign of

the difference between the observed frequency and the expected frequency using

zs
i, j =

(oi, j � ei, j)=
ffiffiffiffiffiffi
ei, j
p

if Sign(oi, j�ei, j) = s

0 otherwise

�
ð2Þ

QA values range from 0 to + N, and under H0 its central value is about 1. On aver-

age under, H0 the numerator should contain entries from half of the matrix and is

therefore on average a sum of k2=2 squared z scores. Its distribution is thus close to

the x2 distribution with (k � 1)2=2 degrees of freedom (df). The same is true for the

denominator. As a first approximation, the distribution of QA is therefore a Fisher F

ratio distribution with both df equal to (k � 1)2=2: Hence, critical values for QA can

be read from the right tail of the Fisher F ratio distribution.

The second statistic, PA, is the proportion of variance supporting agreement onto

total variance. It can be obtained from the z scores or from QA with

PA =
(i) + (ii)

(i) + (ii) + (iii) + (iv)

=
QA

1 + QA

The statistic PA is akin to the eta squared (h2) statistic and ranges from 0 to 1. When

the ratings are random, its central value is ½, that is, 50% of the variance in the rat-

ings suggest agreement and the other 50% of the variance suggest disagreement.

Hence, a value of ½ supports neither interpretations and indicates random ratings. As

found in the literature (e.g., Forbes, Evans, Hastings, & Peacock, 2010), a ratio of

the form X=(1 + X), where X follows a Fisher F ratio distribution has a standard beta

distribution with parameters a and b dependent on the df of the F ratio distribution,

here a = b = (k � 1)2=4:
PA and QA are totally interchangeable. To detect whether the ratings deviate from

random, one option is to use QA. The null hypothesis is H0: QA = 1, and the decision
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rule is to reject H0 if the observed QA exceeds a critical value read on an F table with

(k � 1)2=2, (k � 1)2=2 degrees of freedom. If PA is used, the null hypothesis is H0:

PA = ½ and the decision rule is to reject H0 if the observed PA exceeds a critical

value read from a Beta distribution with parameters a and b equal to (k � 1)2=4:
Note that, in principle, these tests could be left tailed, testing for significant disagree-

ment between the raters, but results to be shown will indicate that they should not be

used for that purpose. In between significant agreement and significant disagreement,

there is a zone in which the ratings are inconclusive either way, as is the case for ran-

dom ratings.

Under the null hypothesis, approximately half of the cells, k2=2, should contrib-

ute to the numerator of these statistics and the other half to the denominator. If PA is

larger than ½ (QA larger than 1), it suggests that more than one half of the cells con-

tribute to the numerator and less than one half to the denominator. Hence, the distri-

bution of PA for an observed result different from ½ has Beta distribution with

degrees of freedom changed to a = PA(k � 1)2=2 and b = (1� PA)(k � 1)2=2: From

this observation, confidence intervals can be obtained with

CI1�a of PA = ½Ba, b(a=2), Ba, b(1� a=2)�

where Ba, b denotes the quantile function of the Beta distribution with its parameters.

The following section will verify this assertion.

Appendix B shows how QA and PA can be computed with the SPSS statistical

package. It also shows how to get the p value of the test and confidence intervals for

PA for any level 1� a:Table 3 give some indications on how to interpret PA.

An Illustration With Computation of Formulas

We illustrate the computation of the QA statistic with an example involving two raters

having to examine and codify 200 observations into a system of k = 5 categories,

labelled 1 to 5. The judgment matrix and the marginal sums oi, � and o�, j are shown in

Table 4, top part; the second part of Table 4 presents the expected theoretical frequen-

cies ei, j = oi, �3o�, j=N ; finally, the standardized differences zi, j = (oi, j � ei, j)=
ffiffiffiffiffiffi
ei, j
p

are

shown in the third part of Table 4.

Table 3. Interpretation of the Statistics PA.

PA Agreement is . . .

0.40 . . . 0.60 weak or absent
0.60 . . . 0.70 fair
0.70 . . . 0.80 moderate
0.80 . . . 0.90 strong
. 0.90 outstanding
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In this example, the component (i),
Pk

i = 1 zþi, i

� �2
, includes all 5 diagonal cells,

every cell being positive, and is 1:6562 + 1:6902 + 1:1972 + 1:2532 + 1:4602’10:73.

Its counterpart, (iii),
Pk

i = 1 z�i, i

� �2

, is therefore zero. For the off-diagonal cells, the

sum of negative-signed components (ii) is
Pk

i = 1

P
j6¼i z�i, j

� �2

= (� 1:148)2 +

Table 4. Cross-Classification Data From Two Simulated Raters, Indicating (Top) the Number
of Ratings oi,j in Each i, j Cell, (Middle) Its Corresponding Theoretical Value ei, j , and (Bottom)
the Standardized Differences zi, j (N = 200).

Observed frequencies oi,j

Rater 2

1 2 3 4 5 Row sums oi,*

Rater 1

1 7 5 2 1 3 18
2 5 13 10 7 8 43
3 11 4 15 6 9 45
4 8 11 7 9 6 41
5 11 5 15 6 16 53

Column sums o*j 42 38 49 29 42 N = 200

Expected frequencies ei,j

Rater 2
Row sums

1 2 3 4 5 ei,*

Rater 1

1 3.78 3.42 4.41 2.61 3.78 18
2 9.03 8.17 10.53 6.24 9.03 43
3 9.45 8.55 11.02 6.53 9.45 45
4 8.61 7.79 10.05 5.95 8.61 41
5 11.13 10.07 12.98 7.68 11.13 53

Column sums e*,j 42 38 49 29 42 N = 200

Standardized differences zi,j

Rater 2

1 2 3 4 5

Rater 1

1 + 1.656 + 0.854 21.148 20.997 20.401
2 21.341 + 1.690 20.165 + 0.306 20.343
3 + 0.504 21.556 + 1.197 20.206 20.146
4 20.208 + 1.150 20.961 + 1.253 20.889
5 20.039 21.598 + 0.559 20.608 + 1.460
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(� 0:997)2 + . . . + (� 0:608)2’11:58, and the sum of positive-signed components

(iv) is
Pk
i = 1

P
j 6¼i zþi, j

� �2

= (0:854)2 + (0:306)2 + . . . + (0:559)2’2:71: QA is therefore

QA =
10:73 + 11:58

0 + 2:71
’8:23

This value, compared to a F critical value at a = .05, F(8, 8) = 3.438, suggests that

the raters are in agreement, QA(8, 8) = 8.23, p \ .05.

Note that the sum of all the components of QA, 10:73 + 11:58 + 0:00 + 2:71, equals

the usual chi-square test, 25.03. With its (k � 1)2 = 16 degrees of freedom, the criti-

cal value being 26.30, we would infer that the data pattern observed in Table 4 does

not exhibit any structure and may be ascribed to a pure chance mechanism, x2(16) =

26.30, p . .05. The chi-square test does not detect agreement in Table 4 because,

not being specifically suited for agreement detection, it lacks power and specificity

(as our Monte Carlo experiments will confirm).

The second statistic, PA, is obtained with 8:23=(1 + 8:23) = 0:892, well above the

reference value of ½, suggesting a strong agreement. To get confidence intervals,

computer software must be used as critical values for the Beta distribution are not

given in statistics textbooks. We obtain a 95% confidence interval of [0.62, 0.99],

not including ½.

For this example, five statistical tests (the four from Appendix A and QA) make

the same decision, rejecting the null hypothesis even at the 0.01 level. However, the

same does not happen for the previous examples of Tables 1 and 2 where QA alone

Table 5. Results of the Five Tests of Agreements and the x2 Test on the Examples of Tables
1, 2, and 4.

Table 1 Table 2 Table 4

Test result p Test result p Test result p

r 0.860 0.323 0.300
k 0.528 0.148 0.125
Tests on kappa
zk1 3.43 \.01 3.30 \.01 3.54 \.001
zk2 = zk3 6.86 \.01 3.31 \.01 3.58 \.001
Tests on the diagonal elements
zS1* 9.12 \.001 3.10 \.02 3.16 \.001
zS2 3.23 \.002 3.42 \.01 3.25 \.001
Tests on the structure of the matrix
x2 8.20 n.s. 57.6 \0.001 25.0 n.s.
QA 0.62 n.s. 2.50 n.s. 8.23 \.01
Exact p value .616 .108 .004
PA 0.38 0.714 0.892
95% CI of PA [.01, .94] [0.38, 0.95] [0.62, 0.99]

Note. *Denotes the test assuming the indifference principle. n.s. = nonsignificant at the .05 level.
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concludes that agreement is absent. Table 5 summarizes the results for the examples

of Tables 1, 2, and 4.

Reliability of the Statistics and Their Distributions

To examine the merit of the present approach, we explored the statistic PA using

Monte Carlo simulations (the same results were obtained exploring QA). In particular,

we examined if the scores’ distributions correspond to their theoretical counterparts.

To do so, we generated agreement matrices with various amount of true agreement

and checked whether the theoretical 95% confidence intervals contained the results

of 95% of the simulations (using the same methodology as in Harding, Tremblay, &

Cousineau, 2014). We also checked 99% and 99.9% confidence intervals but the

results were comparable and so we do not report the findings.

We manipulated the sample sizes (N, from 50 to 500 by increment of 50), the

number of categories k (from 4 to 25), and the true probability of an agreement, rA.

Details are given in Appendix C.

A subset of the results is shown in Figure 1. The first thing to note is that the theo-

retical confidence intervals (shown using error bars) match very closely the limits in

which 95% of the simulated PA rest (shown using gray areas). The theoretical error

Figure 1. Mean PA (thick line), 95% confidence intervals (error bars), and spread where 95%
of the simulated PA fell (gray area) as a function of sample size N, when rA is varied from 0 to
0.10 (columns) and k is varied from 5 to 10 (rows). We see that PA is biased downward in the
first column: with no effect, mean PA should be equal to zero for all N and all k.
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bars are the least accurate for small number of categories and strong effect size where

they overestimate the spread of the results.

Less visible but more critical, the average PA (as well as the average QA, not

shown) is biased downward, underestimating the strength of the agreement. This bias

is visible in the left panels where there is no agreement (rA = 0), more so for large

numbers of categories (e.g., k . 8) and for small sample sizes. We could not find a

simple way to undo the bias, which would be suitable to all k. Because of the down-

ward bias, these measures are biased toward detecting disagreement and against

detecting agreement. This is why these measures should not be used for detecting

disagreement (performing a left tail test of QA or PA). The bias results in a conserva-

tive test (i.e., less powerful than it could be). However, as we will see next, this has

little impact on its specificity.

Sensitivity and Specificity of the Test

In order to evaluate the relative merits of the present test of agreement, we ran three

more series of Monte Carlo experiments, comparing our ratio test to four other tests

of agreement. In the first series, we explored statistical power by manipulating the

true rate of agreement rA from 0 to 1. In all the simulations, we manipulated the num-

ber of categories k (from 5 to 25), the total sample sizes N (from 50 to 500), and the

significance levels (a, .05 and .01). The statistical tests to be compared (described in

Appendix A) are the following:

zk1, Cohen’s simple z test

zk2, a z test using Fleiss, Cohen, and Everitt’s (1969) more accurate variance

approximation

zS2, a sum-of-z test not assuming the indifference principle

QA, the ratio of agreement test (equivalent to PA)

x2, the standard x2 omnibus test of independence

We included the x2 test even though it is not a test of agreement to provide a ref-

erence. We do not report results for zk3 (described in Appendix A) as its results are

undistinguishable from zk2 nor do we report results from zS1 (for reasons explained

in Appendix C).

Apart from being powerful, a good test should also be mostly, if not exclusively,

sensitive to agreeing judgments, and not to any other type of consistent categoriza-

tions. For example, if observations classified as instances of category 2 by the first

rater are systematically put in Category 3 by the second rater (as seen in Table 1), this

is a consistent pairing, but not an agreement, and the tests should not reject H0 based

on situations of this type. The two raters, at least for these two categories, are consis-

tent, but they nevertheless disagree. Specificity is that property of a statistical test in

virtue of which it is most sensitive to data configurations relevant to its intended

rejection condition but keeps relatively insensitive to other configurations. A test
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having high specificity should not reject H0 at a rate higher than the significance level

a when the hypothesized condition of rejection is not present.

The purpose of the last two series of Monte Carlo experiments is to evaluate the

specificity of the tests. As before, we manipulated the parameters rC, k, and N.

However, in the present context, the parameter rC represents the rate of consistent

categorizations between raters. This rate is large when raters have consistent decision

rules even if these rules are not in agreement. Overall, with large rC, cases will be

more frequent in cells not necessarily on the main diagonal.

In these two series of simulations, there is no overall agreement, but possibly acci-

dental agreements for one or a few categories. Hence, the probability of rejecting H0

should be small, otherwise the test is making too many Type I errors. Ideally, the

probability of Type I errors should be equal to the significance level (5% in the sub-

sequent figures) and fairly constant across rates of consistent categorizations.

To control precisely for the presence of accidental agreements, the two series

present two conditions. In the Random with possible coincident pairings condition,

Category ‘‘x’’ from Rater 1 is coupled to some Category ‘‘y’’ of Rater 2, where y

may be any category among 1 to k, including by chance the same as Category x (an

agreement for this category). In the Random excluding coincident pairings condition,

there cannot be a single agreeing pair in the main diagonal.

A detailed description of the simulations’ parameters and algorithms is given in

Appendix C.

Results

Because of the very large number of conditions explored, we only report illustrative

results, shown in Figures 2 to 4, all using a significance level of .05; these results are

typical of what was found in the other conditions and with a significance level of .01.

Figure 2 presents the results for one set of parameter (k = 5 and N = 125), one panel

per condition. In Figure 3, everything is the same as in Figure 2, except that the sam-

ple size is doubled (N =250); in Figure 4, everything is the same as in Figure 2, except

that the number of categories is doubled (k = 10).

As seen, the results follow three patterns.

Chi-Square Test. As expected, all our results disqualify the x2 test as a test of agreement.

First, this test is the least powerful. In Figure 2, top panel, for example, the four other tests

reach a power of 50% at rA ’ 0.07 to 0.09, while chi-square needs to wait until rA’

0.15 to attain it. Second, the x2 test is the least specific, rejecting H0 even when there is

not a single coincident pairing (Random excluding coincident pairings condition).

Cohen’s (zk1), Fleiss’ (zk2), and the Sum-of-z (zS2) Tests. For the next three tests,

Cohen’s simple formula (zk1), Fleiss et al.’s (zk2), and zS2 behave roughly in the

same manner, be it for the power (top panels of Figures 2 to 4) or the specificity

results (middle and lower panels of Figures 2 to 4). It is interesting to note that Fleiss

et al.’s intricate formula for the variance of k, var2(k), despite its good
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performances, does not seem worth the effort as compared to Cohen’s much simpler

one. The three tests display the best performance on power, surpassing the new QA

test, more so when the number of categories is large. However, they are also mark-

edly worse than the QA test regarding specificity (sometimes by as much as 40%).

Hence, when the raters make disagreeing judgments in a consistent manner, those

tests will spuriously signal agreement, an unwanted behavior. Indeed, under the con-

dition of Random with possible coincident pairings (middle panels of Figures 2, 3,

and 4), zk1 (like its variant zk2) and zS2 react positively to rC, the rate of consistent

Figure 2. (Top panel) Power curve for 5 tests of interrater agreement as a function of the
true agreement rate (rA) when k = 5 and N = 125; (Middle and bottom panels) specificity for
the same tests in the same condition as a function of the rate of consistent categorizations (rC).
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categorizations, eating away its specificity. Only in conditions where not a single

coincident pair is allowed (bottom panels of Figures 2, 3, and 4) do the three tests

perform almost identically to the QA test.

QA Test. As can be seen in the top panels of Figures 2 and 3, power curves of the QA

test follow well the power curves of the zk1, zk2, and zS2 tests more so if the number

of categories is smaller. In the worst case presented (k = 10, top panel of Figure 4), a

power of 50% is attained by QA at r’ 0.046, and by Cohen’s test at r’ 0.026. This

loss of power continues to increase as k increases. On the other hand, the specificity

Figure 3. Power curve and specificity curves when k = 5 and N = 250 in the same format as
Figure 2.
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curves present a remarkable stability for QA: the significance rate in all cases starts

at the alpha value (e.g., .05) or below and declines steadily as the rate of consistent

categorizations increases.

The QA test considers all circumstances in which the raters may agree and dis-

agree. Hence, it rejects the null hypothesis only if the evidence gathered from the

agreeing cells outweighs the evidence from the disagreeing cells. Consistent pairings

outside the main diagonal is thus for QA a strong cue against agreement.

In sum, the new test QA was found to be just a little less powerful than the other

tests when k is small (k \ 8). However, these tests proved to be far less specific. One

possibility is that on a small percentage of the simulations, random pairings might

Figure 4. Power curve and specificity curves when k = 10 and N = 125 in the same format
as Figure 2.
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have occurred, triggering these tests to significance but not QA. Hence, it is not clear

whether the new test is truly less powerful or is simply more selective.

General Discussion

We examined the performance of five tests for determining whether two observers,

each one classifying N observations into a set of k categories, agree or not above

chance level. Monte Carlo simulations were used to compare the five tests with

respect to their sensitivity to true agreement—a quality that translates into statistical

power—and their specificity, that is, their insensitivity to anything but true agree-

ment. As could be expected (see for instance Cohen, 1960), the standard x2 statistic

on contingency tables, although not insensitive to true agreement, ranks well behind

the other tests for power as well as for specificity. The k-to-z tests (Cohen’s zk1,

Fleiss et al.’s zk2) and zS2 perform best on power, but they are impaired by their poor

specificity, a problem that does not affect the ratio-based QA test.

The statistics described here provide a nice set of tools to quantify agreement and

assess its significance. Confidence intervals are also defined, allowing for easy com-

parisons between studies. The only limitation of the present statistics is that they are

all biased downward (and the bias is important for k� 10 and small N). Future work

should try to find the correction to this limitation. In the meanwhile, the present sta-

tistics should not be used to detect significant disagreement.

Our results show that a significant test on kappa can indicate that agreement is

strongly present in a few categories or weakly present in all categories (or a conti-

nuum between these extremes). On the other hand, a significant QA test only indi-

cates that agreement is present in all the categories. The simulations showed that the

QA test is the only test that is sensitive to agreement within all categories, not just a

few, as seen by comparing the markedly different results in the Random excluding

coincident pairings with the Random with possible coincident pairings simulations.

What does distinguish the k-to-z and sum-of-z statistics, on the one hand, and QA,

on the other, and wherefrom does the latter earn its high specificity? The uniqueness

of QA comes from the fact that the whole matrix of agreement is used. Kappa-based

and sum-of-z tests only exploit the main diagonal. Hence, they implicitly assume that

information outside it is uninformative, which is obviously false, as we discussed

with the first two examples.

Appendix A

Existing Tests of Interrater Agreement

In what follows, we note the rate of agreement (r) as the proportion of observed

frequencies in the diagonal cells, r =
Pk

i = 1 oi, i

� �
=N , and E(r) the expected rate of

agreement that would arise by pure chance, E(r) =
Pk

i = 1 ei, i

� �
=N , where again
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ei, j = oi, �3o�, j=N are computed as in the x2 test of independence using the row sums

oi, � =
Pk

j = 1 oi, j and the column sums o�, j =
Pk

i = 1 oi, j:

Two Tests Based on Cohen’s Kappa

Cohen (1960) proposed a descriptive measure for interrater agreement, the kappa

coefficient (k). This coefficient indicates the relative rate of above-chance agreement

between raters. It is therefore an alternative to r. This coefficient, defined as

k =
r � E(r)

1� E(r)
ðA:1Þ

should be near zero under the null hypothesis of only chance agreement.

Cohen (1960, Equation 9) also presented an approximation for the variance of k

under the null hypothesis,

var1(k)’
E(r)

N (1� E(r))
ðA:2Þ

from which a k-to-z transformation

zk1 = k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var1(k)

p
ðA:3Þ

can be used for testing the null hypothesis that k = 0. If we ignore the 6½ continuity

correction, this test is equivalent to a binomial test of proportion comparing the pro-

portion r against its hypothesized counterpart E(r).2

Everitt (1968) derived the exact (but somewhat involved) formula for the variance

of k, whereas Fleiss et al. (1969, Equation 14) derived this more reliable

approximation:

var2(k)’
1

N 1� E(r)ð Þ2
Xk

i = 1

pi, �p�, j(1� pi, � � p�, j)
2 +
Xk

i = 1

X
j6¼i

pi, �p�, j(pi, � + p�, j)
2 � E(r)2

 !

ðA:4Þ

in which pi, � = oi, �=N and p�, j = o�, j=N are the row and column observed proportions

found in the judgment matrix. Using this second approximation, a z test of the null

hypothesis that population k equals zero can be proposed using the observed k,

zk2 = k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var2(k)

p
ðA:5Þ

This is the version of the kappa test implemented in SPSS using the CROSSTABS

command.

Finally, if one is willing to compute the exact variance of observed k found by

Everitt (1968), the exact test of the null hypothesis can be derived (let us call it

zk3 = k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var3(k)
p

). However, the gain in precision relative to zk2 is immaterial.
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Two Tests on the Diagonal Elements

The above tests are based on a binomial distribution. They are then converted to a z

score using the normal approximation to the binomial. We now examine two more

tests that are built using a sum-of-z approach (sometimes called a pooled test). It is

based on the idea that the sum of a number k of independent z scores is also a z score

with mean zero and variance k. The sum-of-z test of agreement was first proposed by

von Eye et al. (2006). It relies on the assumption that each entry in the main diagonal

should contain only random agreements unaffected by the prevalence of the cate-

gories (the indifference principle). The test (referred to as Stouffer’s test in von Eye

et al., 2006; see Stouffer, Suchman, DeVinney, Star, & Williams, 1949) is given by

zS1 =

Pk
i = 1 zi, iffiffiffi

k
p ðA:6Þ

in which zi, i =
oi, i�N=k2ffiffiffiffiffiffiffiffi

N=k2
p : This test simplifies to the following:

zS1 =

ffiffiffiffi
N

k

r
k � r � 1ð Þ ðA:7Þ

Table A.1. Seven Test Formulas for Assessing Agreement From a Judgment Matrix.

Name and formula Null hypothesis Reference

k-to-z tests
zk1 = k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var1(k)
p

H0: k = 0 Cohen (1960)

zk2 = k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var2(k)
p

H0: k = 0 Fleiss et al. (1969)
Sum-of-z tests

zS1 =
ffiffiffi
N
k

q
(k � r � 1) H0 :

Pk
i = 1

oi, i = N=k von Eye et al. (2006)
a

zS2 =
P

izi, i

ffiffiffi
k
p

H0 :
Pk
i = 1

oi, i =
P

iei, i This article

Tests on the structure of the judgment matrix

x2 =
Pk
i = 1

Pk
j = 1

z2
i, j

H0 :oi, j = oi, � � o�, j=N Pearson (1932)

QA =

Pk

i = 1

(zþi, i)
2

+
Pk

i = 1

Pk

j = 1, j 6¼i

(z�i, j)
2

Pk

i = 1

(z�i, i)
2 +
Pk

i = 1

Pk

j = 1, j 6¼i

(zþi, j)
2

H0 : QA = 1 This article

PA = QA

1 + QA
H0 : PA = 1=2 This article

Note. k is the number of categories and N is the number of observations classified.
aThis test, based on the indifference principle, is not included in the simulations reported.
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A generalization inspired by the above test is one in which the indifference princi-

ple is not assumed; the observed count in each cell of the diagonal oi, i is compared to

its corresponding probable value ei, i under H0: The formula is therefore

zS2 =

Pk
i = 1 zi, iffiffiffi

k
p ðA:8Þ

where zi, i = (oi, i � ei, i)=
ffiffiffiffiffiffi
ei, i
p

: Contrary to zS1, this formula cannot be further

simplified.

Table A.1 summarizes all the tests reviewed in this appendix.

Appendix B

Computing Agreement With SPSS

Researchers can compute Cohen’s kappa and the zk2 test using SPSS. However, there

are no computer packages that can compute the sum-of-z tests or the QA test. If the

Essentials for Python extension to SPSS is installed (available free from the SPSS

website), the following BEGIN PROGRAM END PROGRAM block will compute

QA. The data editor must contain only the ratings and there must be as many lines as

there are columns (i.e., the ratings must be in the form of an agreement matrix). To

enter the commands, open a new ‘‘syntax’’ window and execute the following:

BEGIN PROGRAM python.
import spss
# Agreement test for SPSS
# D. Cousineau & L. Laurencelle, 2015. A ratio
# test of inter-rater agreement with high specificity

# get the observed frequencies o_{ij} from SPSS
dataCursor = spss.Cursor()
o = dataCursor.fetchall()
k = len(o[0])
dataCursor.close()

# get the marginal counts
totalrow = [sum(x) for x in o ]
totalcol = [sum(x) for x in zip(*o) ]
N = sum(totalrow)

# compute the expected frequencies e_{ij}
e = [[i*j/N for i in totalcol] for j in totalrow]

# compute the four terms of the test
z_ii_plus = sum(
pow((o[i][i]-e[i][i]),2.0)/e[i][i]
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for i in range(k) if o[i][i] . e[i][i]
)
z_ii_minus= sum(
pow((o[i][i]-e[i][i]),2.0)/e[i][i]
for i in range(k) if o[i][i]\e[i][i]

)
z_ij_plus = sum(
pow((o[i][j]-e[i][j]),2.0)/e[i][j]
for i in range(k) for j in range(k) if (o[i][j] . e[i][j]) &
(i!=j)

)
z_ij_minus= sum(
pow((o[i][j]-e[i][j]),2.0)/e[i][j]
for i in range(k) for j in range(k) if (o[i][j]\ e[i][j]) &
(i!=j)

)

# compute Q_A and P_A
Qa = (z_ii_plus + z_ij_minus) / ( z_ii_minus + z_ij_plus )
Pa = Qa / (1 + Qa)

# That’s it! Just show the results.
spss.StartProcedure("Agreement test")
spss.TextBlock("Result","Q_A = "+str(Qa))
spss.TextBlock("Result","P_A = "+str(Pa))
spss.EndProcedure()

END PROGRAM.

To compute significance of QA and confidence interval on PA, you may then run

the following lines (there must be at least one line of data in the data editor), adjust-

ing the first four lines to your results:

COMPUTE k = 3. /* number of categories */
COMPUTE n = 100. /* number of observations */
COMPUTE alpha = 0.05. /* for 95% confidence interval */
COMPUTE Qa = 0.6235. /* obtained from above script */

COMPUTE pvalue = 1 - cdf.F(Qa, 0.5*(k-1)**2, (1-0.5)*(k-
1)**2).
FORMAT pvalue (f8.6).
COMPUTE Pa = Qa/(1 + Qa).
COMPUTE PaCIlo = idf.beta( alpha/2, Pa*(k-1)**2/2, (1-
Pa)*(k-1)**2/2).
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COMPUTE PaCIhi = idf.beta(1-alpha/2, Pa*(k-1)**2/2, (1-
Pa)*(k-1)**2/2).

EXECUTE.

The results will appear in the data editor in new columns.

Appendix C

Simulation Procedures

The following describes the different parameters and procedures of our simulation

experiments for assessing confidence intervals, the statistical power, and the specifi-

city of the various test procedures. First, the true agreement rate rA between the two

simulated raters was varied from no agreement between the raters (rA = 0) to perfect

agreement (rA = 1) by increment of 1/200. Second, we varied the number of cate-

gories (k) from 5 to 25. Finally, the total number of observations was manipulated

from small (N = 50) to large (N = 500).

The following algorithm was used to generate one judgment matrix:

Step 1 : Generate a random integer x in ½1 . . . k�; this is the categorization

of the first rater;

Step 2 : With probability rA, make y x (an agreement between the two raters),

Otherwise, generate a random integer y in ½1 . . . k�;
Step 3 : Add one observation in cell fx, yg:
Step 4 : Repeat Step 1 to Step 3 N times to obtain N observations:

Note that for such a scheme of data generation, the expected observed rate of

agreement is given by rA + (1� rA)=k (i.e., larger than rA) because there may be an

agreement by chance when selecting the categorization of Rater 2 randomly.

A Monte Carlo simulation went as follows. First, generate one square k3k matrix

(using the algorithm above). Second, compute all test statistics, each compared with

its appropriate critical value. This process is repeated 200,000 times for each

rA3k3N combination. The significance level a (.05 or .01) is also varied. The pro-

portion of rejections is then computed.

To examine specificity, the parameter rC was used, this time with a different

meaning, that is, as a ‘‘concordance rate’’ describing the rate of concordant but not

necessarily agreeing judgments. This rate might apply to cells outside the main

diagonal.

Two types of configurations were explored, each with its own set of Monte Carlo

simulations: Random with possible coincident pairings and random excluding coinci-

dent pairings. In both scenarios, for each category x the first rater is choosing, the

category y(x) is chosen by the second rater when they are classifying the observations

in a concordant fashion. The two scenarios differ in whether they allow y(x) to be
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equal to x, that is, to be true agreement. In the Random with possible coincident pair-

ings scenario, occasional agreeing pairings are possible by chance. For the Random

excluding coincident pairings condition, occasional agreeing pairs were excluded to

insure that there was not a single agreeing pairing. The following algorithm was

used:

Step 0 : Initialize a set of random pairings fx; y(x) g of integers 1 to k ; in the

Random excluding coincident pairings variant, iterate untill there

are no coincident pairs, i:e:, no x 6¼ y(x)

Step 1 : Generate a random integer x in ½1 . . . k�; this is the categorization

of the first rater;

Step 2 : With probability rC , make y y (x),

Otherwise, generate a random integer y in ½1 . . . k�;
Step 3 : Add one observation in cell fx, yg:
Step 4 : Repeat Step 1 to Step 3 N times to obtain N observations:

As previously, the algorithm was iterated 200,000 times, keeping track of the

rejection rate of the six tests, for each combination of rC , k, and N for each of the

two scenarios described above. The significance level a (.05 or .01) was also

varied.

In unreported simulations, we also manipulated the prevalence of the categories

using a ‘‘slope’’ parameter D. For D = 1, all k categories were equally frequent in the

population (i.e., satisfying the indifference principle). For D = 3, some categories are

slightly more frequent than others (similar to the data of Table 4). For D = 10, there is

an important discrepancy between category frequencies. The data in Table 1 display

extreme differences in category frequencies that would roughly correspond to D = 30:
Formally, D is the ratio of the largest to the smallest category prevalence probability,

D = pk=p1: The probabilities for the intermediate categories were varied linearly with

the constraint that
P

pi = 1:
By varying D, only one new result was apparent: The zS1 test, based on the indif-

ference principle (the hypothesis of an equal, random, distribution of observations

across categories), fares correctly on power as long as the observations are indeed

evenly distributed across the categories (D = 1, in which case it superimposes on

Cohen’s zk1 results). However, its power curve rises well above the alpha-level and

unto unjustified heights, in conditions with uneven prevalence of categories (15% of

Type I error rate for D = 3 and up to 50% for D =10). As a consequence, the zS1 does

not respect the prescribed alpha level when there is no agreement (i.e., for rA = 0)

and displays spurious power when rA is greater than zero and the prevalence of the

categories are not uniform.
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Notes

1. To be precise, half of the cells should have a count above the expected median but the

median of a binomial distribution is complex to evaluate (Kaas & Buhrman, 1980) and

close to the mean as soon as the expected value exceeds five.

2. Let the number of observed agreement be x = N � r, and the estimated probability of con-

cordance be E(r). The distribution of x is approximately binomial, that is, B(N , E(r)), and

its normal approximation, z = (N � r � N � E(r))=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � E(r) � (1� E(r))
p

, is algebraically

equivalent to Equation A.3.
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