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Abstract

Growth mixture modeling is generally used for two purposes: (1) to identify mixtures
of normal subgroups and (2) to approximate oddly shaped distributions by a mixture
of normal components. Often in applied research this methodology is applied to both
of these situations indistinctly: using the same fit statistics and likelihood ratio tests.
This can lead to the overextraction of latent classes and the attribution of substantive
meaning to these spurious classes. The goals of this study are (1) to explore the per-
formance of the Bayesian information criterion, sample-adjusted BIC, and bootstrap
likelihood ratio test in growth mixture modeling analysis with nonnormal distributed
outcome variables and (2) to examine the effects of nonnormal time invariant covari-
ates in the estimation of the number of latent classes when outcome variables are
normally distributed. For both of these goals, we will include nonnormal conditions
not considered previously in the literature. Two simulation studies were conducted.
Results show that spurious classes may be selected and optimal solutions obtained in
the data analysis when the population departs from normality even when the non-
normality is only present in time invariant covariates.
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Growth mixture modeling (GMM) has gained great popularity in the social sciences

over the past two decades. This methodology provides a more flexible modeling of

longitudinal data analysis compared to traditional methods such as hierarchical linear

modeling and repeated-measures ANOVA (Bauer & Curran, 2003a). Particularly

interesting is the identification of latent trajectories classes within a population.

These latent classes, obtained through GMM, could be interpreted as groups of indi-

viduals with substantively different developmental paths (Moffitt, 1993) or with dif-

ferent patterns of substance abuse (Sher, Jackson, & Steinley, 2011).

Nevertheless, few applied researchers are aware that finite mixture modeling, and

by extension GMM, can be used for two main applied purposes: (1) to identify mix-

tures of normal subgroups within a larger population and (2) to approximate oddly

shaped distributions by a mixture of normal components (Bauer & Curran, 2003a).

In the first situation, the mixture of normal subpopulations can be correctly identified

using substantive information, such as identifying two normal populations that repre-

sent hip bone density for male and female humans. On the other hand, when the sec-

ond situation occurs, the mixture components are used by the finite mixture

procedure to approximate the data better, and thus substantive interpretation is often

inappropriate. For example, in the case of a population with an exponential distribu-

tion, the finite normal mixture model will most likely need more than one normal

population to approximate the heavy right tail of this distribution. The problem here

is that the methodology is applied to both of these situations indistinctly.

Furthermore, the same fit statistics and likelihood ratio tests are used to select the

best solution in both cases.

This article considers the structural equation modeling perspective introduced to

the study of growth curves by Meredith and Tisak (1984, 1990). The parametrization

of Bollen and Curran (2006) is used for consistency.

Growth Mixture Modeling With Normal Errors Assumption

When we have no knowledge of group membership in the analysis of growth patterns,

we might hypothesize that there exist classes in the population that are unknown or

latent. The analysis of latent curve models with unknown group membership allows

us to explore the possibility that the data derive from a mixture of populations. The

main interest here is finding out, with a small level of error, from which population a

particular observation comes from. It is important to note that multiclass mixtures

can result from a single, nonnormal population (Bauer & Curran, 2003a, 2003b). This

methodology is commonly known in the literature as mixture modeling, and it makes

use of mixed models and full information estimation (Arminger & Stein, 1997;

Arminger, Stein, & Wittenberg, 1999; Bauer & Curran, 2003a, 2004; Jedidi, Jagpal,

& DeSarbo, 1997; B. O. Muthén & Shedden, 1999). These techniques classify obser-

vations into groups and fit latent class models to those groups simultaneously.

The general equations for this approach, following the notation from Bollen and

Curran (2006), are
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it is the disturbance (i.e., error) for individual i at time t in group g. The inter-

pretation of the intercept is the implied value of the repeated measures at the first

time of measurement (l
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t = 0) and the linear slope describes the rate of change in the

repeated measures for unit increase in time. It is in the constant l
(g)
t that a researcher

can incorporate linear and nonlinear trajectories in the model for each group g.

Notice that Equation (1) allows for individual specific intercept and slope by includ-

ing the subscript i for group g.

In Equations (2) and (3), the population means are given by the ms and random

components, zs, and the latter allows the as and bs to be different for each individual.

The gs are the covariate coefficients for the intercept and slopes. The covariate coef-

ficients are interpreted in the same way as in multiple regression; a unit increase in

the covariate implies a change of g units in the intercepts or slopes, respectively.

Since these are time invariant covariates (TICs), they may take a different value for

each individual but remain the same across all times of measurement. The variance

components for a
(g)
i and b
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1i are the variances of z(g)

a and z
(g)
b , or c(g)
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matrix representation of Equations (1) to (3) is
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where y(g) is a T31 vector of repeated observations for group g, L(g) is a T3m

matrix of factor loadings for group g, h(g) is a m31 vector of m latent factors for

group g, and e(g) is a T31 vector of disturbances for group g. Time is included as a

column in the L(g) matrix. Also, in Equation (5), m(g)
h is an m31 vector of factor

means for group g, and z(g) is an m31 vector of random components for group g.
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G(g) is a T3T matrix of regression coefficients of the repeated measures on the cov-

ariates x(g) for group g.

Jedidi et al. (1997) address the issue of mathematical identifiability of growth

mixture models. The authors state that at least three occasions of measurement are

needed to model a linear trend, and at least four and five occasions are needed for fit-

ting quadratic and cubic trends, respectively. The authors also show that if the single

group growth model (only one latent class) is mathematically identified, then the cor-

responding growth mixture model (more than one latent class) is identified as well,

given that for each group the observed variables come from a multivariate normal

distribution. The estimation of the model and its identification relies on this assump-

tion of multivariate normality.

Issues in the Decision of the Number of Classes in GMM

There are several issues with the decision of how many latent classes to estimate in

GMM. Local optimal solutions are more frequent in these models compared to those

where the classes are known, and several authors have suggested that a large number

of random starts are needed (see, e.g., Hipp & Bauer, 2006). Other authors have sug-

gested the same approach to avoid nonconvergence of replications in simulation studies

(Li, Harring, & Macready, 2014; Liu & Hancock, 2014). Moreover, the maximum like-

lihood (ML) estimator for these mixture models yield estimates that are not consistent

when the multivariate normality assumption is violated (Arminger et al., 1999). Bauer

and Curran (2003a, 2004) show that under situations where the multivariate normality

assumption is violated, the number of latent groups can be overselected. The authors

demonstrated, through a series of simulation studies, that in these cases multiple class

solutions could be preferred even when a single group was used to simulate the data.

Also, these spurious classes emerged even when the departure from multivariate nor-

mality was as small as a skewness and kurtosis equal to 1. The authors concluded that

more classes were selected to better approximate the nonnormal distribution.

Most fit statistics currently used in GMM can be classified in one of three groups:

information criteria for model selection, Bayesian-based information criteria, and

classification-based information criteria (McLachlan & Peel, 2000). The authors

explain this classification as follows: information criteria for model selection fit

indices that include a measure of lack of fit and penalty for model complexity (e.g.,

AIC [Akaike’s information criterion], EIC [empirical information criterion], and

CVIC [cross-validation information criterion]); Bayesian-based information criteria

are those developed within the Bayesian framework but can also be used in the fre-

quentist framework (e.g., BIC [Bayesian information criterion], LEC [Laplace-

empirical criterion]); and last, classification-based information criteria are those that

use the complete-data likelihood within the expectation-maximization (EM) frame-

work for the fitting of the mixture model (e.g., EN, NEC [Laplace-empirical criter-

ion], and ICL-BIC [Integrated classification likelihood BIC]). The concept of entropy

is central to these last types of fit statistics. Entropy is a value between 0 and 1 that
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reflects the quality of classification; 0 represents randomness and 1 suggests perfect

classification (Uher et al., 2009).

AIC is the most used information criteria fit index. AIC tends to favor models with

more latent classes than the true model (Celeux & Soromenho, 1996; McLachlan &

Peel, 2000; Soromenho, 1993). The most used Bayesian-based information criteria

are BIC and LEC. BIC has been shown to not underestimate the true number of latent

classes, asymptotically, for normal finite mixture models (Campbell, Fraley,

Murtagh, & Raftery, 1997; Dasgupta & Raftery, 1998; Leroux, 1992; Roeder &

Wasserman, 1997). However, other simulation research have found that BIC esti-

mates fewer groups than the ‘‘true’’ model when, despite a valid component density,

the sample size is not large (Celeux & Soromenho, 1996). BIC overestimates the

number of latent classes when the model has been misspecified (Biernacki, Celeux,

& Govaert, 1998) or the data are nonnormal (Bauer & Curran, 2003a, 2003b, 2004).

Tofighi and Enders (2008) conducted simulations studies that showed that the

sample-adjusted BIC (SBIC) consistently favored the correct three-latent-classes

solution over an erroneous four-latent-classes solution. Nylund, Asparouhov, and

Muthén (2007) found that the BIC and SBIC perform best among fit indices in latent

class analysis (LCA) and GMM analysis when all generated data follow normal dis-

tributions. Jung and Wickrama (2008) showed that the BIC correctly favors the

‘‘true’’ number of latent classes in GMM analysis. The authors considered a case

where the outcome variables were slightly nonnormal (skewness and kurtosis equal

to 1). Henson, Reise, and Kim (2007) also found that the SBIC performs best com-

pared to other fit statistics.

Classification-based information criteria include a bias correction for entropy.

CLC [Classification likelihood information criterion], NEC, and ICL-BIC are com-

monly used classification-based fit statistics. The CLC tends to overestimate the num-

ber of mixture components when the proportion of individuals in each group is not

equal (Biernacki, Celeux, & Govaert, 1999). This limits its usefulness in most real data

context where the ‘‘true’’ number of latent classes is unknown. NEC tends to favor

models with multiple latent classes (Biernacki et al., 1999; McLachlan & Peel, 2000).

In a simulation study by McLachlan and Peel (2000) with varying sample sizes, over-

lap and level of linear relation among observed outcome variables, the authors show

empirically that of all these fits statistics, for mixtures of normal components, the LEC

and ICL-BIC consistently identify the underlying number of latent classes. In general,

Bauer and Curran (2003a, 2003b, 2004) conducted simulation studies that show that

under certain conditions all fit indices tend to overestimate the number of components.

Bauer and Curran (2003a, 2003b, 2004) have exposed the general problem of

using fit indices for the estimation of the number of mixture components. The authors

found that in some instances all fit indices overestimate the number of groups. Bauer

and Curran (2004) point out three possible conditions in which fit indices may lead to

the estimation of spurious latent classes: misspecification of the model, continuous

repeated observations that depart from normality, and nonlinear relationships between

latent and observed variables. When we are interested in the first of these uses, fit
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indices are used to select the optimal number of mixture components, but model coef-

ficients lose their interpretation (e.g., slope parameters no longer describe individual

developmental trajectories of the outcome variable) as compared to the second situa-

tion. The essential problem is that the same fit indices are used for model selection in

both uses. The distinction between these two situations is one of the major problems

in finite mixture model estimation. When a single class is present in the data and the

model is misspecified (e.g., a linear growth is fitted when the growth is in fact curvi-

linear), the likelihood function for the single group solution is not a good representa-

tion of the data, and the likelihood function of a ‘‘false’’ multiple-group solution

could yield a better approximation (Bauer & Curran, 2003a).

Bauer and Curran (2003a) note that in simulations in which a single ‘‘true’’ group

with minor departures from normality is analyzed, fit indices tend to favor multila-

tent class solutions, with ICL-BIC being the most conservative. Nevertheless, ICL-

BIC favored a two-class solution in about 70% of the replications when both skew-

ness and kurtosis are equal to 1 and roughly 93% when skewness and kurtosis are

1.5 and 6, respectively.

B. O. Muthén (2003) developed and suggested the use of multivariate skewness

tests (MST) and the multivariate kurtosis test (MKT). These are fit statistics that com-

pered the multivariate skewness and kurtosis implied by the k-class growth mixture

model with those obtained from the sample data. In these tests, a low probability

value indicates departure of the model implied versus the sample calculated moments,

and a large probability value indicates adequate model fit. Tofighi and Enders (2008)

found, through simulation studies, that MST and MKT favor GMM solutions with

less latent classes than that of the model used to simulate the data, making them

overly conservative.

Preacher and Merkle (2012) propose that the major problem with fit indices is that

researchers use them for model selection in structural equation models as if they have

no error, namely, without considering the sample variability of the selection criteria.

This point sheds light on two potential difficulties for model selection in finite mix-

ture models: replicability of findings and comparing fit statistics for models with dif-

ferent numbers of mixture components. The authors show that, for the same set of

models, the BIC favors different models as the sample size increases. Also note-

worthy is their observation that without some measure of standard error or confidence

intervals it is difficult to truly distinguish between models that have BIC scores that

are close in value. They suggest comparing the BICs for two competing models,

DBIC, and confidence intervals (CIs) for BIC and DBIC, but state that the overlap

between their CIs ‘‘does not guarantee that model selection decision will be stable

over repeated samples’’ (Preacher & Merkle, 2012, p. 12). Further research is needed

in constructing confidence intervals for fit statistics as the authors suggest.

In a commentary to Bauer and Curran (2003a), both B. O. Muthén (2003) and

Rindskopf (2003) suggest the use of the Lo–Mendell–Rubin likelihood ratio test

(LMR-LRT; Lo, Mendell, & Rubin, 2001). This likelihood ratio test has been

exposed as problematic in that the k-class model and the k21-class model that it
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compares are not nested, making it inappropriate (Jeffries, 2003). Nevertheless,

Nylund et al. (2007) suggest that LMR-LRT may still be useful for class enumeration

and base their statements on the Lo et al. (2001) simulation study. A clear competitor

to the LMR-LRT is the bootstrap likelihood ratio test (BLRT) described by

McLachlan and Peel (2000). The BLRT is a parametric bootstrap method for com-

paring nested models in LCA and GMM. The performance of this statistic test has

not been widely explored in the literature. Our literature review reveled very few

articles that perform simulation studies in GMM analysis that include BLRT. Nylund

et al. (2007) showed that, with normally distributed outcome variables, BLRT out-

performs the LMR-LRT. Tofighi and Enders (2008) found similar results and stated

that BLRT performs better than MST and MKT in the selection of correct number of

latent components in GMM analysis. Jung and Wickrama (2008) conducted the only

study that we were able to find that explores the efficiency of BLRT in selecting the

correct number of latent classes in GMM analysis when outcome variables are non-

normal. Jung and Wickrama (2008) considered skewness and kurtosis values of 1 on

the repeated measures and found that BLRT performed best among likelihood ratio

tests and fit indices, with the exception of the BIC and SBIC.

We have seen the particular problems with each of the fit indices and likelihood

ratio tests presented here as well as situations in which these statistics can lead to the

extraction of spurious latent classes. The selection of the optimal number of latent

classes in finite mixture models has to be preceded by a diligent investigation of the

appropriateness of the assumptions about the data the researcher is making. The

implementation of any model comes with a set of assumptions that the researcher,

knowingly or unknowingly, makes about the data collected and the underlying

growth curve of the outcome variables. Namely, if a linear growth is fitted, the

researcher is assuming that the outcome variables increase or decrease linearly over

time. Fit indices do not inform the researcher about erroneous specifications of the

model, and they could overestimate the number of classes as a result of this misspe-

cification. Thus, looking at fit statistics as those presented above, in the situations

described as problematic, will confuse researchers in their model selection decisions.

Peugh and Fan (2015) conducted an extensive simulation study comparing a large

variety of fit statistics and, following B. O. Muthén’s (2003) recommendations,

manipulated four design conditions: sample size, separation of latent class trajec-

tories, membership proportions, and the amount of variance explained by covariates.

The authors found that when sample size was small (N = 500), the indices considered

were more likely to favor incorrect models. In the case of large sample size

(N = 3, 000), enumeration indices could identify the correct number of classes only

when the latent class trajectories were well separated. Moreover, the inclusion of

covariates helped only when sample size was large.

The recommendation of graphically inspecting the skewness and kurtosis of the

data is appropriate (Bauer & Curran, 2003a; B. O. Muthén, 2003). While this is not a

statistic, it provides insight about how reliable the solutions favored by the fit indices

are. Another interesting recommendation is to inspect the latent class trajectories
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against the observed data and the residuals to try to identify any of the three proble-

matic situations described in Bauer and Curran (2004).

Goals of the Study

The goals of this study are (1) to explore the performance of the BIC, SBIC, and

BLRT in GMM analysis with nonnormal distributed outcome variables and (2) to

examine the effects of nonnormal TICs in the estimation of the number of latent

classes when outcome variables are normally distributed. For both of these goals we

will include nonnormal conditions not considered previously in the literature (e.g.,

Bauer & Curran, 2003a; Jung & Wickrama, 2008; Nylund et al., 2007; Tofighi &

Enders, 2008).

In order to achieve these goals, two simulation studies were conducted. The first

addresses the problem of spurious classes emerging as artifacts of the nonnormality

of the dependent variables. The second simulation study explores the effects of non-

normal covariates in the estimation of the correct number of latent classes. The

results from these simulations show the performance of these fit statistics and likeli-

hood ratio tests and their usefulness as the correct number of classes’ enumerators.

Moreover, these findings could help applied researchers avoid conditions in which

spurious classes could be selected in GMM analysis with real data and guide them in

the interpretation of results.

Simulation Study 1

The first simulation study builds on those performed by Bauer and Curran (2003a,

2004) and includes a more exhaustive exploration of how much departure from nor-

mality is too much. One of the goals of this article is to explore values of skewness

and kurtosis not explored by the authors. Moreover, test statistics such as VLMR-

LRT and LMR-adjusted LRT (Lo et al., 2001) are included in the analysis as sug-

gested by B. O. Muthén (2003) and Rindskopf (2003). VLMR-LRT and LMR-

adjusted LRT have been shown to perform poorly even in cases with normally dis-

tributed outcome variables (Jeffries, 2003; Jung & Wickrama, 2008; Nylund et al.,

2007; Tofighi & Enders, 2008). Moreover, BLRT (McLachlan & Peel, 2000) was

also included and the performance of this likelihood ratio test was explored in non-

normality conditions of outcome variables and covariates not previously presented in

the literature (Jung & Wickrama, 2008). The results of this simulation will provide a

more exhaustive comparison of the efficiency of BIC, SBIC, and BLRT under

diverse, but often found in practice, nonnormality of outcome and covariates. Also,

they could be a useful guide to the researcher interested in fitting finite mixture mod-

els to real-world data as it could provide more examples of situations in which spur-

ious classes may emerge.

The main hypothesis of this simulation study is that for nonnormal data fit statis-

tics and likelihood ratio tests will favor models with larger number of latent classes
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than the ‘‘true’’ model. The reasoning behind this is that a normal one-class model

would be a poor representation of the data and the finite mixture methodology will

overcompensate for this lack of fit by fitting additional normal classes until the data

are more closely approximated.

Simulation Design

The data for this simulation were generated using the five-occasion linear growth

model described by Bauer and Curran (2003a). In this simulation, only a single

‘‘true’’ population existed in the data. The population mean trajectory was parame-

trized so that the average score would increase over time (ma = 1:00 and mb = 0:80).

The variance components were specified to allow individual variability in

both intercepts and slopes (Ca = 1:00 and Cb = 0:20). Moreover, intercepts and

slopes were positively correlated (Cab = 0:11). Also, the error variances for the

dependent variables were specified to be increasing over time (Ye =

diag½1:00; 1:42; 2:25; 3:47; 5:09�).
The distributional conditions are given by all possible combinations three values

of skew (0, 1, and 1.6) and three values of kurtosis (0, 2, and 4). Five hundred sam-

ples were generated for each of the nine distributional conditions and three sample

sizes, N = 200, N = 400, and N = 800. Thus, 27 sets of 500 samples were generated.

The normal samples (i.e., skew 0, kurtosis 0) were generated and analyzed with

Mplus 7.4. The remaining nonnormal conditions involved transformation of the nor-

mal distribution to the desired values of skew and kurtosis using the Fleishman

(1978) method with the Vale and Maurelli (1983) extension as implemented in EQS

6.2 (Bentler, 1995). The values of kurtosis and skew used in this simulation, as well

as those in Bauer and Curran (2003a), are often encountered in applied research and

represent minor departures from normality that would not be of concern to the

researcher (Micceri, 1989).

To test the hypotheses, we fit one- and two-class models to the data. The analysis

was carried out in Mplus 7.4, specifying the EM algorithm with the MLR option for

robust standard errors maximum likelihood estimation (L. K. Muthén & Muthén,

1998). Single population parameters were used as starting values for the EM algo-

rithm, following the recommendations of L. K. Muthén and Muthén (1998) to avoid

the local solutions. In addition, 100 random starts were employed to avoid local opti-

mal solutions and nonconvergence issues (Hipp & Bauer, 2006; Li et al., 2014; Liu

& Hancock, 2014). These starting values were applied to most parameters, with the

exception of the growth factor means that were specified to have a high group and a

low group (bma = 0:00 and bmb = 0:00 for Class 1, and bma = 1:50 and bmb = 1:60 for

Class 2). This use of starting values is consistent with other simulation studies on

finite normal mixtures (e.g., Bauer & Curran, 2003a; Biernacki et al., 1999;

McLachlan & Peel, 2000).

The model was allowed 1,000 iterations to converge. Convergence patterns for

growth mixture models were exhaustively explored by Bauer and Curran (2003a) and
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are not of interest in the present research. Nevertheless, as in the research above, anal-

yses were conducted both including and excluding nonconvergent solutions, and the

results did not deviate in a meaningful way from those reported here.

The Effect of Nonnormality in the Decision of the Number of Latent Classes
to Extract

The first goal of this study was to further investigate the conditions of nonnormality

in which spurious classes emerge in finite mixture models when a one-class model

was used to generate the data. Bauer and Curran (2003a) found that solutions with

spurious classes are identified as optimal for even small departures of normality (i.e.,

skew 1 and kurtosis 1). Comparative fit for one- and two-class solutions were exam-

ined using AIC, BIC, and sample-corrected BIC. The hypothesis of interest is that fit

statistics would favor the two-class solution, on average, for nonnormal data.

Moreover, it was hypothesized that this preference would be greater the more the

data departed from normality. Test statistics not used by Bauer and Curran (2003a)

were included in the analysis: VLMR-LRT, LMR-adjusted LRT, and BLRT. Since

these tests are based on the likelihood, it was expected that they would perform well

for normal data but would have the same problems as fit statistics when the data are

nonnormal.

Tables 1 to 3 present the results of this simulation study with regard to fit statis-

tics. Table 4 present the results for the likelihood ratio test comparing the one-class

solution to the two-class solution. The fit statistics were on average higher for the

one-class solution for normal data across all three sample sizes, as can be seen in

Tables 1 to 3. The mean difference was calculated by subtracting the fit statistic of

the two-class solution to that of the one-class solution. Thus, a negative value indi-

cates that the statistic is better (lower) for the one-class solution. These results are

similar to those reported by Bauer and Curran (2003a) and support the first part of

the hypotheses.

Table 1 shows that with small sample size (N = 200), BIC performs on average

much better than AIC and SBIC in the normal condition, the no skewness and a kur-

tosis value of 4 and no kurtosis and a skewness value of 1. The reader can appreciate

this by the negative mean difference and mean percentage change. These results cor-

roborate the findings of Nylund et al. (2007), Jung and Wickrama (2008), and

Tofighi and Enders (2008). Nevertheless, the BIC did not favor the GMM solution

with the ‘‘true’’ number of classes. AIC and SBIC performed poorly in all nonnor-

mal scenarios. These results provide empirical evidence in favor of the hypotheses.

Once skew and kurtosis are introduced, the one-class, normal growth mixture model

is no longer a good representation of the data and a spurious class is necessary to

improve the fit. It is important to note that for sample sizes of 400 and 800 the BIC

performed as poorly as the SBIC and the AIC, favoring the two-class solution. These

results indicate that the BIC is not as useful to identify the correct number of latent
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components as suggested by Nylund et al. (2007), Jung and Wickrama (2008), and

Tofighi and Enders (2008) in moderate sample size nonnormal populations.

The column labeled Class Membership in Tables 1 to 3 show the classification of

individuals according to the most likely class membership across replications. The

percentage of individuals classified in Class 1 (no growth class) ranges from 10.20%

Table 1. Relative Fit of One-Class Versus Two-Class Models (of 500 Samples, N = 200).

Fit statistic Mean differencea Mean % changea Class membership

Skewness 0, kurtosis 0
AIC 20.75 20.02
BIC 210.65 20.26
SBIC 21.14 20.03

Skewness 0, kurtosis 2
AIC 14.45 0.35 Class 1 = 28 (14.10)
BIC 4.55 0.11 Class 2 = 172 (85.90)
SBIC 14.06 0.34

Skewness 0, kurtosis 4
AIC 14.52 0.36 Class 1 = 33 (16.65)
BIC 211.87 20.29 Class 2 = 167 (83.35)
SBIC 13.48 0.33

Skewness 1, kurtosis 0
AIC 16.93 0.41 Class 1 = 53 (26.65)
BIC 29.45 20.23 Class 2 = 147 (73.40)
SBIC 15.89 0.39

Skewness 1, kurtosis 2
AIC 17.98 0.44 Class 1 = 61 (30.26)
BIC 8.08 0.20 Class 2 = 139 (69.74)
SBIC 17.59 0.43

Skewness 1, kurtosis 4
AIC 21.42 0.53 Class 1 = 56 (28.03)
BIC 11.52 0.28 Class 2 = 144 (71.97)
SBIC 21.03 0.51

Skewness 1.6, kurtosis 0
AIC 49.13 1.20 Class 1 = 29 (14.50)
BIC 39.23 0.95 Class 2 = 171 (85.50)
SBIC 7.55 0.18

Skewness 1.6, kurtosis 2
AIC 31.55 0.77 Class 1 = 20 (10.20)
BIC 21.66 0.52 Class 2 = 180 (89.80)
SBIC 31.16 0.76

Skewness 1.6, kurtosis 4
AIC 31.52 0.77 Class 1 = 15 (7.57)
BIC 21.63 0.52 Class 2 = 180 (92.43)
SBIC 31.13 0.76

Note. AIC = Akaike’s information criterion; BIC = Bayesian information criterion; SBIC = sample-

corrected BIC.
aMean difference = Fit1 2 Fit2, and percentage change = (1 2 Fit2/Fit1) 3 100.
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to 30.26% for N = 200, from 12.08% to 33.20% for N = 400, and from 7.85% to

34.18% for N = 800. This means that for some conditions of nonnormality about a

third of the individuals were classified as having no growth even though a linear

growth was present in the ‘‘true’’ population. The applied researcher using real data

with similar conditions of nonnormality would be tempted to find substantively

Table 2. Relative Fit of One-Class Versus Two-Class Models (of 500 Samples, N = 400).

Fit statistic Mean differencea Mean % changea Class membership

Skewness 0, kurtosis 0
AIC 20.94 20.01
BIC 212.91 20.16
SBIC 23.40 20.04

Skewness 0, kurtosis 2
AIC 25.18 0.31 Class 1 = 48 (12.08)
BIC 13.01 0.16 Class 2 = 352 (85.01)
SBIC 22.73 0.28

Skewness 0, kurtosis 4
AIC 33.66 0.41 Class 1 = 60 (14.99)
BIC 21.68 0.26 Class 2 = 340 (85.01)
SBIC 31.20 0.38

Skewness 1, kurtosis 0
AIC 37.83 0.46 Class 1 = 96 (24.00)
BIC 25.86 0.31 Class 2 = 304 (76.00)
SBIC 35.38 0.43

Skewness 1, kurtosis 2
AIC 40.94 0.50 Class 1 = 133 (33.30)
BIC 28.96 0.35 Class 2 = 267 (66.30)
SBIC 38.48 0.47

Skewness 1, kurtosis 4
AIC 49.93 0.61 Class 1 = 129 (32.21)
BIC 37.96 0.46 Class 2 = 271 (67.79)
SBIC 47.48 0.58

Skewness 1.6, kurtosis 0
AIC 104.37 1.27 Class 1 = 109 (27.36)
BIC 92.39 1.12 Class 2 = 291 (72.64)
SBIC 60.66 0.74

Skewness 1.6, kurtosis 2
AIC 72.46 0.89 Class 1 = 77 (19.15)
BIC 60.48 0.73 Class 2 = 323 (80.85)
SBIC 70.00 0.85

Skewness 1.6, kurtosis 4
AIC 71.95 0.88 Class 1 = 97 (24.26)
BIC 59.97 0.73 Class 2 = 303 (75.74)
SBIC 69.49 0.85

Note. AIC = Akaike’s information criterion; BIC = Bayesian information criterion; SBIC = sample-

corrected BIC.
aMean difference = Fit1 2 Fit2, and percentage change = (1 2 Fit2/Fit1) 3 100.
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meaningful explanations to these seemingly different developmental trajectories. The

results presented here provide empirical evidence that the additional classes are an

artifact of the finite mixture trying to approximate the nonnormality of the data with

a mixture of normally distributed classes.

Table 3. Relative Fit of One-Class Versus Two-Class Models (of 500 Samples, N = 800).

Fit statistic Mean differencea Mean % changea Class membership

Skewness 0, kurtosis 0
AIC 21.04 20.01
BIC 215.09 20.04
SBIC 25.57 20.03

Skewness 0, kurtosis 2
AIC 42.67 0.26 Class 1 = 63 (7.85)
BIC 28.61 0.17 Class 2 = 737 (92.15)
SBIC 38.14 0.23

Skewness 0, kurtosis 4
AIC 57.58 0.35 Class 1 = 76 (9.50)
BIC 43.53 0.27 Class 2 = 724 (90.50)
SBIC 53.05 0.32

Skewness 1, kurtosis 0
AIC 71.41 0.44 Class 1 = 149 (18.62)
BIC 57.35 0.35 Class 2 = 551 (81.38)
SBIC 66.88 0.41

Skewness 1, kurtosis 2
AIC 80.93 0.49 Class 1 = 273 (34.18)
BIC 66.87 0.41 Class 2 = 527 (65.82)
SBIC 76.40 0.47

Skewness 1, kurtosis 4
AIC 92.15 0.56 Class 1 = 232 (29.03)
BIC 78.09 0.48 Class 2 = 568 (70.97)
SBIC 87.62 0.53

Skewness 1.6, kurtosis 0
AIC 199.44 1.22 Class 1 = 264 (32.97)
BIC 185.38 1.13 Class 2 = 536 (67.04)
SBIC 194.91 1.19

Skewness 1.6, kurtosis 2
AIC 137.24 0.84 Class 1 = 154 (19.28)
BIC 123.19 0.75 Class 2 = 646 (80.72)
SBIC 132.72 0.81

Skewness 1.6, kurtosis 4
AIC 134.93 0.82 Class 1 = 216 (27.01)
BIC 120.88 0.74 Class 2 = 584 (72.99)
SBIC 130.40 0.80

Note. AIC = Akaike’s information criterion; BIC = Bayesian information criterion; SBIC = sample-

corrected BIC.
aMean difference = Fit1 2 Fit2, and percentage change = (1 2 Fit2/Fit1) 3 100.
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Results of the likelihood ratio tests are presented in Table 4. All likelihood ratio

tests worked better with normal data, but when nonnormality is introduced their per-

formance becomes poorer. BLRT performed the best for this sample size with inap-

propriate results in just 5% to 31% of the replications. The best performance

corresponded to normal conditions for sample sizes of 200 and 400, and the worse

corresponded to sample size of 800, no kurtosis and skewness of 1.6. The second

worse performance of the BLRT was for the sample size 800, skewness of zero and

kurtosis of 4. The results for sample sizes 200 and 400 were practically the same for

nonnormal conditions. Nevertheless, as sample size increased (N = 800) BLRT was

more susceptible to departures from normality on the outcome variables. These

results are in contrast with those of Jung and Wickrama (2008). VLMR-LRT and

LMR-adjusted LRT perform poorly even when outcome variables are generated to

be normal. These statistics failed to reject the true one-class solution from 13% to

69% of the replications.

The results in parentheses in Table 4 are Type I error rates or false positive rates.

In Tables 1 to 3, we can see that fit statistics are on average smaller for one-class

solutions than for two-class solutions for normal data. Moreover, Bauer and Curran

Table 4. Likelihood Ratio Tests of One-Class Versus Two-Class Models (of 500 Samples).

Distribution VLMR-LRT LMR-Adjusted LRT BLRT

N = 200
Skewness 0, kurtosis 0 67 (0.13) 64 (0.13) 25 (0.05)
Skewness 0, kurtosis 2 123 (0.25) 119 (0.24) 62 (0.12)
Skewness 0, kurtosis 4 138 (0.28) 132 (0.26) 72 (0.14)
Skewness 1, kurtosis 0 97 (0.19) 88 (0.18) 32 (0.06)
Skewness 1.6, kurtosis 0 118 (0.24) 109 (0.22) 35 (0.07)

N = 400
Skewness 0, kurtosis 0 92 (0.18) 85 (0.17) 38 (0.08)
Skewness 0, kurtosis 2 169 (0.34) 158 (0.32) 57 (0.11)
Skewness 0, kurtosis 4 173 (0.35) 167 (0.33) 72 (0.14)
Skewness 1, kurtosis 0 148 (0.30) 137 (0.27) 45 (0.09)
Skewness 1.6, kurtosis 0 190 (0.38) 183 (0.37) 29 (0.06)

N = 800
Skewness 0, kurtosis 0 89 (0.18) 82 (0.16) 25 (0.05)
Skewness 0, kurtosis 2 202 (0.40) 198 (0.40) 78 (0.16)
Skewness 0, kurtosis 4 245 (0.49) 238 (0.48) 127 (0.25)
Skewness 1, kurtosis 0 199 (0.40) 187 (0.37) 52 (0.10)
Skewness 1.6, kurtosis 0 343 (0.69) 338 (0.68) 153 (0.31)

Note. VLMR-LRT = frequency with which the Voung–Lo–Mendell–Rubin likelihood ratio test for 1

class versus 2 classes rejected the ‘‘true’’ one-class solution (Type I error rates across replications).

LMR-adjusted LRT = frequency with which the Lo–Mendell–Rubin adjusted likelihood ratio test for 1

class versus 2 classes rejected the ‘‘true’’ one-class solution (Type I error rates across replications).

BLRT = frequency with which the bootstrap likelihood ratio test rejected the ‘‘true’’ one-class solution

(Type I error rates across replications).
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(2003a) found that fit statistics, such as BIC, favor the two-class solution 0% to

0.66% for N = 200 and N = 600 for normal data, respectively. These results are an

improvement with respect to the average of times that fit statistics favor two-class

models as reported by Bauer and Curran (2003a). Nevertheless, the Type I error rates

corresponding to VLMR-LRT and LMR-adjusted LRT are 7 to 11 times larger than

the conventional 5%. To illustrate the problem that this represents, consider the con-

dition of nonnormality with a skewness value of 1.6, no kurtosis, and sample size of

800 in Table 4. Researchers would select the correct number of latent classes more

often if they flip a fair coin to decide whether to select a one-class or a two-class

model to their data than using these likelihood ratio tests. The argument can be made

that a sample size of 800 is not large enough and that these likelihood ratio tests

could perform better with larger statistical power. This is a limitation of this part of

Simulation Study 1 and represents an opportunity of future research on the topic.

The best performance of the BLRT was a 5% error rate, as mentioned before.

Considering that we would like Type I errors smaller than 5%, these results are mar-

ginally acceptable. The results for nonnormal outcome variables range from 6% to

31%, which range from barely larger up to six times greater than what any researcher

would feel comfortable with. Nylund et al. (2007) point out that BLRT does not per-

form well when nonnormality is present in the data. This argument does not offer

much consolation since normal data are improbable in real-life applications of GMM

analysis (Micceri, 1989), and since all other fit statistics and likelihood ratio test per-

form significantly worse that the BLRT.

The results of Tables 1 to 4 will help researchers identify the risk of making Type

I error when fitting normal growth mixture models to their nonnormal data.

Specifically, these results inform about the dangers of using fit statistics and likeli-

hood ratio tests to draw conclusions about the number of latent classes in the data.

This is a particularly important problem in social sciences since extracting multiple

classes often seems more interesting and allows researcher to assign substantive

meaning to why the groups are different. For example, a researcher could hypothe-

size that the groups represent ‘‘normal’’ versus antisocial subgroups of children, or

groups of individuals at different stages of alcohol dependence. The results presented

in this simulation study suggest that the researcher should be skeptical about the

extraction of multiple latent classes in growth mixture models when the data are non-

normal and when using fit statistics and likelihood ratio tests to draw conclusions.

The need persists for fit indices and test statistics that reliably help the researcher

in choosing the ‘‘true’’ number of latent classes. The evidence suggests that such

indices or statistics should not be based on the likelihood since it would carry many

of the same limitations as those exposed here. Further research is needed on the

development of more useful statistics for the estimation of the number of mixture

components for nonnormal data. The problem is that the normal approach to GMM is

not appropriate for most real data in the social sciences. Other distributions might be

more appropriate such as zero inflated Poisson model for substance abuse or categori-

cal distributions for Likert scale survey data. Further research is needed to empirically
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show the robustness of fit statistics and likelihood ratio tests to departures of the data

to any distribution used to derive the finite mixture model.

Simulation Study 2

This simulation explores the effect of nonnormally distributed TICs on growth mix-

ture models. Arminger et al. (1999) showed analytically that the addition of TICs that

depart from normality would aggravate the problem of the identification of spurious

latent classes. The hypothesis in this simulation study is that the inclusion of nonnor-

mal TICs would make it harder for fit statistics and likelihood ratio tests to identify

the correct number of latent classes even when normally distributed outcome vari-

ables are present in the data. The results of this simulation study constitute empirical

evidence that support the findings of Arminger et al. (1999). Moreover, it adds new

nonnormality conditions to the exploration of the efficiency of BLRT and other like-

lihood ratio tests not explored in the literature (e.g., Bauer & Curran, 2003a; Jung &

Wickrama, 2008; Nylund et al., 2007; Tofighi & Enders, 2008).

Simulation Design

The data for this simulation were generated using the same model specifications as

for Simulation Study 1 with the addition of one and two TICs. The distributional con-

ditions of the dependent variables were the following: normal (skew 0, kurtosis 0),

positive kurtosis (skew 0, kurtosis 2), and positive skew (skew 1.6, kurtosis 0). One-

and two-covariate conditional models were fitted to each distributional condition.

The covariates were generated to have a 0.30 correlation to the slope factor (b), mean

of zero, and standard deviation of one, and to be correlated with each other at 0.10.

The TICs were transformed to have skew and kurtosis values of one. Five hundred

samples of N = 200 were generated, transformed using EQS 6.2, and analyzed using

Mplus 7.4. As for the previous simulation, only one class exists in the data.

Conditional Finite Mixture Model and the Identification of Spurious Latent
Classes

The results presented in Tables 5 and 6 provide empirical evidence for the conclu-

sions of Arminger et al. (1999). The positive mean difference indicates that the two-

class models yield smaller (better) fit statistics than the one-class model across all

distributional conditions and number of covariates. As shown in Tables 1 to 3, fit sta-

tistics favor the ‘‘true’’ one-class model, on average. Nevertheless, with slightly non-

normal TICs the fit statistics suggest a better fit of the two-class solution, even in the

case of normally distributed dependent variables. In the normal dependent variable

conditions, for both one and two TICs conditional models, the fit statistics favor, on

average, the two-class solution and classify 34.00% and 40.84% individuals in Latent

Class 1 (no growth class), respectively. This means that even with normally

948 Educational and Psychological Measurement 76(6)



Table 5. Relative Fit of One-Class Versus Two-Class Conditional Models (of 500 Samples,
N = 200).

Fit statistic Mean differencea Mean % changea Class membershipb

One covariate, skewness 0, kurtosis 0
AIC 39.84 0.85 Class 1 = 68 (34)
BIC 26.64 0.56 Class 2 = 132 (66)
SBIC 39.32 0.83

One covariate, skewness 0, kurtosis 2
AIC 35.62 0.76 Class 1 = 68 (34.00)
BIC 22.42 0.17 Class 2 = 132 (65.00)
SBIC 35.10 0.23

One covariate, skewness 1.6, kurtosis 0
AIC 51.81 1.10 Class 1 = 116 (58.18)
BIC 38.61 0.82 Class 2 = 84 (41.82)
SBIC 51.28 1.09

Two covariates, skewness 0, kurtosis 0
AIC 56.39 1.06 Class 1 = 82 (40.84)
BIC 39.90 0.74 Class 2 = 118 (59.16)
SBIC 55.74 1.05

Two covariates, skewness 0, kurtosis 2
AIC 45.50 0.86 Class 1 = 83 (41.35)
BIC 29.01 0.55 Class 2 = 117 (58.65)
SBIC 44.85 0.85

Two covariates, skewness 1.6, kurtosis 0
AIC 52.16 0.99 Class 1 = 115 (57.44)
BIC 35.66 0.67 Class 2 = 85 (42.56)
SBIC 51.51 0.98

Note. AIC = Akaike’s information criterion; BIC = Bayesian information criterion; SBIC = sample-

corrected BIC.
aMean difference = Fit1 2 Fit2, and percentage change = (1 2 Fit2/Fit1) 3 100.

Table 6. Likelihood Ratio Tests of One-Class Versus Two-Class Conditional Models When
the Nonnormality is Only Present in the Covariate (of 500 Samples, N = 200, and 1
Covariate).

Distribution VLMR-LRT LMR-adjusted LRT BLRT

Skewness 0, kurtosis 0 58 (0.12) 52 (0.10) 25 (0.05)
Skewness 0, kurtosis 2 155 (0.31) 148 (0.30) 76 (0.15)
Skewness 1.6, kurtosis 0 245 (0.49) 243 (0.49) 457 (0.91)

Note. VLMR-LRT = frequency with which the Voung–Lo–Mendell–Rubin likelihood ratio test for 1 class

versus 2 classes rejected the ‘‘true’’ one-class solution (Type I error rates across replications); LMR-

adjusted LRT = frequency with which the Lo–Mendell–Rubin adjusted likelihood ratio test for 1 class

versus 2 classes rejected the ‘‘true’’ one-class solution (Type I error rates across replications); BLRT =

frequency with which the bootstrap likelihood ratio test rejected the ‘‘true’’ one-class solution (Type I

error rates across replications).
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distributed dependent variables the slight positive skewness of the TICs introduced

enough nonnormality into the data that over a third of the individuals in the samples

were classified in the no-growth class. This misclassification was aggravated when

the dependent repeated variables were also positively skewed.

The results for the positive kurtosis condition, for one covariate and the two cov-

ariates, were practically identical as shown in Table 5. In the positive skew condi-

tions, over half the subjects were classified in Class 1 (no growth class). This means

that applied researchers could conclude that the majority of individuals in their data

are classified in a latent class of no growth when in fact a single group of linear

growth is present in the data. It makes sense that about 60% of the individuals were

classified in Class 1 since these data have more density near zero (skew 1.6) and a

long right tail. These results are consistent with our hypothesis that nonnormality

promotes the identification of spurious classes when using statistics based on the

likelihood. Applied researchers can use Table 5 as a guide as to when to expect that

fit statistics will suggest models with more latent classes than those that exist in the

data and the percentage of individuals that would be classified in these spurious

classes due to nonnormal TICs.

Table 6 shows the results for likelihood ratio tests for three conditions: normal; no

skewness and kurtosis of 2 of the TIC; and no kurtosis, skewness of 1.6 of the TIC.

As expected, the addition of a normal TIC produces identical results than in Table 4.

All likelihood ratio tests performed slightly worse compared to the results of Table 4

when the TIC had no skewness and a kurtosis value of 2, and performed considerable

worse in the no kurtosis and skewness of 1.6 condition. BLRT was affected the most

in this last conditions, yielding a 91% false positive rate.

As noted by Bauer and Curran (2003a), nonnormality is a necessary and sufficient

condition for the fit of more latent classes than the model used to simulate the data.

When the data are nonnormal, the normal growth mixture model is not a good

approximation and the finite mixture methodology overcompensates by fitting addi-

tional normal growth curves to the data. The two-class solution is a better approxima-

tion to the nonnormal data; thus, fit indices and test statistics based on the likelihood

tend to favor it over the true one-class model.

Discussion

Fit statistics and likelihood ratio tests favor the ‘‘true’’ model when the data are nor-

mal. Nevertheless, when the data are nonnormal, fit indices tend to favor growth mix-

ture models with more mixture components (latent classes) than the model used to

simulate the data. Likelihood ratio tests also favor models with spurious classes.

Further research is needed to develop test statistics that do not depend on the likeli-

hood and that are robust to departures from normality in the population. This includes

the case of normal dependent variables but nonnormal TICs. An interesting alterna-

tive to normal GMM is using distributions other than normal in fitting growth mix-

ture models. This approach has been readily incorporated in statistical software such
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as Mplus. Nevertheless, empirical studies such as the current one have not been con-

ducted to show if those approaches have the same problems as the normal growth

mixture models. It is important to note that using GMM with distributions other than

the normal would not have been beneficial in the situations presented in the above

simulations studies: situations in which the underlying distribution is almost normal.

The reason for this is that the applied researcher would be unable to know firsthand

if the underlying distribution is, for example, exponential or just positively skewed.

The results of the simulation studies presented above could be a useful guide to

applied researchers in fitting growth mixture models to their data. Applied research-

ers may use Tables 1 to 6 to anticipate when the distributional conditions of their data

would yield the extraction of more latent classes than exist in the data. This represents

a major contribution to longitudinal data analysis within social sciences and could

potentially provide explanation as to why some results obtained through the GMM

cannot be replicated and others are ubiquitous. Given the nonnormal nature of data in

the social sciences, researchers should be cautious when fitting growth mixture mod-

els and incorporate exhaustive data visualization before deciding on the number of

latent classes. Also important is that the findings discussed here expose the need of

better statistics for the estimation of the number of latent classes in GMM.

Some limitations of Simulation Study 2 are that the only conditions considered

were sample size of 200, nonnormal TICs, and these covariates were correlated at

0.3 with the slope factor. Further research is needed that include time varying covari-

ates, other sample sizes, and distributional conditions not explored here. Also inter-

esting would be to explore if the linear relationship of the covariates and the growth

factor has an effect on the amount of latent classes extracted.
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