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Abstract

The clinical assessment of mental disorders can be a time-consuming and error-prone
procedure, consisting of a sequence of diagnostic hypothesis formulation and testing
aimed at restricting the set of plausible diagnoses for the patient. In this article, we
propose a novel computerized system for the adaptive testing of psychological disor-
ders. The proposed system combines a mathematical representation of psychological
disorders, known as the ‘‘formal psychological assessment,’’ with an algorithm
designed for the adaptive assessment of an individual’s knowledge. The assessment
algorithm is extended and adapted to the new application domain. Testing the system
on a real sample of 4,324 healthy individuals, screened for obsessive-compulsive dis-
order, we demonstrate the system’s ability to support clinical testing, both by identi-
fying the correct critical areas for each individual and by reducing the number of
posed questions with respect to a standard written questionnaire.
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Falmagne’s algorithm; DSM-IV-TR: Diagnostic and Statistical Manual of Mental

Disorders, fourth edition, text revision; FCA: Formal Concept Analysis; FPA: Formal

Psychological Assessment; IRT: Item Response Theory; KST: Knowledge Space

Theory; MOCQ-R: Maudsley Obsessional-Compulsive Questionnaire-Reduced;

OCD: Obsessive-Compulsive Disorder.

Introduction

Clinical psychology is concerned with psychological disorders, namely patterns of

behavioral or psychological symptoms that involve several life areas and/or create

distress for the person experiencing them (American Psychiatric Association [APA],

2000; Groth-Marnat, 2009). The set of this kind of disorders is very broad and

includes, for instance, obsessive-compulsive disorder (OCD), mood disorders, eating

disorders, psychotic disorders, personality disorders and developmental disorders

(APA, 2000; Groth-Marnat, 2009). A psychological disorder is often egodystonic,

that is, its symptoms are recognized by the subject as real problems; in other cases,

the problem is mainly perceived by the affected person’s family and/or the collectiv-

ity (Groth-Marnat, 2009).

The specificity and peculiarity of mental health problems lead to the need to per-

form time-consuming investigations before a diagnosis is reached (Salmon, Dowrick,

Ring, & Humphris, 2004); in this context, an automated support tool could improve

both the accuracy and the effectiveness of the whole assessment procedure, resulting

in a more specific and case-oriented diagnosis formulation.

In this article, we propose a novel, adaptive computerized system for supporting

an essential part of the clinical assessment: the testing.

Clinical assessment can be described as an intelligent procedure the clinician car-

ries out with the aim of collecting information about a patient, in order to formulate

the diagnosis and propose a therapeutic work. The investigation proceeds through a

sequence of hypothesis formulations and validations (Spoto, 2010). Any diagnostic

hypothesis that can not be falsified represents a potential diagnosis to be further inves-

tigated; the process iterates until the number of plausible diagnoses is sufficiently low.

Errors in the assessment could lead to a wrong diagnosis and case formulation, caus-

ing ruinous therapeutic interventions and patient disappointments (Spoto, 2010).

In the present clinical practice the main procedures used to perform the clinical

assessment are the questionnaires, that is, sets of items submitted to the patient, the

semistructured interviews and the clinical interview. Psychological tests are generally

less time-consuming than interviews, but the result of a test is simply one or more

numeric scores. The score of a questionnaire is an undoubtedly useful tool to distin-

guish individuals presenting critical clinical elements from nonclinical individuals.

Nevertheless, such score may often be insufficient to actually help the psychologist

in distinguishing among different symptoms configurations. For instance, when con-

sidering OCD, and in particular the washing subtype, it has to be noted that despite

almost all washing/cleaning patients report obsessions related to dirtiness and
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subsequent cleaning compulsions or avoidance of feared stimuli (H. Kaplan &

Sadock, 2003), washing rituals may be driven by fears of becoming contaminated/ill

or rather they may be performed to seek feelings of perfect cleanliness or sensory

rightness (Cougle, Goetz, Fitch, & Hawkins, 2011; Pietrefesa & Coles, 2009); there-

fore, identifying the most adequate treatment strategies according to the mainly

involved motivational factors is essential to achieve successful therapeutic outcomes.

Thus, the opportunity to have a tool able to provide a clinician with this kind of

information, may be of high relevance in everyday clinical practice.

Semistructured interviews, on the other hand, are more informative than question-

naires and consist in a problem-solving and decision-making process, in which the

clinician, through logical inferences, formulates hypotheses and then checks if corre-

spondences in the patient exist. The problem in this case is the possibility of having

wrong inferential decisions due to the large amount of information that could mislead

the assessment, resulting in wasted time and risk of planning wrong interventions. In

general, clinical assessment includes both interviews and tests and may take up to 4

hours to identify a diagnosis and to formulate the case (Camara, Nathan, & Puente,

2000). Time consumption is clearly a critical issue from the ethical perspective. In

fact, using 4 hours for assessing the clinical picture of an individual means to post-

pone the beginning of the treatment phase. A time reduction, preserving the accuracy,

is thus an important objective to achieve.

Increasing attention has been also recently devoted to the use of biomarkers in the

early evaluation of clinical disorders. A number of projects are in progress, for exam-

ple, the MONitoring treAtment and pRediCtion of bipolAr disorder episodes

(MONARCA; Faurholt-Jepsen et al., 2013), trying to jointly use self report informa-

tion and biomarkers. However, self reports still play a major role in the assessment

of clinical disorders, as indicators of what the patient subjectively feels.

In order to provide a contribution for both reducing the time consumption of the

testing phase and improving its accuracy, we propose an Adaptive Testing System for

Psychological Disorders (ATS-PD). The system is based on a formal representation

of psychological disorders, the formal psychological assessment (FPA; Spoto,

Bottesi, Sanavio, & Vidotto, 2013), and exploits the FPA representation in an adap-

tive knowledge assessment algorithm. The latter can be considered and extension and

adaptation to the clinical domain of an algorithm originally designed for the Adaptive

Knowledge Assessment of a subject (AKA algorithm from now on; Falmagne &

Doignon, 2011), with the novel adoption of a Bayesian updating rule in the adaptive

testing process, taking into account false-positive and false-negative answers, and

with a novel compound stopping criterion.

Taking into account false-positive and false-negative answers while selecting the

questions for a patient is essential for extending the original AKA algorithm to the

clinical domain. In fact, in the AKA algorithm, due to the kind of questions asked,

the false-positive (usually called lucky guess) rate is often assumed to be 0, while the

false-negative (usually named careless error) rate is expected to be low. In the clinical

context none of these assumptions may hold. An incorrect answer to items may be
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due to problems with item formulation, as well as to problems with patient’s insight,

as well as problems with social desirability, and so on. For this reason, false-negative

and false-positive rates may not be irrelevant. Thus, the opportunity of taking into

account step by step these parameters represents not only a technical improvement

introduced by ATS-PD but also, from the authors’ point of view, a sort of prerequisite

to apply AKA-like procedures in the clinical context.

The ATS-PD system can perform logically correct inferences on the basis of the

whole information collected during the testing. The system is adaptive, in the sense

that the question posed by the system at a given moment depends on the previously

collected answers of the patient. The main advantage of ATS-PD over the traditional

clinical practice is its ability to return the clinical state1 of a patient, rather than a sim-

ple score. In this manner, patients with the same score—for example, because of the

same number of positively answered questions—can be mapped to different sets of

symptoms, thus facilitating the diagnosis.

The adaptivity of our system lets it dynamically choose the best sequence of ques-

tions to be posed, in order to maximize the information content of each answer. This

way, the system can often avoid posing the entire set of questions by inferring the

answers to logically connected questions, thus saving experimental time.

The remainder of the article is organized as follows: The next section summarizes

related work from the literature. The subsequent section presents the theoretical and

mathematical foundations of our system, that is, the FPA theory and the original

AKA algorithm, which is followed by a section that presents our extension of the

AKA algorithm to the clinical domain through the FPA theoretical framework. The

fourth section presents experimental results of the application of the ATS-PD to real

patient data. The penultimate section provides a discussion of the results and the final

section provides conclusions along with future works.

Related Work

Clinical assessment and clinical testing are not among the usual fields of application

for computerized assessment systems and only few technologies form the state of the

art.

Several examples of expert systems for clinical diagnosis can be found in litera-

ture. Spiegel and Nenh (2004) developed an expert system for the diagnosis in clini-

cal psychology based on the relation between symptoms and mental disorders. The

psychologist enters the symptoms and the system calculates possible symptom com-

binations and returns all possible diagnoses with a degree of risk. DECES (Yong,

Rambli, Rohaya, & Anh, 2007) is an interactive self-help online expert system for

depression diagnosis that provides advice to lower the patients’ levels of depression.

ESDAP (Seong-in, Hyun-Jung, Jun-Oh, & Seong-Hak, 2006) is concerned with diag-

nosis in art psychology; it provides a web-based interface such that parents and

teachers can control their children’s psychological problems simply by posting chil-

dren’s drawings. Also, hybrid approaches are exploited: for example, Nunes,
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Pinheiro, and Pequeno (2009) combined an expert system with MACBETH

(Measuring Attractiveness by a Categorical Based Evaluation Technique; Bana e

Costa & Vansnick, 1999), a system for multicriteria decision analysis, for diagnosing

OCD (Nunes et al., 2009). Furthermore, PsyDis (Casado-Lumbreras, Rodrı́guez-

González, Álvarez Rodrı́guez, & Colomo-Palacios, 2012) is a decision support sys-

tem that merges the ontologies technology with the classic logic inference mechan-

isms for psychological disorders diagnosis.

However, none of the aforementioned expert systems can be considered adaptive

according to the definition above. Adaptive assessment can be found in the literature

on knowledge assessment systems: the computerized systems that assess a subject’s

knowledge are the so-called computerized adaptive testings (CATs; Segall, 2013),

that is, computer-based tests that adapt to the examinee’s ability level. The theoreti-

cal framework on which CATs are based is provided by item response theory (IRT;

Lord, 1980) and Bayesian statistical techniques. This system has been applied in dif-

ferent clinical settings, for instance in developing adaptive classification tests by

means of stochastic curtailment in clinical screening of depression (Finkelman,

Smits, Kim, & Riley, 2012; Smits, Finkelman, & Kelderman, 2016). CAT systems,

however, are not based on a formal representation of the domain of interest as ATS-

PD is.

SIETTE (Conejo et al., 2004) is a IRT-based CAT, web-based, used to assist

teachers in the assessment process in educational settings. Eggen and Straetmans

(2000) combined IRT with statistical procedures, like sequential probability ratio test

and weighted maximum likelihood, for classifying examinees into categories (Eggen

& Straetmans, 2000). Following IRT but moving in the field of psychological assess-

ment, (Chien et al., 2011) developed a Web-based CAT for collecting data regarding

workers’ perceptions of job satisfaction in the hospital workplace. Simms et al.

(2011) started the CAT-PD (CAT for Personality Disorders) project aimed at realiz-

ing a computerized adaptive assessment system, IRT-based, for personality disorders.

EDUFORM (Nokelainen et al., 2001) and PARES (Marinagi, Kaburlasos, &

Tsoukalas, 2007) are adaptive systems for the assessment of students’ knowledge,

based on Bayesian statistical techniques instead of IRT.

In the field of knowledge assessment ALEKS (http://www.aleks.com/; Falmagne

& Doignon, 2011; Reddy & Harper, 2013; Grayce, 2013) is a system able to adap-

tively assess a subject’s knowledge and provide a learning path to that subject. The

AKA assessment algorithm, at the core of the ALEKS system, is based on knowl-

edge space theory (KST; Falmagne & Doignon, 2011; Doignon & Falmagne, 1999).

The next section will present the algorithm in detail and the section ‘‘An Example of

Testing’’ will explain how we customized and extended the algorithm to the clinical

psychology domain.

Finally, the Cognitive Behavioural Assessment 2.0 battery (CBA 2.0; Bertolotti,

Zotti, Michielin, Vidotto, & Sanavio, 1990) is a wide-spectrum tool for the assess-

ment of the main psychological disorders, and it was developed with the aim of
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supporting the clinician who is highlighting the aspects (or areas) on which the anal-

ysis is being deepened.

As far as we know, our system is unique in its conjugating adaptivity, formal defi-

nition of the investigation field and item response theory elements like parameter

estimation procedures and a mathematical verification of the relations among items.

Such a verification is assured by FPA, which guarantees that the relations among

items are strictly related to the set of attributes each item satisfies.

Theoretical Foundations

In this section, we present the theoretical background on which ATS-PD is based.

The idea is to formalize each psychological disorder as a particular mathematical lat-

tice, with a methodology called formal psychological assessment (FPA; Spoto et al.,

2013; Spoto, Stefanutti, & Vidotto, 2010), and then exploit an assessment algorithm

to make probabilistic inferences through such a lattice.

The Formal Psychological Assessment

FPA is a formal theory developed by Spoto and colleagues (Spoto et al., 2010; Spoto

et al., 2013), which consists in the clinical joint application of two mathematical the-

ories: knowledge space theory (KST; Doignon & Falmagne, 1999; Falmagne &

Doignon, 2011) and formal concept analysis (FCA; Ganter & Wille, 1999; Wille,

1982). Particularly, FPA derives a mathematical lattice from a questionnaire investi-

gating a particular psychological disorder. As pointed out by Heller, Stefanutti,

Anselmi, and Robusto (2015, 2016), both the KST and the FCA methodologies have

a common rationale with the cognitive diagnosis models (CDMs; de la Torre, 2009,

2011): above all, even this methodology analyze mastered and nonmastered attributes

by different examinees/ items by means of a matrix that in the CDM approach is the

so-called Q matrix (Heller et al., 2015, 2016; M. Kaplan, de la Torre, & Barrada,

2015). In what follows, we will use OCD as a running example to illustrate the FPA

model.

In clinical psychology, a question on a questionnaire is called an item. Each clini-

cal item is concerned with one or more clinical symptoms that have to be investi-

gated to diagnose a specific disorder. In FPA, the items of a questionnaire are called

objects, while the symptoms investigated by each item are defined attributes.

Objects and attributes are referred to as the theoretical framework chosen by the

researcher. In our running example, the items investigating the OCD belong to the

Maudsley Obsessional-Compulsive Questionnaire–Reduced (MOCQ-R; Sanavio &

Vidotto, 1985), and the attributes are the diagnostic criteria that the Diagnostic and

Statistical Manual of Mental Disorders, fourth edition, text revision (DSM-IV-TR;

APA, 2000) defines for the OCD. The MOCQ-R is composed of three subscales:

cleaning, checking, and doubting-ruminating, that is, three specific typologies of

OCD. In our example, two items taken from the cleaning subscale could be i3: ‘‘I
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am not excessively concerned about cleanliness’’ and i5: ‘‘My hands feel dirty after

touching money.’’ Item i3 involves the set of attributes fa2, a3, a8g, where a2:

‘‘Thoughts, impulses, or images are experienced as intrusive and inappropriate, cause

marked anxiety and distress, and are not simply excessive worries about real-life

problems,’’ a3: ‘‘The person recognizes that the obsessional thoughts, impulses, or

images are a product of his/her own mind,’’ and a8: ‘‘At some point during the

course of the disorder, the person has recognized that the obsessions or compulsions

are excessive or unreasonable’’. Item i5, on the other hand, involves the set

fa1, a3, a13g, where a1: ‘‘Recurrent and persistent thoughts, impulses, or images,’’

a3 as above and a13: ‘‘Money (contamination).’’ A patient who answers ‘‘true’’ to

i5 will thus present the corresponding set of attributes. As it can be noted, the sets of

attributes are not mutually exclusive.

Starting from a set of objects Q (the MOCQ-R’s items), a set of attributes S (the

DSM-IV-TR criteria for OCD) and the relation I between items and attributes, a Boolean

matrix called formal context (Q, S, I) is built (Ganter & Wille, 1999). The matrix con-

tains a 1 whenever an item investigates the specific symptom and a 0 otherwise.

The whole set Q of items is the domain of the formal context and the clinical state

K � Q of a patient is the subset of the domain he or she affirmatively answered.

Each clinical state is uniquely associated with a subset of attributes (Spoto et al.,

2010; Spoto et al., 2010). This way, even if two different clinical states score the

same (two different patients affirmatively answer the same number of items), their

attribute configurations differ. This means that the only case in which two response

patterns are considered equivalent in FPA is when they contain positive answers to

exactly the same items.

From the formal context (Q, S, I) it is possible to build the clinical structure K of

a specific psychological disorder (Spoto et al., 2010). A clinical structure is a lattice

representing the implications among the items of Q. It includes all of the so-called

admissible response patterns (ARPs; i.e., the clinical states) with their respective sets

of attributes. An ARP is a set of items that are consistent with the implications postu-

lated by the selected theoretical framework.

To summarize, the FPA theory maps sets of items to sets of attributes and allows

one to adaptively collect the same information of a clinical interview through the

administration of self-report questionnaires (Bottesi, Spoto, Freeston, Sanavio, &

Vidotto, 2015; Serra, Spoto, Ghisi, & Vidotto, 2015). Up to now, all of the presented

considerations refer to a deterministic situation. Such an approach is inadequate in

clinical practice: in fact, it is very likely to observe response patterns that do not cor-

respond to the actual clinical state of the patient, and not all clinical states have the

same probability of occurring.

For these reasons, FPA exploits a probabilistic framework to manage the condi-

tional probabilities of response patterns given a clinical state. Such a theoretical

background was inspired by a similar probabilistic framework developed in KST

(Doignon & Falmagne, 1999; Falmagne & Doignon, 1988, 2011). A probabilistic

clinical structure is a triple (Q,K, p), where p is a probability distribution for K,
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assigning to every clinical state k 2 K the probability of occurrence in the popula-

tion. This value can be estimated from a sample of patients (Spoto et al., 2010). In

this model, given a state, the responses to the items are assumed to be locally inde-

pendent. Moreover, given a probabilistic clinical structure (Q,K, p) and a specific

response pattern R � Q, the response function r: 2Q3K ! R assigns to R its condi-

tional probability given that a subject is in state K (for all states K 2 K). Thus, it is

possible to compute for each response pattern R a probability distribution:

r(R) =
X
K2K

r(R, K)p(K): ð1Þ

Because the response function satisfies local independence for each item q 2 Q, the

conditional probability r(R, K) is determined by the probabilities b, h related to each

item q, where bq is the probability of a false-negative answer and hq the probability

of a false-positive answer to q. Formally,

r(R, K) =
Y

q2KnR
bq

0
@

1
A Y

q2K\R

(1� bq)

 !

Y
q2RnK

hq

0
@

1
A Y

q2R[K

(1� hq)

0
@

1
A:

ð2Þ

Equation (2) represents the basic local independence model (BLIM; Doignon &

Falmagne 1999; Falmagne & Doignon, 1988). In the running example, the model

parameters b, h, and the probability distribution for K have been estimated from a

sample of 33 patients with a diagnosis of OCD (Spoto et al., 2010) with the

expectation-maximization algorithm (Dempster, Laird, & Rubin, 1977). The reliabil-

ity of the adopted parameter estimates is confirmed by some papers that used the

same questionnaire, estimated such parameters on larger samples (Bottesi et al.,

2015; Spoto et al., 2013), and obtained similar estimates.

The Original Adaptive Knowledge Assessment Algorithm

The AKA algorithm was proposed by Doignon and Falmagne for the adaptive

assessment of a subject’s knowledge (Falmagne & Doignon, 2011). The algorithm

takes as input a knowledge structure K, that is, a mathematical structure developed

in KST (Doignon & Falmagne, 1999; Falmagne & Doignon, 2011) that is very simi-

lar to a clinical structure. Given a knowledge domain Q, a knowledge structure is

formed by knowledge states K � Q, that is the subsets of Q that contain questions

(or problems) that a subject masters or is able to solve. A probabilistic knowledge

structure can further be defined by appending to every knowledge state K 2 K the

probability p(K) that a subject is in that state. The objective of the algorithm is to

focus the knowledge assessment as quickly as possible on some knowledge state that
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is capable of explaining the subject’s responses.The pseudocode of the procedure is

presented in Algorithm 1.

The AKA algorithm requires a probabilistic knowledge structure (Q,K, L), where

for every state K 2 K, L1 = L(K) represents the initial probability of K. At step n, the

algorithm considers as a plausibility function of every state K its current likelihood

Ln, based on all of the information accumulated so far. Now, the procedure question-

ing rule selects the next question to ask, i.e. the item q ‘‘maximally informative,’’

such as the sum of the likelihoods of all of the states containing q has to be as close

as possible to the sum of the likelihoods of all of the states not containing q. If sev-

eral items are equally informative, one of them is chosen at random. We indicate the

set of possible questions as S(Ln) � Q, so we can formalize the rule as

S(Ln) = arg min
q

(j2Ln(Kq)� 1j), ð3Þ

where

Ln(F ) =
X
K2F

Ln(K) ð4Þ

and Kq indicates the set of all knowledge states K 2 K containing a given question q.

The subject’s response is collected by the system and the procedure updating rule

updates the likelihood Ln + 1(K) of every state K. If a subject answers correctly to q,

the likelihoods of the states containing q are increased and, correspondingly, the like-

lihoods of the states not containing q are decreased. A wrong response has the oppo-

site effect. If we indicate a correct response with r = 1 and a wrong one with r = 0, we

can formalize the rule as

Ln + 1(K) =
zKLn(K)P

K92K zK9Ln(K9)
, ð5Þ

Algorithm 1 The AKA algorithm.

Require: Q, K, L1

n 1
while stopCondition(Ln) do

question questioningRule(K, Ln)
ask question
append in D
question and user’s answer
Ln + 1  updatingRule(D, Ln,K, z)
n n + 1

end while
return the state K0 with the highest likelihood Ln(K0)
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where

zK =
1 if iK(q) 6¼ r

z if iK (q) = r,

�
ð6Þ

z . 1 is a parameter that increases the likelihood, and

iK (q) =
1 if q 2 K

0 if q 62 K:

�
ð7Þ

It is worth noting that the value of the z parameter influences the efficiency of the

adaptive assessment process. In fact, the higher its value, the more reliable are con-

sidered the answers provided by the subject. It has been observed (Falmagne &

Doignon, 2011) that z values less than 2 make the system extremely redundant in

completing the assessment, since a higher number of answers are needed to reach a

reliable conclusion about the actual state of the patient. On the other hand, the effi-

ciency of the system reaches a maximum at a specific value of z (depending on many

variables) and it makes no sense to further increase its value. Notice that it has been

proven that the system, even with high values of the parameter z, tends to converge

to the ‘‘correct state’’. Thus, the selected value of this parameter does not affect algo-

rithm efficacy.

The algorithm stops when a stopping condition is satisfied. For the experiments

reported in Falmagne and Doignon (2011), the authors suggest to stop the algorithm

as soon as Ln(Kq) lies outside the interval ½:2, :8� for all q. In the previous section, the

mathematical structure with which FPA formalizes a psychological disorder and the

AKA algorithm for the adaptive knowledge assessment have been shown. This sec-

tion presents how ATS-PD was developed by extending the assessment algorithm

and adapting it to the FPA mathematical model. Specifically, we explain the adoption

of a Bayesian rule for updating the likelihood of each state in each step, taking into

account false-positive and false-negative answers, and a compound stopping criterion,

based on both the likelihood of the states and the entropy of the clinical structure.

The Algorithm

Because of the clinical relevance of false-positive and false-negative answers in the

psychological assessment process, we decided to take into account the response pat-

tern R during the assessment, through a Bayesian rule for updating the posterior state

probabilities in the form

P(KijR) =
P(RjKi)Ln(Ki)PjKj
j = 1 P(RjKj)Ln(Kj)

, ð8Þ

where P(RjKi) = r(R, Ki) is given by Equation (2) of the previous subsection.
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The updated states are used by our algorithm for a novel stopping criterion, based

on the combination of two criteria. The first criterion stops the computation as soon

as the updated likelihood of a state Ln(K) surpasses a threshold uL. The second criter-

ion is based on the entropy of the clinical structure, defined as

H(Ln) = �
X
k2K

Ln(K) log2Ln

and stops the assessment as soon as the entropy gets below a second threshold uH .

Careful tuning on experimental data revealed us that the values 0.7 for uL and 1 for

uH and a compound criterion stopping the assessment as soon as at least one of the

two criteria was satisfied are optimal choices, in the sense that they lead to the smal-

lest minimum distance between nonadmissible response patterns, that is, patterns

induced by false-positive and false-negative answers, and the real patterns assigned

to them by the system.

The pseudo-code of our novel testing algorithm, ATS-PD, is presented in

Algorithm 2.

For a given psychological disorder, ATS-PD imports its clinical structure, the

diagnostic criteria S and their relation I with the items; moreover, the false-positive

and the false-negative rates of each item are used. Then, the system starts the assess-

ment algorithm, counting the number of questions posed. For a given psychological

disorder, the system selects the question that is maximally informative (i.e., the item

that splits in two equivalent parts the mass of the probability of the states that include

or not include it) to pose with the questioning rule (see Equation 3). The system then

stores the answer and updates the likelihood Ln into Ln + 1 using the updating rule

given by Equation (5). At this point of the procedure, ATS-PD performs the Bayesian

updating rule (Equation 8) on the likelihoods Ln + 1(K) for every K 2 K and stores

them in a temporary list. Such a function allows one to extract the response pattern R

Algorithm 2 The ATS-PD system.

Require: a file containing the formal representation of a given psychological disorder
import data Q,K, L1, b, h, S, I from file
n 1
tmpL L1

while stopCondition(tmpL) do
question questioningRule(K, Ln)
ask question
append in D question and user’s answer
Ln + 1  updatingRule(D, Ln,K, z)
tmpL bayesianUpdate(K, Ln + 1, D,~b,~h)
n n + 1

end while
(state, symptoms) report(tmpL,K, Q, S, I)
return the patient’s clinical state and his/her symptoms
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from the data structure that stores the patient’s answers. If the temporary list satisfies

the stopping criterion the system stops the testing and returns the clinical state with

the corresponding attributes.

Implementation Considerations

With further formalization, it is possible to show that the testing algorithm used is a

Markovian process (Falmagne & Doignon, 2011); this fact gives us the advantage of

storing only the vector Ln to compute Ln + 1.

Furthermore, we chose the uniform probability distribution, L1 = 1=jKj, as the ini-

tial likelihood. This distribution was considered because it formulates fewer a priori

assumptions; indeed, it gives us the maximum entropy at the beginning of the testing

(Harremoës, 2009). The system is implemented in the Python language, version 2.7.

An Example of Testing

Let us show an example of testing performed by ATS-PD, using the running example

of OCD, in particular, the clinical structure of the doubting-ruminating subscale (see

Figure 1).

Table 1 shows the initial likelihood of every state at Step 1 (n = 1), following the

uniform probability distribution. The system, using the questioning rule (Equation 3),

selects the more discriminative items; in this case, they form the set S(L1) = f6, 21g.

Figure 1. The clinical structure of the doubting-ruminating subscale.
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The system will randomly choose between this two items since they have, cumula-

tively, the same mass probability to be present or absent among the states.

Let us suppose the system, between Item 6 and Item 21, randomly chooses the

former: ‘‘I frequently have disagreeable thoughts and I cannot get rid of them.’’ It is

important to stress that in this case the selection of the first item to be asked is ran-

dom because of the fact that the starting distribution is uniform: In the case in which

theoretical prior knowledge or previous parameters estimates (e.g., the probability of

the states in a population) are taken into account, the starting point may not be ran-

domly chosen. Now suppose that the user answers ‘‘True.’’ The system now, using

the updating rule (Equation 5), increases the likelihood of the states containing Item

6 and decreases the others (see Table 2). As we can see, the likelihoods do not satisfy

the threshold stopping criterion, and if the system performs the Bayesian update

(Equation 8) on the response pattern observed, [6], it does not satisfy the entropy

stopping criterion.

ATS-PD is now at trial 2 (n = 2) and, again, using the questioning rule (Equation

3), selects the more discriminative items. In this case, they form the set

S(L1) = f2, 5g. We suppose ATS-PD randomly selects Item 2: ‘‘Usually, I have seri-

ous doubts about simple things I do every day,’’ and we suppose that the user

answers again ‘‘True.’’ The system now, using the updating rule (Equation 5),

increases the likelihoods of the states containing Item 2 and decreases the others (see

Table 3).

We can see that the likelihood of state [2, 5, 6, 21] is greater than 0.7, satisfying

the first stopping criterion. Moreover, if the system performs the Bayesian update

(Equation 8) on the response pattern observed, [6, 2], and then calculates the entropy,

Table 1. Initial likelihood of the states.

L [ ] [5] [2, 5] [6, 21] [5, 6, 21] [2, 5, 6, 21]
L1 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

Table 2. Initial likelihood of the states at Trial 2.

L [ ] [5] [2, 5] [6, 21] [5, 6, 21] [2, 5, 6, 21]
L2 0.0278 0.0278 0.0278 0.3056 0.3056 0.3056

Table 3. Initial likelihood of the states at Trial 3.

L [ ] [5] [2, 5] [6, 21] [5, 6, 21] [2, 5, 6, 21]
L3 0.0064 0.0064 0.0705 0.0705 0.0705 0.7756
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it obtains a value of 0.1883. Thus, ATS-PD returns as output the state [2, 5, 6, 21]

with the corresponding attributes {Cb, CA1a, Ca, CA2a, Cd}, where

� CA1a: repetitive behaviors or constrained mental acts;
� CA2a: behaviors are designed to reduce or prevent discomfort;
� Ca: marked discomfort;
� Cb: waste of time;
� Cd: interference with social and working life.

Analysing the output, the users responded only to Questions 6 and 2 and the sys-

tem inferred, in a probabilistic way, that the clinical state is [2, 5, 6, 21]. That is,

everyone who responds to items 6 and 2 automatically will respond positively to the

other questions. This strong inference is the core of testing algorithms based on clini-

cal structures. Furthermore, in this case, the number of items asked is n = 2 of four

possible questions; thus, we have an items saving of 50%.

Experimental Results

In this section, we first assess the performance of the ATS-PD system on real patient

data. Subsequently, we focus our analysis on the system’s behavior in the presence of

nonadmissible response patterns.

Performance of the System

As stated in the introduction, we expect that ATS-PD

� identifies a patient’s precise critical areas supporting the clinician’s decisions

during the assessment (effectiveness);
� asks a smaller number of questions with respect to the standard written version

questionnaires (efficiency).

To this aim, we reproduced the clinical testing in an adaptive way using real data.

We executed several testing using a sample of 4,324 subjects taken from normal pop-

ulation tested on OCD. The subjects answered the questions of the written version of

the MOCQ-R, the questionnaire on which FPA built the mathematical lattice repre-

senting the OCD used by ATS-PD. Furthermore, subjects answered the questions of

the MOCQ-R in a nonadaptive way—that is, they responded to all items sequentially.

Before giving performance results, we provide some definitions. A response pat-

tern is a list of items, for example [1, 4, 7], containing the items to which a subject

answered ‘‘True’’ in the written version of the MOCQ-R. Different subjects can have

the same response pattern to a certain subscale. The set R includes all the different

response patterns, that is, it lists each pattern independently from its frequency in the

sample one time. We say that a response pattern R is assigned to a state K if the
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system outputs K with input R. Moreover, we need a method to measure the similar-

ity between response patterns and states; thus, we assigned to every response pattern

a distance d(R, K) to a state K expressed as the following cardinality:

d(R, K) = j(R [ K)n(R \ K)j,

with d(R, K) = 0 if and only if R corresponds with the clinical state K, that is, R = K .

We say that a response pattern R has a minimum distance to a state K if a state K9,

such as d(R, K9)\d(R, K), does not exist.

The goal of reproducing the testing phase of clinical assessment was to test

whether ATS-PD could generate the same response pattern of a subject who answered

the written version of the MOCQ-R (system efficacy), but with a smaller number of

questions (system efficiency). That is, given a response pattern R, we want to assess

if the system assigns it a clinical state K such as d(R, K) = 0, with a smaller number

of questions.

ATS-PD returns only states in the clinical structure, and we assume that the clini-

cal structure is a good model of the reality. This datum is supported by a good fit

index of the clinical structure (Spoto et al., 2010; Spoto et al., 2013). Thus, a response

pattern R, with an assigned clinical state K such as d(R, K) 6¼ 0, indicates that R is

affected by false-positive or false-negative errors. The reproduction of the testing pro-

ceeds as follows: the system imports the clinical structures of the subscales and the

response patterns of 4,324 subjects. For every response pattern R, ATS-PD performs

the testing by asking a question, answering automatically, and updating the likelihood

until it uncovers the latent state K. After some empirical observations, the parameter

z used for the updating rule was set to 11. This value allowed the algorithm to be as

less redundant as possible, and preserved its accuracy. The system, then, calculates

the distance d(R, K).

Following the structure of the MOCQ-R questionnaire (see section ‘‘The Formal

Psychological Assessment’’), we focused on the cleaning and checking subscales.

The considered subscales contain the same number of items, 8, and are thus both a

collection of 256 possible total states; however, the two differ in the number of

admissible states (92 and 20, respectively) and have a different topology, thus allow-

ing us to test the behavior of ATS-PD under two different conditions. Moreover, the

number of different response patterns, that is jRj, is 220 in the cleaning subscale and

185 in the checking subscale.

Results show that the response patterns corresponding to a state K 2 K and not

assigned to K are 0 in both cases. Thus, as expected, all the response patterns corre-

sponding to a state K are assigned to it.

Furthermore, analysing the number of questions posed (Figure 2), we observed it

to be significantly lower than 8 in both cases, with 95% confidence intervals

½6:88; 6:91� for the cleaning scale and ½4:34; 4:39� for the checking scale. The aver-

age saving in terms of question posed is thus statistically significant and around 14%

for the cleaning subscale and 45% for the checking subscale.
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Concerning computational time, the system always requires less than 75 millise-

conds for the checking subscale and 250 milliseconds for the cleaning subscale to

update all likelihoods after an answer and to pose the subsequent question. Finally,

the amount of memory required is always less than 10 megabytes, thus making the

system suitable for a desktop application.

Nonadmissible Response Patterns

During a clinical testing, a subject can also provide a nonadmissible pattern; for

example, he/she could provide wrong answers due to poor introspection capabilities

or for showing social desirability, so his or her response pattern is not a state of the

clinical structure. Such patterns can be explained through false-negative or false-

positive errors and we want to study the ATS-PD behavior with these patterns. As

the system returns only states present in the clinical structure, we study the distance

between nonadmissible response patterns and their assigned states (Figure 3).

As it can be seen from the figure, in the cleaning subscale the distances d(R, K) of

the response patterns not included in the clinical structure are at most 2. The 78 sub-

jects with d(R, K) = 2 represents only the 2% of the response patterns, while a large

majority of subjects (74%) are gathered at distance d(R, K) = 0. The checking

Figure 2. Distribution of the number of asked items for the cleaning and checking subscales.
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subscale, instead, presents a critical situation; the number of response patterns with

d(R, K) = 0 is low, only the 36%, and the distance measure reaches 4.

Focusing on the patterns with a nonminimum distance, we observed for the clean-

ing subscale that every response pattern with d(R, K) . 1 is assigned to its nearest

state, the state with the minimum distance. For the checking subscale, on the other

hand, 392 response patterns are assigned to a state with a nonminimum distance.

This result could be explained as the combination of the smaller cardinality of the

checking structure and the system behavior. Indeed, as already said, ATS-PD asks

question in an adaptive way and outputs a clinical state containing questions that are

also purely inferred. In the checking case, ATS-PD makes inferences on a small

number of states, and this behavior could be a plausible explanation for the different

results between the subscales considered.

Nevertheless, with these considerations, as seen above, both the cleaning and the

checking clinical structures present good results regarding the means of the distances.

Discussion

The objective of the present work was to build an adaptive testing system to support

the clinician in the diagnosis of psychological disorders. We aimed at a system that is

Figure 3. Cleaning and checking subscales: distribution of the response patterns according
to the distances. The x-axis represents the distances, the y-axis the percentage of response
patterns over the total 4,324 subjects. The values above every column represents the
number of subjects with that distance.
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� able to individualize a patient’s precise critical areas and
� efficient, that is, a system that poses fewer questions than the standard written

questionnaire does.

To this aim, we presented an Adaptive Testing System for Psychological Disorder

(ATS-PD). Such a system performs inferences that are logically correct thanks to the

formal model on which the testing algorithm is based.

The performance results reported in the previous section showed that all of the

response patterns that are states are assigned to that state, so the system is able to cor-

rectly reproduce the patient’s admissible response pattern of a questionnaire.

It is worth noting some crucial differences between a classical questionnaire

administration and the assessment through ATS-PD. As mentioned in the introduc-

tion, the classical questionnaires used to perform the clinical testing return only a

numeric score. The score can be defined as the number of positively answered items

and defines a ‘‘clinical label’’ for the individual, that is, clinical subject or nonclini-

cal subject. Such a score does not allow to distinguish between different response

patterns with the same score. For example, in our dataset, Subjects 7 and 15 achieved

the same score for the cleaning subscale, 5, and this is the only information provided

by classical questionnaires. ATS-PD returns the individuals’ clinical states and the

related symptoms: the states of Subjects 7 and 15 are [10, 13, 16, 17, 20] and [3, 8,

10, 16, 20], respectively. This information permits one to distinguish the individuals

showing, for example, different critical areas and, thus, leading to different

diagnoses.

Another important point to be stressed is the reduction of the number of questions

posed together with the improvement of the quality and quantity of information col-

lected. In the classical paper and pencil form of the MOCQ-R, each participant has

to answer all 16 items and the output of the questionnaire is a score, either clinically

significant or not. In ATS-PD only a percentage ranging between 50 and 75% of the

items are asked and the clinician is provided with the clinical state of the individual,

including the diagnostic symptoms presented by the patient.

Concerning computational time, the system was shown to require some millise-

conds to process an answer and choose the next question. Such a task, if accom-

plished by a clinician during a semistructured interview, would require the time for

considering the answer, choosing the next question, accessing the correct page in the

MOCQ-R booklet and finding the question in the page, for a total estimated time of

around a minute. Our system, thus, is clearly competitive.

The strong assumption exploited by ATS-PD (but supported by the fit of the

model) is that the admissible response patterns are the states of the structure, so the

system will always complete its evaluation in one of these states. However, the pat-

tern observed is affected by errors and could differ from the assigned state. Indeed,

the response patterns that are not states are assigned to states at a close distance from

them. Such response patterns are explained through false-positive and false-negative

answers.
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In the presence of nonadmissible response patterns, the system was shown to exhi-

bit different behaviors for the cleaning and checking subscales, with the latter exhibit-

ing a larger average distance between response patterns and assigned clinical states.

This fact can be explained by considering the number of states of the checking struc-

ture: only 20 clinical states and 185 admissible patterns exist, so the states cover only

11% of the possible patterns. This structure could be affected by an overfitting prob-

lem: It is a good representation of the structure concerning subjects affected by OCD,

but it does not have enough states to fit a nonclinical population. It could be interest-

ing to reformulate the structure using alternative methods, such as the extraction of

the structure from the response patterns (Schrepp, 1999).

A greater or smaller cardinality of the states is directly linked to a property of

such structures—the ordering of a structure. A clinical structure (or ordered set) is

more ordered if fewer states are in the structure, i.e. if it is more similar to the total

order. In our case, the cleaning structure has 92 states of 256 total possible states, so

it is similar to Figure 4A, while the checking structure has only 20 states of 256 (see

Figure 4B). Thus, the higher percentage of response patterns with distance

d(R, K) . 0 can be explained considering that the checking structure is more ordered

than the cleaning structure is. Moreover, the concept of the ordering of a clinical

structure can also explain the difference in the number of items posed; indeed, we

hypothesize that a more ordered clinical structure will converge more quickly than a

Figure 4. Diverse kinds of ordering of the ordered sets.
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less ordered one will. It has to be further stressed that, as shown by Albert,

Kickmeier-Rust, and Matsuda (2008), a size-fit trade-off exists. Thus, the larger the

structure, the lower the distance between response patterns and states. It would be

crucial to identify, even through simulation data, the structure size that both maxi-

mizes the fit of the model and allows an acceptable level of meaning of the clinical

model.

The major innovation of the ATS-PD system, with respect to the standard assess-

ment questionnaires, is that our system does not return a simple numeric score, but

rather a relation between a set of items of a questionnaire and a set of symptoms of

the subject. Thus, the numeric score is no more the focus of the testing procedure

and it can be read in terms of diagnostic attributes. Indeed, ATS-PD indirectly uses

diagnostic criteria to proceed in the identification of questions to ask and returns a

description of the patient that is readable on the basis of the attributes.

ATS-PD is based on an extension of an algorithm for the adaptive assessment of

knowledge (Falmagne & Doignon, 2011). Several new features are added to the proce-

dure: first, the definition of the reference structure for the algorithm is performed through

the application of FPA; second, the parameters estimates are carried out by referring to

the IRT framework; third, the algorithm updates the states’ probabilities through a

Bayesian rule step by step in the testing; finally, two different criteria, one likelihood

based and one entropy based, are jointly exploited in a compound stopping criterion.

Conclusions and Future Work

Few computerized diagnostic systems have been introduced in clinical psychology

and none of them is able to accomplish an adaptive assessment, reproducing the logi-

cal inferences of the clinician.

The aim of this work was to fill this gap with a system, called ATS-PD, that can

execute the process of clinical testing in an adaptive and logically correct manner, in

order to assist the clinician in the diagnosis formulation. ATS-PD innovation lies in

its theoretical framework, combining a formal model of a psychological disorder,

generated by the formal psychological assessment theory, with the extension of an

algorithm for the assessment of knowledge (Falmagne & Doignon, 2011).

The results fit our expectations. The system, tested on a sample of 4,324 patient’s

response patterns and verified for two subscales of the OCD (cleaning and checking),

converges correctly to the latent state of every response pattern. ATS-PD outputs the

patient’s clinical state with the corresponding set of diagnostic criteria; such criteria

individualize the critical area where the clinician should concentrate his or her atten-

tion to formulate the diagnosis. Furthermore, the adaptivity of the system results in a

consistent reduction of the number of asked questions: ATS-PD has thus the power of

a clinical interview but is faster than a standard questionnaire.

As future work, we intend to extend ATS-PD to the other main psychological dis-

orders and to develop a software product that can assist the clinician with the assess-

ment and based on a solid formal representation of the disorders. We imagine a
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scenario where the patient, with a tablet, for example, fills out a questionnaire in an

adaptive manner, and in a second moment, the clinician controls the response of the

system. The response could be a pie chart, where every slice represents a psychologi-

cal disorder and has a probability that indicates how likely the patient can fall in that

clinical diagnosis. In order to achieve this goal, it is necessary to calculate the attri-

butes’ probabilities (Spoto et al., 2013) and to apply FPA to the other main psycholo-

gical disorders. A simple graphical user interface will provide the clinician with a

helpful way to interact with the system.

There can be several improvements of our system, for example we would investi-

gate the possibility of simplifying the updating rule, as in Augustin et al. (2013), use-

ful for real-time application as ATS-PD is. Another foreseen extension will be to

treat items with more than two answer alternatives. This further development of both

ATS-PD and FPA will represent a crucial strategic improvement, since it will allow

to adopt the most widely used response format in psychological testing, that is, the

Likert scale. Two main solutions are under evaluation to solve this issue: on the one

hand we have the fuzzy logic approach; on the other hand we have an IRT oriented

solution. In both cases, the possibility to take into account the case in which the

answering format is not dichotomous is ensured. The implementation of either of

these proposals would allow FPA to construct structures by using all the question-

naires available in psychological testing; at the same time it would allow ATS-PD to

become much more usable in clinical practice.

Finally, the issues of authoring of the structures as well as the potentially harmful

constraints in terms of computational efforts in real-time computing for large clinical

structure with a great number of items may deserve some further considerations. All

the FPA methodology is, at present, a work in progress. The authoring process is at

present one of the core elements under evaluation for identifying an efficient and

accurate procedure to end up with reliable and valid structures. The analysis item by

item of the presence/absence of a set of clinical attributes is the presently used

approach. Further research is in progress with respect to the construction of the struc-

ture and of the clinical context from a given database of answers to questionnaires.

This approach seems to be promising and would represent a strong improvement of

the authoring part. With regard to the constraints in terms of computational efforts,

the construction of several substructures on which to perform in parallel the assess-

ment seems, at present, the most interesting perspective.
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Note

1. The concept of clinical state is the adaptation to the clinical context of the concept of

knowledge state as introduced in Falmagne and Doignon (2011). In its original meaning,

the knowledge state of an individual is the subset of a specific domain of questions that an

individual is able to answer. In the clinical context, the state is the subset of items an indi-

vidual presents. Such a state can be bijectively related to a specific set of symptoms.
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