Skip to main content
. 2016 Mar 1;76(6):933–953. doi: 10.1177/0013164416633735

Table 1.

Relative Fit of One-Class Versus Two-Class Models (of 500 Samples, N = 200).

Fit statistic Mean differencea Mean % changea Class membership
Skewness 0, kurtosis 0
 AIC −0.75 −0.02
 BIC −10.65 −0.26
 SBIC −1.14 −0.03
Skewness 0, kurtosis 2
 AIC 14.45 0.35 Class 1 = 28 (14.10)
 BIC 4.55 0.11 Class 2 = 172 (85.90)
 SBIC 14.06 0.34
Skewness 0, kurtosis 4
 AIC 14.52 0.36 Class 1 = 33 (16.65)
 BIC −11.87 −0.29 Class 2 = 167 (83.35)
 SBIC 13.48 0.33
Skewness 1, kurtosis 0
 AIC 16.93 0.41 Class 1 = 53 (26.65)
 BIC −9.45 −0.23 Class 2 = 147 (73.40)
 SBIC 15.89 0.39
Skewness 1, kurtosis 2
 AIC 17.98 0.44 Class 1 = 61 (30.26)
 BIC 8.08 0.20 Class 2 = 139 (69.74)
 SBIC 17.59 0.43
Skewness 1, kurtosis 4
 AIC 21.42 0.53 Class 1 = 56 (28.03)
 BIC 11.52 0.28 Class 2 = 144 (71.97)
 SBIC 21.03 0.51
Skewness 1.6, kurtosis 0
 AIC 49.13 1.20 Class 1 = 29 (14.50)
 BIC 39.23 0.95 Class 2 = 171 (85.50)
 SBIC 7.55 0.18
Skewness 1.6, kurtosis 2
 AIC 31.55 0.77 Class 1 = 20 (10.20)
 BIC 21.66 0.52 Class 2 = 180 (89.80)
 SBIC 31.16 0.76
Skewness 1.6, kurtosis 4
 AIC 31.52 0.77 Class 1 = 15 (7.57)
 BIC 21.63 0.52 Class 2 = 180 (92.43)
 SBIC 31.13 0.76

Note. AIC = Akaike’s information criterion; BIC = Bayesian information criterion; SBIC = sample-corrected BIC.

a

Mean difference = Fit1 − Fit2, and percentage change = (1 − Fit2/Fit1) × 100.