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Abstract

This article describes an approach to test scoring, referred to as delta scoring
(D-scoring), for tests with dichotomously scored items. The D-scoring uses informa-
tion from item response theory (IRT) calibration to facilitate computations and inter-
pretations in the context of large-scale assessments. The D-score is computed from
the examinee’s response vector, which is weighted by the expected difficulties (not
‘‘easiness’’) of the test items. The expected difficulty of each item is obtained as an
analytic function of its IRT parameters. The D-scores are independent of the sample
of test-takers as they are based on expected item difficulties. It is shown that the D-
scale performs a good bit better than the IRT logit scale by criteria of scale interval-
ness. To equate D-scales, it is sufficient to rescale the item parameters, thus avoiding
tedious and error-prone procedures of mapping test characteristic curves under the
method of IRT true score equating, which is often used in the practice of large-scale
testing. The proposed D-scaling proved promising under its current piloting with
large-scale assessments and the hope is that it can efficiently complement IRT proce-
dures in the practice of large-scale testing in the field of education and psychology.
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There are ongoing efforts in the theory and practice of measurement on comparing

and bridging concepts and procedures from the classical test theory (CTT) and item

response theory (IRT) (e.g., Bechger, Maris, Verstralen, & Beguin, 2003; DeMars,

2008; Dimitrov, 2003; Fan, 1998; Hambleton & Jones, 1993; Kohli, Koran, & Henn,

2015; Lin, 2008; MacDonald & Paunonen, 2002; Oswald, Shaw, & Farmer, 2015;

Raykov & Marcoulides, 2016). Numerous CTT–IRT studies focus on the practical

usefulness of combining CTT and IRT procedures of test scoring and item analysis

to achieve simplicity in computations and interpretations, taking into account the

specific context and purpose of measurement. The literature on CTT–IRT suggests

that the trait-level estimation of individuals using the CTT often highly correlates

with its more complex IRT counterpart (e.g., Embretson & Reise, 2000; Fan, 1998;

Thorndike, 1982).

Without providing an extensive review of CTT-IRT integrations, we refer to a

brief example in personality assessments with the use of the Navy Computer

Adaptive Personality Scales (NCAPS; Houston, Borman, Farmer, & Bearden, 2006).

Under the NCAPS, the examinee must choose between two stems that reflect differ-

ent levels of a given trait, where stem levels were estimated by averaging subject

matter expert ratings. In a study on NCAPS scoring, Oswald, Shaw, and Farmer

(2015) compared an IRT-based scoring to much simpler alternative scoring methods.

For example, under an alternative dichotomous scoring method, a test taker is given

1 point for endorsing the higher level stem in a pair and 0 points for the lower level

stem; then the points across the number of attempted items are averaged. The score

under this method is the proportion of the time a test taker endorsed the stem in the

item that had the higher subject matter expert level. The authors concluded that

IRT-driven test scoring is certainly no worse than simpler methods but may not always be

decisively better . . . when computerized tests are unavailable, then it is possible that simple

CTT-driven approaches to item selection and item scoring may do no worse, which is heart-

ening as a matter of convenience. (Oswald, Shaw, & Farmer, 2015, p. 152)

In line with psychometric efforts of using IRT information on test data to simplify

test scoring and interpretations, this paper provides an approach to test scoring and

equating which can be suitable for large-scale assessments using tests with dichoto-

mously scored items; (as this is the main goal of the study, it should be kept in mind

for better understanding of the purpose of methods and procedures presented in this

paper). In the context of such assessments, item and person parameters are usually

estimated with the use of IRT. Also, multiple forms of a given test are often equated

to a base form of the test using, say, IRT true score equating under the nonequivalent

groups with anchor test (NEAT) design (e.g., Angoff, 1971; Dorans, Moses, &

Eignor, 2010; von Davier, Holland, & Thayer, 2004; Kolen & Brennan, 2014).

Under this approach, the first step in the equating a new test form, A, to the scale of

an old (base) form, B, is to rescale the item parameters of Form A onto the ability

scale of Form B through linear transformations by using item characteristic curve

methods (Haebara, 1980; Stocking & Lord, 1983) or the mean/mean and mean/sigma
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methods (Loyd & Hoover, 1980; Marco, 1977). The second step is to map the test

characteristic curve (TCC) of Form A onto the TCC of Form B (e.g., Hambleton,

Swaminathan, & Rogers, 1991; Kolen & Brennan, 2014; Lord, 1980). The outcome

is that true scores on Form A are mapped on the true-score scale of Form B thus

equating them. In practice, the equated true scores are usually treated as equated raw

scores on the test; (e.g., see Kolen & Brennan, 2014, p. 197).

The IRT-based approach to test scoring and equating has advantages over CTT-

based methods (e.g., van der Linden, 2013), but its practical implementation relates

to conceptual and technical issues that deserve attention. For example, under the IRT

true score equating described here above, the test performance of a person is reported

and interpreted on the base of his or her raw score (the IRT score, u, plays an inter-

mediate role in the equating process). With this, the ability information encoded in

the person’s response vector is ‘‘lost’’ because different response vectors generate the

same raw score. Furthermore, the procedures for equating multiple test forms are very

complex and run into technical problems with the mapping of multiple TCCs. A par-

ticular source of complexity and estimation error in mapping TCCs is the Newton–

Raphson method which involves tedious iterations and the choice of poor initial val-

ues leads to erroneous solutions (e.g., see Kolen & Brennan, 2014, p. 194).

In an attempt to deal with these issues, the present article provides an approach to

scoring and equating of tests with binary items which uses their IRT calibration to

obtain test scores that depend on the person’s response vector, but not on the sample

of examinees who took the test. Under the proposed approach, referred to here as

delta-scoring (or D-scoring), the D-score of a person is derived from the person’s

response vector weighted by the expected difficulty (delta, hence the name ‘‘delta-

scoring’’) of the items for the population of test takers. The equating of D-scores

from multiple test forms on the D-scale of a base form, under the NEAT design, is

greatly simplified as it avoids mapping of multiple TTCs (thus, the complexity and

errors associated with the use of Newton–Raphson iterations are totally eliminated).

The procedures of D-scoring and equating, presented next, are currently under

pilot applications with large-scale assessments at the National Center for Assessment

(NCA) in Saudi Arabia. The motivation behind this effort came from the NCA call

for developing an automated system of computerized scoring and equating. The cur-

rently existing system at the NCA provides the item scores (1/0) of the examinees,

but all additional procedures of scoring and equating are conducted outside the sys-

tem with the use of computer programs for IRT calibration under the three-parameter

logistic (3PL) model and IRT true score equating of multiple test forms under the

NEAT design. The integration of such procedures into an automated system for scor-

ing and equating, including item bank feeding, runs into technical difficulties that

relate to complex, tedious, and error-prone procedures of mapping multiple TTCs

and other computations in a sequential test scoring and equating. Another task in the

context of NCA testing is that, given the IRT item parameters of a test assembled

from an item bank, the test score of an examinee should be known directly from his

or her response vector; that is, the test score should reflect not only how many items,
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but which specific items, were answered correctly by that examinee. The effort is to

address these issues with using the proposed D-scoring, which is described next and

illustrated with real data from large-scale assessments at the NCA (of course, appli-

cations of the proposed is method are not limited to the context of NCA testing).

Theoretical Framework and Method

The idea behind the method of D-scoring and equating of tests with binary items is

that (a) the D-score is based on the person’s response vector weighted by the expected

difficulties of the items for the target population of test-takers, (b) the expected diffi-

culties of the items are obtained as an analytic function of their IRT parameters, and

(c) to equate the D-scores of two test forms, it is sufficient to rescale the item para-

meters of the new form to the scale of the base form. Thus, given the IRT estimates

of item parameters (e.g., from an item bank), one can obtain the D-score for any

response vector (pattern of 1/0 item scores) in two steps: (a) the expected item diffi-

culties are obtained as a function of their IRT parameters, using an analytic formula

and (b) the D-score is the sum of the 1/0 scores in the person’s response vector

weighted by the expected difficulties of the items in that response vector. As the

expected item difficulties are sample independent, the person’s D-score, which is

based on the expected item difficulties, is also independent of the sample of test

takers. Furthermore, the equating of D-scores under the IRT-based NEAT design

eliminates the complex and error-prone procedure of mapping TTCs. Details on the

D-scoring and equating method are provided next.

Expected Item Score

For the purposes of D-scoring, the expected item score, pi, is obtained as a function

of its parameters (ai and bi) under the two-parameter logistic (2PL) model in IRT

(Dimitrov, 2003):

pi =
1� erf Xið Þ

2
ð1Þ

where Xi = aibi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 + a2

ið Þ
p

, erf is the known mathematics function called error

function, ai is item discrimination, and bi is item difficulty. With a relatively simple

approximation provided by Hastings (1955, p. 185), the error function (for X . 0)

can be evaluated with an absolute error smaller than 0.0005 as

erf Xð Þ = 1� 1 + m1X + m2X 2 + m3X 3 + m4X 4
� ��4

, ð2Þ

where m1 = 0.278393, m2 = 0.230389, m3 = 0.000972, and m4 = 0.078108. When X\
0, one can use that erf �Xð Þ = � erf Xð Þ. The erf Xð Þ is directly executable in com-

puter programs for mathematics (e.g., MATLAB; MathWorks, Inc., 2015).
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In case of IRT calibration under the 1PL, Equation (1) is used with ai = 1, whereas

under the 3PL, the expected item score is given by ci + 1� cið Þpi, where ci is the

pseudo-guessing parameter in the 3PL model and pi is obtained under the 2PL via

Equation (1) (Dimitrov, 2003, equation 22). Equation (1) is derived under the

assumption that the latent trait, u, measured by the test is normally distributed. In

fact, the estimates of pi remain stable under moderate deviations from normality.

D-Scoring

As can be noticed, pi shows what proportion of the targeted population is expected to

answer correctly item i. The pi is the CTT definition of expected item difficulty but,

in fact, it represents the expected ‘‘easiness’’ of the item. Therefore, the difference

di = 1� pi is used here to represent the actual expected item difficulty for the popula-

tion of test-takers. The D-score of person s (participant or examinee) is defined as the

sum of di values for the test items that the person answered correctly. That is, for a

test of n binary items,

Ds =
Xn

i = 1
Xsidi, ð3Þ

where Xsi is the score of person s on item i (Xsi = 1 for correct response; otherwise

Xsi = 0). Thus, the D-score is based on the person’s response vector and the expected

item difficulties, di. The highest possible D-score on a test, Dmax, is the sum of

expected difficulties for all items (i.e., Dmax occurs when all items are answered cor-

rectly). Thus,

Dmax =
Xn

i = 1
di =

Xn

i = 1
1� pið Þ= n�

Xn

i = 1
pi: ð4Þ

The D-scale can be treated as a continuous numeric scale, with the scores on a test

of n items ranging from 0 to Dmax. A score of 0 corresponds to zero correct responses

and Dmax corresponds to n correct responses. Theoretically, 0�Dmax� n (see

Equation 4), but the two extreme values cannot occur in the practice of testing, so

we have: 0 \ Dmax \ n. Indeed, it is not realistic to expect that (a) Dmax = n, which

will occur if d1 = d2= � � � = dn = 1; that is, all items are answered incorrectly by the

entire population of test takers and (b) Dmax = 0, which will occur if d1 = d2= � � � =

dn = 0; that is, all items are answered correctly at population level.

Consider a test of five binary items with expected item difficulties d1, d2, d3, d4,

and d5. For a person with the response vector 1 1 0 0 1, we have D =

d1 + d2 + 0 + 0 + d5. If another person has the same total score on the test (X = 3), but

different response vector, say, 0 1 0 1 1, then D = 0 + d2 + 0 + d4 + d5. In this case,

Dmax = d1 + d2 + d3 + d4 + d5; (0 \ Dmax \ 5).

Standard Error of D-Scores

The derivation of the standard error of Ds scores, SE(Ds), is provided in Appendix A.
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The resulting formula is

SE Dsð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1
d2

i Pi usð Þ 1� Pi usð Þ½ �
q

, ð5Þ

where Pi usð Þ is the probability of correct response on item i by person s, with ability

us, which is obtained under the IRT (1PL, 2PL, or 3PL) model. As shown with the

real-data illustration in the next section, the highest SE Dsð Þ values are in the middle

of D-scale and decrease toward the (lowest and highest) ends of the scale.1 This is

just the opposite to the case of IRT ability scores, us, where the conditional standard

errors, SE usð Þ, tend to increase toward the lowest and highest directions of the IRT

logit scale (e.g., Embretson & Reise, 2000).

Item Reliability Under D-Scoring

Let Xi denotes the observed score on item i and rii Xð Þ the reliability of Xi. Likewise,

let Di is the D score on item i and rii(D) the reliability of Di. As shown in Appendix B,

the item reliability is the same under X-scoring (1/0) and D-scoring; that is,

rii(DÞ= rii Xð Þ: ð6Þ

This finding can be useful, say, in the selection of items that maximize the internal

consistency reliability as the respective procedure uses the item reliability (e.g., Allen

& Yen, 1979, p. 126).

Equating of D-Scales

The equating of D-scores on a new test form A onto the scale of an old (base) form

B can be performed in two steps. First, the IRT item parameters of form A are

rescaled onto the scale of form B through linear transformations by using methods

such as the item characteristic curve methods (Haebara, 1980; Stocking & Lord,

1983), mean/mean method, and mean/sigma method (Loyd & Hoover, 1980; Marco,

1977). Second, by representing the IRT item parameters of two test forms on a com-

mon scale, the D-scores on these two forms, obtained through the use of Equations

(1) to (3), are also on a common scale because they are direct functions of the IRT

item parameters. The D-score equating approach can be particularly efficient when

multiple new test forms (say, A1, A2, . . ., Am) need to be equated to a base form, B.

Specifically, after rescaling the IRT item parameters of the new forms onto the abil-

ity scale of form B through a sequence of scale transformations over a ‘‘chain’’ of

test forms A1! A2!� � �! Am! B, the item parameters of all test forms are on a

common scale, so the D-scores obtained as a function of these item parameters for

each test form (via Equations 1-3) are also on a common scale. For details and for-

mulas for such a chain rescaling, the reader may refer to Li, Jiang, and von Davier

(2012).

Dimitrov 959



Intervalness of the D-Scale

A key question about the delta scale (D-scale) is whether it is an interval scale and

how D-scores compare with IRT ability scores (us, ‘‘thetas’’) in this regard. It is

known that an interval scale exists when the axioms of additive conjoint measure-

ment (ACM) hold within a given dataset (Luce & Tukey, 1964; see also, Karabatsos,

2001). Referring to a scale, the term intervalness is used in the literature to indicate

the degree to which the scale data are consistent with the axioms of ACM (e.g.,

Domingue, 2014). From this perspective, the task here is to compare the D-scale and

u-scale on intervalness. As D-scores and their standard errors, SE(D), are obtained in

the framework of IRT, where the u-scale is supposed to be (close to) interval, the

intervalness of the D-scale is compared to that of the u-scale using a method pro-

posed by Domingue (2014). As shown with the real-data example in the next section,

the D-scale behaves better than the u-scale on criteria of intervalness, with the differ-

ence in this regard decreasing with the increase of the number of test items.

Scaling of D-Scores

For practical reports and interpretations of test scores at the NCA, the D-scores are

transformed, at the current piloting stage, into scale scores that range from 0 to 100,

to be in line with the widely adopted scaling from 0 to 100 with educational assess-

ments in Saudi Arabia. Specifically, D-scores are transformed into scale scores, SD,

using a linear transformation that results in a proportional ‘‘stretch’’ the D-scale from

0 to 100, namely: SD = 100D=Dmax. Under this scaling, D = 0 is assigned to 0 and D

= Dmax is assigned to 100; (Dmax, the maximum possible D-score on the test, is the

sum of the expected item difficulties of all test items). Along with the simplicity in

computation and interpretation, the linear scaling of D-scores maintains their inter-

valness. Of course, other approaches to scaling D-scores can be used depending on

the context and purpose of the assessment of interest.

Illustration With Real Data

As noted at the beginning, automated procedures of D-scoring and equating are

under pilot applications with large-scale assessments at the NCA in Saudi Arabia.

Most of these assessments are based on (a) aptitude and achievement tests adminis-

tered to high school graduates, as a part of their application to Saudi universities and

(b) multiple tests for teacher certification in Saudi Arabia. All tests are standardized

and consist of dichotomously scored multiple-choice items, with an ongoing devel-

opment of test forms and their equating using the IRT true score equating under the

NEAT design. Because of the high complexity and efforts of scoring and equating in

this context, the use of automated procedures of D-scoring and equating is deemed

as very efficient, especially with the availability of an item bank which contain IRT

item parameters (under the 3PL model). This allows for direct computations of

expected item difficulties, di, D-scores for response vectors of examinees, and
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(relatively fast and simple) D-score equating of multiple new test forms to the scale

of a target test form. The procedures of D-scoring and equating are under piloting

with real data on multiple forms for different tests at the NCA. A software, devel-

oped for this purpose, is named System for Automated Scoring and Equating

(SATSE; Atanasov & Dimitrov, 2015).2

Because of space consideration, provided here are only some results and clarifica-

tions related to D-scoring and equating with real data from two tests at the NCA (a)

the General Aptitude Test–Verbal Part (GAT-V), which is administered to high

school graduates and (b) The General Teacher Test (GTT), which is used for certifi-

cation of teacher candidates in Saudi Arabia. First, two test forms of GAT-V are used

to illustrate D-scoring and equating. Second, comparison of D scores and IRT ability

scores, u, in terms of their intervalness, is provided with the use of data from GAT-V

and GTT. Although GAT-V and GTT data were found to be unidimensional in previ-

ous studies on their validity and psychometric features testing for dimensionality and

estimation of reliability were performed with the data used here. Specifically, the

unidimensionality of the sample data on the two GAT-V forms and the GTT was

supported by a tenable data fit of a one-factor model tested in the framework confir-

matory factor analysis (CFA) with the use of the computer program Mplus (Muthén

& Muthén, 2010). The results are summarized in Table 1.

The reliability of the sample data was estimated under the latent variable model-

ing (LVM) approach using Mplus (e.g., Raykov, 2007; Raykov, Dimitrov, &

Asparouhov, 2010). The resulting reliability estimates, provided in Table 2 with their

95% confidence intervals, range from .848 to .883, which is adequate for the purpose

of this illustration. The Cronbach’s coefficient alpha for internal consistency reliabil-

ity is also provided in Table 2. As can be seen, the alphas are smaller than their

LVM-based counterparts. A plausible explanation is that the Cronbach’s alpha

Table 1. Testing for Unidimensionality of Data From Two GAT-V Test Forms (Base and New)
and GTT.

90% CI for RMSEA

Test data x2 df CFI TLI WRMRa RMSEA LL UL

GAT-V(B)b 1233.224 170 .966 .962 2.155 .025 .024 .026
GAT-V(N)c 830.437 170 .982 .980 1.740 .020 .019 .021
GTT 33191.931 3002 .906 .903 2.614 .017 .016 .018

Note. GAT-V = General Aptitude Test–Verbal; GTT = General Teacher Test; CFI = comparative fit index,

TLI = Tucker–Lewis index, WRMR = weighted root mean square residual, RMSEA = root mean square

error of approximation; CI = confidence interval; LL = lower limit; UL = upper limit. A tenable data fit is

in place with CFI . .90, TLI . .90, WRMR is close to 1, and RMSEA \ .05.
aIn Mplus, WRMR is used with categorical variables, which is the case with the study data (with

continuous variables, standardized root mean square residual [SRMR] is used).
bGAT-V base form.
cGAT-V new form.
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requires essentially tau-equivalent measures (i.e., all observed measures have equal

loadings to the latent factor that they represent; e.g., Raykov & Marcoulides, 2016).

However, this assumption is difficult to meet with congeneric binary measures,

whereas it is not required with the LVM approach to reliability estimation.

Computation of D-Scores

The computation of D-scores is illustrated with data from a base test form of GAT-

V, which has 20 dichotomously scored multiple-choice items that measure the exami-

nees’ ability in reading comprehension and sentence completion. The data consist of

the binary scores (1/0) of 9,937 high school graduates on the 20 items of this GAT-V

test form. The distribution of total test scores (number correct responses) was close

to normal, ranging from 1 to 18 (M = 8.43, SD = 2.96). The IRT estimates of the item

parameters under the 3PL model are provided in Table 3 (a = discrimination, b = dif-

ficulty, and c = pseudo-guessing) (e.g., see Hambleton, Swaminathan, & Rogers,

1991). The IRT calibration was performed under maximum likelihood estimation

with EM algorithm using the computer program Xcalibre 4.2 (Guyer & Thompson,

2013). The expected item difficulty, di, is also given in Table 3; (i = 1, 2, . . ., 20).

Recall that di is the proportion of the target population of examinees who provided

an incorrect response on the item; that is, di shows how difficult is the item for the

entire target population (di = 1 –pi, where pi, the expected ‘‘easiness’’ of the item, is

computed as a function of the item parameters via Equation 1).

In Table 3, the columns labeled Xi1, Xi2, and Xi3 contain the response vectors of

three examinees, with the first two having the same total test score (X1 = X2 = 5), but

different response vectors, whereas the third person has all items correct (X3 = 20).

The response vectors Xi1, Xi2, and Xi3 are multiplied by the item difficulty vector, di,

and the resulting products are stored in the columns labeled Di1, Di2, and Di3, respec-

tively. Then, by the virtue of Equation (3), the sum of the entries in column Dis

Table 2. Estimates of Score Reliability for Two Test Forms of GAT-V and GTT Under Two
Approaches to Estimation (a and LVM).

LVM-based estimation

Test data Cronbach’s a r̂XX 95% CI for r̂XX

GAT-V(B)a .731 .848 [.843; .853]
GAT-V(N)b .776 .883 [.879; .887]
GTT .783 .879 [.877; .881]

Note. GAT-V = General Aptitude Test–Verbal; GTT = General Teacher Test; LVM = latent variable

modeling; CI = confidence interval. Cronbach’s a assumes that the measures are essentially tau-

equivalent, whereas the LVM approach does not require this assumption.
aGAT-V base form.
bGAT-V new form.
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renders the Ds score of person s (s = 1, 2, 3), namely D1 = 1.717, D2 = 1.907, and D3

= 7.327. Note that the score of the third person equals the maximum possible D score

on the test, which is the sum of all di values (Dmax = 7.327), because that person has

answered correctly all 20 items. On the other hand, although the first two persons

have the same total score (X1 = X2 = 5), they have different D-scores because of hav-

ing different response vectors; that is, they have answered items with different diffi-

culties for the target population. The D-scores of the other examinees in the sample

(N = 9,937) are obtained in the same way. The distribution of D-scores was close to

normal, ranging from 0 to 7.327 (M = 3.802; SD = 1.272). The correlation of the D-

scores with the total test score (X = number correct responses) was very high (0.962).

However, the X-scores can take only 21 different values (from 0 to 20), whereas the

D scores can take values generated from thousands different response vectors on 20

binary items.

Table 3. Item Parameters and D-Scores for 3 Examinees on 20 Test Items of GAT-V Base
Form, B.

Item parameters (3PL) X-scores D-scores

Item ai bi ci di Xi1 Xi2 Xi3 Di1 Di2 Di3

1 0.792 –0.278 0.347 .282 1 0 1 .282 0 .282
2 0.636 –0.029 0.232 .380 1 1 1 .380 .380 .380
3 0.727 0.153 0.289 .381 1 0 1 .381 0 .381
4 0.954 0.014 0.239 .383 0 1 1 0 .383 .383
5 0.612 2.634 0.264 .674 1 0 1 .674 0 .674
6 1.040 –1.052 0.216 .176 1 0 1 0 0 .176
7 0.908 –1.429 0.223 .131 0 0 1 0 0 .131
8 1.017 0.600 0.215 .523 0 1 1 0 .523 .523
9 0.932 –1.453 0.224 .125 0 1 1 0 .125 .125
10 0.778 –1.236 0.216 .176 0 0 1 0 0 .176
11 0.471 1.008 0.256 .496 0 1 1 0 .496 .496
12 1.047 –0.403 0.212 .304 0 0 1 0 0 .304
13 1.372 0.392 0.163 .523 0 0 1 0 0 .523
14 0.988 0.547 0.179 .534 0 0 1 0 0 .534
15 1.100 –0.592 0.200 .264 0 0 1 0 0 .264
16 1.019 –1.059 0.196 .181 0 0 1 0 0 .181
17 0.879 –0.814 0.234 .226 0 0 1 0 0 .226
18 0.674 –0.024 0.187 .402 0 0 1 0 0 .402
19 1.761 3.463 0.116 .883 0 0 1 0 0 .883
20 1.008 –0.499 0.211 .285 0 0 1 0 0 .285
Total 7.327 5 5 20 1.717 1.907 7.327

Note. GAT-V = General Aptitude Test–Verbal; 3PL = three-parameter logistic. di = expected item difficulty

(the population proportion of incorrect item responses). Column Dis is the product of columns Xis and

di; that is, Dis = diXis; (i = 1, . . ., 20; s = 1, 2, 3). The D-score of person s is the sum of the entries in

column Dis; that is, Ds = D1s + � � �+ D20s. The maximum possible D-score (for all item responses correct)

is Dmax = d1 + � � �+ d20 = 7.327. Given in boldface are the numbers of seven items in the base form, B,

which are used as common items with the new test form, A (see Table 4).
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The conditional standard error for each Ds score, SE(Ds), was computed via

Equation (5); (the true scores, Pi usð Þ, participating in Equation 5, were estimated

with Xcalibre 4.2). The SE(Ds) values were relatively small, ranging from 0.072 to

0.815; (M = 0.767, SD = 0.069). As shown in Figure 1, the standard errors tend to

decrease toward the extremes of the D-scale, particularly to the right; that is, the

highest precision is with D-scores of high-ability examinees.1

It is also worth noting that the D scores provide higher differentiation of examinees

with low or high abilities compared with IRT ability scores reported with the use of com-

puter programs for IRT calibration. For example, although the theoretical values of IRT

ability vary from 2N to + N, they are always reported in a practically reasonable inter-

val, say, from 27 to 7 on the logit scale. Thus, the examinees assigned to an extreme

category (say, 27 or 7) in IRT calibrations are much better differentiated on the D-scale.

For example, under the IRT scoring, via Xcalibre 4.2, with the data on GAT-V form B

(N = 9,937) (Figure 2), it was found that 204 examinees were assigned to the lowest score

category (u = 27) on the logit scale, whereas 172 of them were assigned different scores

on the D-scale, ranging from 0 to 3.713 (M = 1.468, SD = 0.654).

Equating of D-Scales

In this example, the D scores on a new test form of GAT-V (Form A) are equated to

the D-scale of the base form of GAT-V (Form B) described in the previous section.

Figure 1. Standard errors of D-scores on GAT-V (form B) data. GAT-V = General Aptitude
Test–Verbal.
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The data on test form A consist of binary scores of 9,781 high school graduates on

20 items, seven of which are common items with the items of form B (as described

earlier, test form B was administered to 9,937 high school graduates). The samples of

examinees who took forms A and B, respectively, are treated as ‘‘nonequivalent

groups’’ coming from two different populations of test takers on Forms A and B. The

items of Forms A and B are calibrated under the 3PL model in IRT using Xcalibre

4.2. Items 1, 2, 3, 4, 11, 12, and 13 in Form B are common (anchor) items that corre-

spond to Items 1, 2, 3, 4, 18, 19, and 20, respectively, in Form A. The correlation

between the scores on the set of common items and the total test score is .883 and

.887 for Forms A and B, respectively. The reliability estimates for the scores on the

two test forms are also very similar, .883 and .848 for Forms A and B, respectively

(see Table 2). These results are in support of the appropriateness of equating test

Forms A and B (e.g., Kolen & Brennan, 2014).

The D-scale equating is performed in three major steps. First, the item parameters

of the new Form A (a, b, c) are transformed onto the scale of the base Form B, thus

obtaining rescaled item parameters A (a*, b*, c*). Second, the expected difficulties

for the items of Form A are also ‘‘rescaled’’ by computing them as a function of the

rescaled item parameters (a*, b*, c*), as described earlier. Thus, if di is the expected

difficulty of item i for the population of test takers on Form A, its rescaled value, d�i ,

Figure 2. Standard errors of item response theory ability scores (thetas) on GAT-V (form
B) data. GAT-V = General Aptitude Test–Verbal.
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is the expected difficulty of that item for the population of test takers on Form B.

Third, if Ds is the score of person s with a given response vector on Form A, its equa-

ted value on the scale of Form B, denoted here D�s , is obtained by weighting that

response vector with the rescaled expected item difficulties, d�i (i = 1, 2, . . ., 20), as

shown in the previous section. As a result, the Ds scores on Form A are equated to

D�s scores on the scale of base Form B (s = 1, . . ., NA, with NA = 9,781 in this exam-

ple). The item parameter estimates of form A and the corresponding expected item

difficulties, before and after rescaling, are given in Table 4.

The examination of Table 4 shows that the rescaled values of expected item diffi-

culties, d�i , are slightly smaller than the prior-to-equating values, di, across all items.

This indicates that the items of Form A have become slightly less difficult after

rescaling their parameters onto the scale of Form B; that is, Form B is slightly less

difficulty than Form A at the population level. It follows then that the Ds scores on

Form A will equate to slightly lower D�s scores mapped onto the ability scale of form

B. This was supported with the results for the Ds and D�s scores obtained for the sam-

ple of examinees (NA = 9,781), with a perfect correlation between them (r = 1) and

Table 4. Estimates of Item Parameters and Expected Item Difficulties for Test Form A,
Before and After Their Rescaling Onto the Scale of Base Form B.

Item

Form A: Before rescaling Form A: After rescaling

a b c d a* b* c* d*

1 0.859 –0.112 0.374 0.295 0.792 –0.278 0.347 0.282
2 0.658 0.089 0.240 0.395 0.636 –0.029 0.232 0.380
3 0.741 0.276 0.299 0.396 0.727 0.153 0.289 0.381
4 1.024 0.124 0.247 0.403 0.954 0.014 0.239 0.383
5 0.985 –1.012 0.222 0.186 0.954 –1.102 0.221 0.174
6 0.871 –1.415 0.218 0.138 0.847 –1.514 0.217 0.129
7 0.982 0.687 0.204 0.545 0.929 0.644 0.202 0.535
8 0.927 –1.409 0.221 0.132 0.897 –1.511 0.220 0.122
9 0.731 –1.220 0.216 0.185 0.710 –1.316 0.215 0.175
10 0.545 –1.115 0.243 0.224 0.528 –1.215 0.241 0.216
11 0.932 –0.751 0.205 0.242 0.904 –0.835 0.204 0.229
12 0.899 –1.474 0.262 0.120 0.869 –1.581 0.260 0.111
13 0.621 –0.828 0.233 0.254 0.601 –0.916 0.232 0.244
14 1.062 –0.702 0.186 0.248 1.030 –0.783 0.185 0.234
15 1.075 –0.493 0.230 0.276 1.042 –0.571 0.228 0.263
16 1.164 –0.690 0.199 0.240 1.129 –0.770 0.199 0.226
17 0.785 0.292 0.190 0.463 0.753 0.235 0.188 0.451
18 0.476 1.050 0.247 0.508 0.471 1.008 0.256 0.496
19 0.802 –0.369 0.215 0.321 1.047 –0.403 0.212 0.304
20 1.182 0.548 0.170 0.550 1.372 0.392 0.163 0.523

Note. Given in boldface are the numbers of seven items used as common items with the base test form

B; (Items 1, 2, 3, 4, 18, 19, and 20 in form A are used as Items 1, 2, 3, 4, 11, 12, and 13, respectively, in

the base test form B; see Table 3).
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the values of their difference (Ds2D�s ) being all positive, ranging from 0.011 to

0.263. Also, the maximum possible score on form A is Dmax = 6.120, prior to equat-

ing, and D�max = 5.857, after equating (one can check this by summing the values of

di and d�i , respectively, in Table 4).

For illustration, consider the response vector 1100110101000000000 of a person

with 6 correct responses on the 20 items of Form A. The Ds score of that person on

Form A, prior to its equating, is obtained by using Equation (3) with the given

response vector and the expected item difficulties di (in Table 4); that is, Ds = d1 +

d2 + d5 + d6 + d8 + d10 = 1.370; (zeros excluded). Likewise, the equated value of Ds is

obtained as D�s = d�1 + d�2 + d�5 + d�6 + d�8 + d�10 = 1.303. For a person with 20 correct

responses on Form A, Ds = 6.120 (= Dmax) and its equated score on the scale of

Form B is D�s = 5.857 (= D�max).

D-Scale Intervalness

A key question about the delta scale (D-scale) is whether it is an interval scale and

how D-scores compare with IRT ability scores (thetas) in terms of intervalness. This

question was addressed with a previous study at the NCA by comparing the D-scale

with the IRT theta scale from the perspective of additive conjoint measurement using

an approach referred to as ConjointChecks (Domingue, 2014). The details in metho-

dology and findings, provided with a technical report on that study (Domingue &

Dimitrov, 2015), are not presented here for space consideration, but some main points

and results are replicated and illustrated with data in this example. Specifically, used

are the data with the base form of GAT-V, described in the previous section, and data

on the GTT. The GTT data consist of the binary scores (1/0) of 45,749 teacher candi-

dates on 79 multiple-choice items.

In the case of item response data, the ACM axioms are concerned with orderings

amongst the probabilities for individuals at different abilities responding to items

with different difficulties. The ConjointChecks approach (Domingue, 2014) imple-

ments an algorithm for checking the axioms of ACM. The question is whether the

observed proportion of correct item responses for a given set of respondents assumed

to be at some common ability is consistent with the posterior distribution of the prob-

abilities for correct responses generated by the algorithm. If not, the ConjointChecks

algorithm is said to have detected a ‘‘violation.’’ The violation percentages (Vp) are

checked in 3 3 3 submatrices of the full data matrix. These matrices are either

formed via a random selection of items and groups of individuals or via the collec-

tion of adjacent items and groups of individuals.

The ConjointChecks approach is readily applied to discrete ability estimates, but

in case of continuous data, such as D-scores and IRT thetas, a discretization of the

continuous number line is achieved by a division of the line referred to as ‘‘band-

ing.’’ Some bandings are more ‘‘stringent’’ than others in the sense that they are

more likely to place a person in the wrong band given the error associated with the

person’s score (here, D or theta). One can expect that a more stringent banding would
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produce fewer axiom violations (for details, see Domingue, 2014). In this example,

the violation percentages (Vp) produced by common bandings of the D and theta

scores are examined across levels of stringencies.3

Violation percentages based on the natural banding of the sum scores were com-

puted for a set of 5,000 respondents. For the continuous abilities, the mean score

(either theta or D) for individuals at a given sum score was considered. The banding

was then defined by the midpoints between all consecutive means. The Vp were

examined from two types of checks. The first check looks at all adjacent 3-matrices

from the full data matrix while the second one considers 5,000 randomly chosen 3-

matrices. Along with the unweighted Vp, weighted Vp were also considered, where

violations at a given portion of the scale are weighted based on the number of indi-

viduals at that part of the scale. The results are summarized in Table 5. The sum

scores generate the smallest percentages of violations (for all Vp), but this can be

expected given that this banding is based on the sum scores. The D scores look very

similar to the sum scores, especially on the weighted metrics. The theta scores pro-

duce more violations, notably more so for the randomly chosen 5,000 3-matrices.

Also, the weighted metric performs better than its unweighted counterpart in terms

of smaller percentage of violations.

As there is no obvious banding available for the continuous theta and D scores, the

effect of banding stringency on Vp was investigated for a number of potential band-

ings. Bandings are characterized by the number of cutpoints and the starting point of

the first band in the banding; (the cutpoints are evenly spaced). The number between

10 and 190 were varied with increments of 20. For the GTT with 79 items, there are

80 bands in the sum score banding which is roughly the middle of the range used

here. The first cutpoint were either at the 0.005, 0.01, or 0.015 quantile of the score

distribution and then intervals were evenly spaced across the scale of the abilities,

with the last cutpoint being at either the 0.985, 0.99, or 0.995 quantile, respectively.

Unlike the case where the sum score banding was used as the basis for bandings for

theta and D, now the banding is defined within the scale so that the Vp, based on a

choice of banding, are optimal for each scale.

Table 5. Violation Percentages (Vp) for Natural Banding of Sum Scores.

Vp-Adj Vp-5k

Scale Uw W Uw W Stringencya

NCR 0.37 0.34 0.09 0.05 —
Theta 0.41 0.37 0.14 0.07 10857
D-scale 0.38 0.34 0.10 0.05 7735

Note. Vp-Adj = all adjacent 3-matrices from the full data matrix; Vp-5k = 5,000 randomly chosen 3-

matrices; Uw = unweighted; W = weighted; NCR = sum score (number correct responses).
aLarger values indicate more stringent bandings (Domingue, 2014).
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The results for the 20-item GAT-V and 79-item GTT are depicted in Figure 3.

Used are only weighted Vp because they perform better (smaller percentage of viola-

tions) compared with unweighted Vp (see Table 5). The theta scores were obtained

with IRT calibration under the 3PL using (a) maximum likelihood estimation (MLE)

and (b) expected a priori (EAP) estimation (as a side note, the correlation between

the D scores and IRT theta scores were 0.928 for the 79-item GTT data and 0.896

for the 20-item GAT-V data). As can be seen in Figure 3, the percentage of violation

decreases with the increase of stringency in the banding, which supports the intui-

tively expected tradeoff between Vp and stringency (see Domingue, 2014). The D-

scores consistently produce lower Vp compared with the IRT ability scores (thetas),

regardless of the approach to theta estimation (MLE or EAP), with the difference

tending to decrease with the increase of the test length. Thus, the D-scores produce

fewer violations of the ordering axioms of ACM than do the IRT theta scores. In

other words, the D-scale performs a good bit better than the IRT theta scale in terms

Figure 3. Comparison of weighted Vp and stringency for GAT-V (20 items) and GTT (79
items).
Note. GAT-V = General Aptitude Test–Verbal; GTT = General Teacher Test; Vp = violation percentages;

mle = maximum likelihood estimation (MLE); eap = expected a priori (EAP) estimation; d = D-scoring.
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of intervalness from the perspective of ACM, under the ConjointChecks approach to

checking the ACM axioms (Domingue, 2014).

Conclusion

Under the delta-scoring (D-scoring), the score of an examinee on a test of n binary

items is the sum of expected difficulties (di) of the correctly answered items in the

response vector of that examinee (Equations 1-3). Some of the advantages of this

approach are that (a) D-scores are easy to compute and interpret; (b) D-scores are

based on expected values and, therefore, do not depend on the sample of test takers;

and (c) different item response vectors, including those that produce the same raw

(NCR) score, result in different D-scores thus better differentiating examinees com-

pared to NCR scores. The D-scoring is particularly useful in test equating. This is

because it is sufficient to rescale the item parameters of a new test form onto the

scale of a target (base) form, without mapping their test characteristic curves thus

avoiding tedious computations and estimation errors associated with the use of

Newton–Raphson iterations in such mapping (e.g., Kolen & Brennan, 2014, p. 177).

The efficiency of equating test scores under D-scoring is even more pronounced

when multiple new test forms (say, A1, A2, . . ., Am) need to be equated to a base

form, B. Specifically, after transforming the IRT item parameters of the new forms

onto the ability scale of form B through a sequence of scale transformations over the

‘‘chain’’ of test forms A1! A2!� � �! Am! B (Li, Jiang, & von Davier, 2012), the

item parameters of all test forms are on a common scale and thus the D-scores,

which are obtained as a function of these item parameters for each test form (via

Equations 1-3), are also on a common scale.

The results related to psychometric features of the D-scale, reported with the illus-

trative example, were replicated with numerous sets of real data from large-scale

assessments at the NCA (not provided here for space consideration). In summary (a)

the D-scores highly correlate (in the neighborhood of .90) with the IRT ability scores,

u; (b) the precision of the D-scores is higher for low- and high-ability examinees,

which is just the opposite of IRT case, where the precision of u estimates decreases

for low- and high-ability examinees; (c) the D-scale performs a good bit better than

the IRT theta scale in terms of intervalness, by criteria of the additive conjoint mea-

surement, with the difference tending to decrease with the increase of the test length;

and (d) the D-scores differentiate better between examinees who, under IRT estima-

tion, are assigned to the extreme categories (say, 27 and 7) of a practically reason-

able interval on the logit scale. These properties of the D-scale are particularly useful

in testing that aims at differentiating among low test performers (e.g., to identify stu-

dents ‘‘at risk’’) or high test performers, say, in the context of medical education test-

ing, admission of students to universities, teacher certification, and so forth.

As noted earlier, the development of D-scoring was motivated by a call at the

NCA in Saudi Arabia for the development of procedures for automated test scoring

and equating that are methodologically sound and technically feasible. An important
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aspect of this call was the request to use IRT item bank information for (a) test

assembling; (b) direct scoring of tests based on the item parameters available in the

bank, and response vectors of examinees; (c) sequential equating of multiple test

forms; and (d) feeding the item bank with new trial items. The call was addressed

with the development and piloting of D-scoring and equating at the NCA, with the

procedures being implemented into a computerized system for automated test scoring

and equating (SATSE; Atanasov & Dimitrov, 2015). Along with IRT estimates of

the item parameters under the 3PL model, the item bank at the NCA is now upgraded

to include the expected item difficulty, di, as a direct function of these item para-

meters. As the item parameters in the item bank are on the same scale, the di values

are also on a common scale; that is, di for an item shows how difficult is that item

(as a ‘‘hurdle’’) for the population of test takers on the scale of a designated base

form of the test. When trial items are used with a new form of a test, their IRT para-

meters and expected difficulty, di, for the population of test takers for the new test

form are rescaled to the common scale for the target population of test takers for the

base test form.

In conclusion, the proposed method of D-scoring and equating proved promising

under its current piloting with large-scale assessments in Saudi Arabia and the hope

is that this method can efficiently complement IRT procedures in the practice of

large-scale testing in the field of education and psychology.

Appendix A

Derivation of the Formula for Standard Errors of D-Scores

As given with Equation (3), the D-score of person s is obtained as follows:

Ds =
Xn

i = 1
Xsidi, ðA1Þ

where Xsi is the score of person s on item i (Xsi = 1 for correct response; otherwise

Xsi = 0).

As the expected value of Xsi is the probability of correct response on item i by per-

son s with ability us, that is, E Xsið Þ = Pi usð Þ, the expected value of the score Ds is

E Dsð Þ = E
Xn

i = 1
Xsidi

� �
=
Xn

i = 1
diE Xsið Þ=

Xn

i = 1
diPi usð Þ: ðA2Þ

The error associated with Ds, denoted e Dsð Þ, is the difference between Ds and its

expected value. Thus, taking into account Equations (A1) and (A2), we obtain

e Dsð Þ= Ds � E Dsð Þ=
Xn

i = 1
Xsidi �

Xn

i = 1
diPi usð Þ=

Xn

i = 1
di Xsi � Pi usð Þð Þ ðA3Þ

In Equations (A3), the difference Xsi � Pi usð Þ is the random error associated with

the observed score Xsi; that is esi = Xsi � Pi usð Þ. Thus,
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e Dsð Þ=
Xn

i = 1
diesi: ðA4Þ

The variance of e Dsð Þ is then

VAR e Dsð Þð Þ = VAR
Xn

i = 1
diesi

� �
=
Xn

i = 1
VAR diesið Þ+ 2

X
didkCOV esi, eskð Þ, ðA5Þ

where COV esi, eskð Þ is the covariance between the random errors esi and esk of two

different items, i and k, for the same person s. Under the IRT assumption of local

independence, this covariance equals zero; that is, COV esi, eskð Þ = 0. With this, we

obtain from Equation (A5) that

VAR e Dsð Þð Þ=
Xn

i = 1
VAR diesið Þ=

Xn

i = 1
d2

i VAR esið Þ, ðA6Þ

On the other hand, it is known that the variance of the random error associated with a

binary score, Xsi, equals the product Pi usð Þ 1� Pi usð Þ½ �, where Pi usð Þ is the probabil-

ity for Xsi = 1. With this, we obtain from Equation (A6) that

VAR e Dsð Þð Þ=
Xn

i = 1
d2

i Pi usð Þ 1� Pi usð Þ½ �: ðA7Þ

Thus, as given with Equation (5) in the main text, the standard error of score Ds is

SE Dsð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1
d2

i Pi usð Þ 1� Pi usð Þ½ �
q

: ðA8Þ

Appendix B

Identity of Item Reliability With the D-Scale and the Binary X-Scale

Let Xi stand for the binary score (1/0) on item i in a test. A fundamental assumption

in CTT is that for this (and other) score we have: Xi = TXi
+ EXi

, where TXi
and EXi

are the true score and error parts, respectively, for Xi. Under the CTT assumption of

no correlation between true scores and errors, we have VAR(Xi) = VAR(TXi
) +

VAR(EXi
). Then, if rii Xð Þ is the reliability of Xi, by the CTT definition of reliability

we have:

rii Xð Þ= VAR TXið Þ=VAR Xið Þ= VAR TXið Þ= VAR TXið Þ + VAR EXið Þð Þ: ðB1Þ

Likewise, if Di is the D score on item i, the corresponding equations are: Di =

TDi
+ EDi

; VAR(Di) = VAR(TDi
) + VAR(EDi

); and item reliability on the D-scale:

rii Dð Þ= VAR TDið Þ=VAR Dið Þ= VAR TDið Þ= VAR TDið Þ+ VAR EDið Þð Þ: ðB2Þ

On the other hand, Di = diXi = di TXi
+ EXi

ð Þ = diTXi
+ diEXi

, where di is the

expected item difficulty. Thus, TDi
= diTXi

and EDi
= diEXi

, from where we obtain
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VAR(TDi
) = d2

i VAR(TXi
) and VAR(EDi

) = d2
i VAR(EXi

), respectively. Based on these

results, we obtain from Equations (B1) and (B2) that

rii Dð Þ= d2
i VAR TXið Þ

�
d2

i VAR TXið Þ+ d2
i VAR EXið Þ

� �
=

VAR TXið Þ= VAR TXið Þ+ VAR EXið Þð Þ= rii Xð Þ: ðB3Þ

Thus, as provided with Equation (6) in the main text, the item reliability is the same

at the binary X-scale and the D-scale; that is

rii Dð Þ= rii Xð Þ: ðB4Þ
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Notes

1. The standard error of D scores, SE(D), decreases toward the ends of the IRT logit scale

because the product Pi usð Þ 1� Pi usð Þ½ �, which governs the SE(D) values (see Equation 5),

gets closer to zero when (a) Pi usð Þ gets closer to 0, which happens for very small values

of theta (us ! -N), and (b) Pi usð Þ gets close to 1, which happens for very large values of

theta (us !+ N).

2. The SATSE is written in MATLAB (MathWorks, Inc., 2015), but it is compiled to function

as a self-sustained computer program with interface connections to the NCA database; (it

is not a commercial software for independent applications).

3. Given a banding, each estimate falls into a certain band of the banding. The standard error

associated with that estimate and the normal approximation to compute the probability that

the estimate is actually within the band. If pi is this probability for individual i, stringency

is defined as (�
P

i

logpi). Clearly, a more stringent banding will result in smaller pi. The

logarithmic transformation generates a negative number, with its absolute value increasing

as pi decreases, but with the negative sign of the sum, the stringency becomes positive and

larger values indicate more stringent bandings (Domingue, 2014).
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