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Abstract

Evaluations of measurement invariance provide essential construct validity
evidence—a prerequisite for seeking meaning in psychological and educational
research and ensuring fair testing procedures in high-stakes settings. However, the
quality of such evidence is partly dependent on the validity of the resulting statistical
conclusions. Type I or Type II errors can render measurement invariance conclusions
meaningless. The present study used Monte Carlo simulation methods to compare
the effects of multiple model parameterizations (linear factor model, Tobit factor
model, and categorical factor model) and estimators (maximum likelihood [ML],
robust maximum likelihood [MLR], and weighted least squares mean and variance-
adjusted [WLSMV]) on the performance of the chi-square test for the exact-fit
hypothesis and chi-square and likelihood ratio difference tests for the equal-fit
hypothesis for evaluating measurement invariance with ordered polytomous data.
The test statistics were examined under multiple generation conditions that varied
according to the degree of metric noninvariance, the size of the sample, the magni-
tude of the factor loadings, and the distribution of the observed item responses. The
categorical factor model with WLSMV estimation performed best for evaluating over-
all model fit, and the categorical factor model with ML and MLR estimation per-
formed best for evaluating change in fit. Results from this study should be used to
inform the modeling decisions of applied researchers. However, no single analysis
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combination can be recommended for all situations. Therefore, it is essential that
researchers consider the context and purpose of their study.
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categorical confirmatory factor analysis, differential item functioning, limited informa-
tion estimation, measurement invariance, polytomous data, robust maximum likeli-
hood, Tobit model

Measurement invariance (MI) is indicated when a latent construct has equivalent

measurement properties across multiple groups or time points. That is, conditioning

on the latent construct, MI is indicated if the distribution of observed responses is

equivalent across groups/time points (Kim & Yoon, 2011). Evaluations of MI pro-

vide essential construct validity evidence—a prerequisite for seeking meaning in

psychological and educational research and ensuring fair testing procedures in high-

stakes settings (Brown, 2006). For example, multiple-group analyses such as cross-

cultural comparisons are meaningful only to the extent that the same construct is

being measured across groups. Likewise, longitudinal evaluations depend on the

assumption that the same construct is being measured across time. The use of test

scores for making high-stakes decisions, such as employment or credentialing deci-

sions, raises the question of fairness. Evaluations of MI are performed to flag items

that function differently across groups so the items can be further examined for pos-

sible bias or unfairness.

From a factor-analytic perspective, evaluations of MI involve four primary steps

(Brown, 2006). Step 1 is to evaluate configural invariance, which is demonstrated

when the same factor structure holds across groups (i.e., the same dimensionality

holds, and the same items load on each factor). Assuming configural invariance, Step

2 is to evaluate metric invariance, a test of whether the proportion of true score var-

iance is equivalent across groups (i.e., whether the item factor loadings are equivalent

across groups). In the item response theory (IRT) literature, metric noninvariance is

referred to as nonuniform differential item functioning (DIF), which indicates an

interaction between the latent construct and group membership (Narayanan, 1996).

Contingent on evidence of metric invariance, Step 3 is to evaluate scalar invariance

to determine whether the item intercepts are equivalent across groups. Noninvariance

at this step indicates a main effect of group membership on item responses, referred

to as uniform DIF in IRT (Narayanan, 1996). Finally, Step 4 is to evaluate residual

variance invariance to determine whether the proportion of error variance is equiva-

lent across groups. The present study focuses on the first two steps of MI, as histori-

cally these steps have garnered the most attention (Millsap & Olivera-Aguilar, 2012).

Under the commonly used free baseline approach (Wang, Tay, & Drasgow, 2013),

configural invariance is the foundation for all other tests of MI, where evaluations of

MI cannot proceed without it. In turn, metric invariance is often considered to be the
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most important indicator of MI (Meade & Bauer, 2007; Suh & Cho, 2014), as equal

true score variance suggests that the same construct is being measured in both groups

(Meredith & Horn, 2001).

There are many statistical methods and frameworks for evaluating MI, which

have been extensively studied and compared (e.g., Narayanan, 1996; Wang et al.,

2013; Woods, 2011). For this study, we consider the chi-square test (T) for the exact-

fit hypothesis for testing configural invariance, and the chi-square and likelihood

ratio difference statistics (DT and DG2, respectively) for the equal-fit hypothesis for

testing metric invariance, within the confirmatory factor analysis (CFA) framework.

Configural invariance is demonstrated if an unconstrained multiple-group model

demonstrates acceptable fit as indicated by a failure to reject the exact-fit hypothesis

(Brown, 2006). Using a free baseline approach, metric invariance is demonstrated if

model fit does not get significantly worse when constraining the factor loadings to

be equal across groups as indicated by a failure to reject the equal-fit hypothesis

(Brown, 2006).

Although approximate fit indexes have been studied in the context of measurement

invariance (e.g., Cheung & Rensvold, 2002; Fan & Sivo, 2009; French & Finch,

2006; Meade & Bauer, 2007; Meade, Johnson, & Braddy, 2008; Sass, Schmitt, &

Marsh, 2014), we focus solely on test statistics (T, DT , and DG2) due to serious lim-

itations with using approximate fit indexes to make binary decisions about model fit.

In particular, research has shown that suggested thresholds for ‘‘acceptable’’ model

fit do not generalize across modeling and sampling contexts (Kline, 2016). Barrett

(2007) goes as far as saying, ‘‘I would now recommend banning ALL such indices

from ever appearing in any paper as indicative of model ‘acceptability’ or ‘degree of

misfit’’’ (p. 821). While test statistics have been criticized as being overly sensitive

to small deviations in fit when the sample size is large, Hayduk, Cummings, Boadu,

Pazderka-Robinson, and Boulianne (2007) refute this criticism and go on to argue

that ‘‘x2, degrees of freedom, and the associated probability must be reported for all

manuscripts reporting SEM results’’ (p. 845).

The above framework centers on global assessments of invariance—assessments

that ‘‘measure only average or overall model-data correspondence’’ (Kline, 2016, p.

262). Whereas global assessments can be used to identify initial support for a model,

researchers should conduct follow-up analyses to identify areas of local misfit (i.e.,

misspecification of specific pathways) and potential sources of noninvariance (Kline,

2016). Both global and localized information add to the larger body of psychometric

evidence, and thus both should be reported. We focus on global assessments because

they are so widely used. To substantiate this claim, we searched the PsycARTICLES

database for articles related to invariance (using the search phrase: invariance) that

were published in 2015 or 2016 or were available through advance online publica-

tion. Of the 79 articles that described an application of MI, only 2 did not present

information about global model fit or change in model fit. This brief review indicates

that global fit information continues to be widely referenced in practice and thereby

warrants additional methodological research.
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Although MI is a widely studied topic, comparatively little research has investi-

gated the impact of model parameterization and estimation decisions on such evalua-

tions, particularly in the context of modeling ordered polytomous data. To partially

fill this void, the present study used Monte Carlo simulation methods to compare the

effects of multiple model parameterizations (linear factor model [LFM], Tobit factor

model [TFM], and categorical factor model [CFM]) and estimators (maximum likeli-

hood [ML], robust maximum likelihood [MLR], and weighted least squares mean

and variance-adjusted [WLSMV]) on the performance of T, DT , and DG2 for evalu-

ating MI with ordered polytomous data. The test statistics were examined under

multiple generation conditions that varied according to the degree of metric nonin-

variance, the size of the sample, the magnitude of the factor loadings, and the distri-

bution of the observed item responses. Before discussing our methods and results,

we first detail the model parameterizations and estimators of interest and then review

the relevant literature.

Measurement Models

Modern measurement frameworks such as CFA and IRT attempt to explain patterns

of observed item responses by statistically regressing the observed responses on

latent person and item characteristics (de Ayala, 2009). Within these broad frame-

works, many statistical models can be conceptualized depending on the nature of the

data. As such, it is not always clear which model is most appropriate for a given con-

text. Of particular interest to the present study is the analysis of ordered polytomous

response data in which items are rated on a 5-point scale, the most commonly used

scale for Likert-type items (Lozano, Garcı́a-Cueto, & Muñiz, 2008). Although such

data are clearly discrete and often bound by floor or ceiling effects, it is common

practice to treat the data as if they are continuous and normally distributed (Lubke &

Muthén, 2004), despite the fact that alternative approaches may be more theoretically

appropriate. Three possible modeling frameworks are described below, including the

commonly employed LFM that assumes normality of responses. For simplicity of

presentation, a single latent factor is assumed throughout.

Linear Factor Model

As the name suggests, the LFM posits a linear relationship between the observed item

responses and latent person and item characteristics:

Xi = ni + lij + di, ð1Þ

where Xi is the response to item i by a randomly chosen person from the population,

ni is the intercept for item i (the expected response to item i of a randomly chosen

person with an average level of the latent factor), li is the factor loading for item i

(the expected change in the response to item i associated with a one unit increase in

the latent factor score), j is the latent (person) factor, and di is the residual for item i
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where di ; N 0, uið Þ (Bollen, 1989). For j ; N 0, 1ð Þ, it is assumed that

Xi ; N ni, l2
i + ui

� �
.

Tobit Factor Model

The LFM assumes data are continuous and normally distributed. In psychological

and educational research, floor and ceiling effects occur, which prevent part of the

distribution of responses from being observed. For example, many cognitive instru-

ments are designed to differentiate among average ability students. Administering the

instruments to a sample of gifted students will result in an excess of responses at the

upper end of the scale (McBee, 2010). This is assumed to be a limitation of the instru-

ment and not an indication of the true distribution of cognitive abilities—if a more

appropriate instrument was administered, it is assumed that the responses would fol-

low a normal distribution.

When there is an excess of responses at one or both ends of the scale, it suggests

that the true responses are censored (i.e., only a lower or upper bound can be

observed) for persons with particularly low or high levels of the latent construct. In

this case, a more theoretically correct alternative to the LFM is the TFM (Tobin,

1958), which assumes that the observed responses are continuous and follow a cen-

sored normal distribution. A general representation of the model that allows for cen-

soring at both ends of the scale is given by

Xi =

tL if X �i � tL

X �i = ni + lij + di if tL\X �i \tU

tU if X �i � tU

8<
: , ð2Þ

where Xi is the observed response to item i, X �i is the true (uncensored) response to

item i, and tL and tU are the lower and upper bounds of the observed data, respec-

tively. For j ; N 0, 1ð Þ, it is assumed that X �i ; N ni, l2
i + ui

� �
. Equation (2) shows

that unlike the LFM, the TFM makes a distinction between the true response and the

observed response.

Categorical Factor Model

The LFM and TFM assume that the observed responses are continuous and follow a

normal or censored normal distribution, respectively. Neither of these models

accounts for the discrete nature of Likert-type data. A third option for analyzing

ordered polytomous data is to specify a model that explicitly accounts for this discre-

teness. Under the IRT framework, one such model is the graded response model

(GRM; Samejima, 1969).1 The present study focuses on a parameterization of the

GRM that specifies factor loadings and thresholds (see, e.g., IRT in Mplus, 2013, p.

1), given as
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P Xi = cjjð Þ=
ðtic

tic�1

c zjjð Þdz =
exp �lij + ticð Þ

1 + exp �lij + ticð Þ �
exp �lij + tic�1ð Þ

1 + exp �lij + tic�1ð Þ , ð3Þ

where c is the response option (e.g., c = 1, . . . , 5 for a 5-option scale), ti is the set of

C � 1 thresholds for item i, c is the logistic probability density function (pdf), and all

other terms are defined above. If c is the first response option then the second term in

Equation (3) goes to 0, and if c is the last response option then the first term is equal

to 1. Alternatively, Equation (3) can be specified in terms of the standard normal pdf

(j) and corresponding cumulative distribution function (F):

P Xi = cjjð Þ=
ðtic

tic�1

j zjjð Þdz =F �lij + ticð Þ � F �lij + tic�1ð Þ: ð4Þ

Estimators

Another modeling consideration is the model estimator. A major distinction among

estimators is their classification as full-information or limited-information methods.

Full-information methods are more efficient than limited-information methods, but

the latter are computationally faster and may be the only feasible option when esti-

mating complex models (Forero & Maydeu-Olivares, 2009).

The present study focuses on ML estimation, a full-information method, and

WLSMV estimation, a limited-information method. In addition, a robust ML estima-

tor (referred to as MLR in Mplus; L. K. Muthén & Muthén, 1998-2015) is examined

that offers Huber–White sandwich variance estimators and corrected test statistics

for use under nonideal sample conditions. In the context of performing MI analyses

within Mplus, ML and MLR can be used to estimate all three measurement models

described in the previous section, whereas WLSMV can only be used to estimate the

CFM.

Maximum Likelihood

For the LFM, ML estimation is performed by minimizing a fit function derived from

a multivariate normal distribution (see Bollen, 1989):

FML uð Þ= log S uð Þj j+ tr SS�1 uð Þ
h i

� log Sj j � q, ð5Þ

where S uð Þ is the model-implied covariance matrix, S is the sample covariance

matrix, and q is the number of items. A test of the exact-fit hypothesis is obtained by

comparing

TML = N � 1ð ÞFML û
� �

, ð6Þ

to a critical value from a chi-square distribution with q= 2 q + 1½ �ð Þ � t degrees of free-

dom, where t is the number of estimated parameters. To evaluate difference in fit
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between a constrained model (M0) and unconstrained model (M1), a chi-square dif-

ference test of the equal-fit hypothesis can be performed by comparing

DTML = N � 1ð ÞFML û0

� �
� N � 1ð ÞFML û1

� �
, ð7Þ

to a critical value from a chi-square distribution with t1 � t0 degrees of freedom.

The sample covariance matrix contains only information about the items’ means

and covariances; when the assumption of normality is not tenable, as in the TFM and

CFM cases, the sample covariance matrix does not sufficiently summarize the data.

Instead of minimizing a fit function, ML estimation is carried out by maximizing the

corresponding likelihood function given the observed sample response patterns

(Forero & Maydeu-Olivares, 2009). For the CFM, it is possible to calculate Pearson’s

x2 statistic using the frequencies from the joint contingency table; yet the sparseness

that occurs when there are a large number of items and item categories violates the

underlying multinomial distribution assumption (Maydeu-Olivares & Cai, 2006). As

such, the x2 statistic should not be used to assess global fit under these conditions.

However, for both the TFM and CFM, change in model fit can be evaluated by

comparing

DG2 = � 2 log L0ð Þ � log L1ð Þð Þ, ð8Þ

to a chi-square distribution with t1 � t0 degrees of freedom.

A further complication with ML in the case of the TFM and CFM is that there is

no closed-form solution for integrating over the latent (person) variable distribution.

Integration is the basis for marginal ML estimation (MMLE; note that we will simply

refer to MMLE as ML). For these models, a numerical integration algorithm is

required to approximate the marginal distribution (de Ayala, 2009).

Robust Maximum Likelihood

MLR uses the same maximization procedure as ML but offers empirically adjusted

variance estimators and test statistics (L. K. Muthén & Muthén, 1998-2015). These

statistics are generally preferred to their model-based counterparts when model-based

assumptions (e.g., normality, large sample sizes) are violated (Satorra & Bentler,

2001). For the LFM, the corrected test statistic is calculated as

TMLR = TML=c, ð9Þ

where Yuan and Bentler (2000) provide details on the calculation of the correction

factor (c). Mplus uses a slightly different calculation for c, but L. K. Muthén and

Muthén (1998-2015) note that TMLR�LFM is ‘‘asymptotically equivalent to the Yuan-

Bentler T2* test statistic’’ (p. 603). The corresponding adjusted chi-square and likeli-

hood ratio difference tests are calculated as (see Satorra & Bentler, 2001)

DTMLR = TML, 0c0 � TML, 1c1ð Þ=cd , ð10Þ
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and

DG2
MLR = � 2 G2

0 � G2
1

� �
=cd , ð11Þ

respectively, where cd = t0c0 � t1c1ð Þ= t0 � t1ð Þ:

Weighted Least Squares Mean and Variance-Adjusted

WLSMV is a limited-information estimator because it uses only first- and second-

order moment information. Like ML for the LFM, WLSMV relies on a least squares

approach to minimize a fit function given as

FWLSMV uð Þ= s� s uð Þð ÞT W�1 s� s uð Þð Þ, ð12Þ

where s contains the sample thresholds and polychoric correlations, s uð Þ contains

the model-implied thresholds and polychoric correlations, and W is a diagonal weight

matrix (B. O. Muthén, du Toit, & Spisic, 1997). Polychoric correlations are used here

because it is assumed that latent, normally distributed responses underlie the observed

ordinal item responses. A mean- and variance-adjusted test of the exact-fit hypothesis

is then calculated as

TWLSMV = N3FWLSMV û
� �

3 d=tr UGð Þ2
� �

, ð13Þ

where the full calculations for d, U, and G are provided by B. O. Muthén et al.

(1997). The corresponding difference test for the equal-fit hypothesis is calculated as

DTWLSMV = TWLSMV , 0 � TWLSMV , 1ð Þ3 d=tr Mð Þð Þ, ð14Þ

where the full calculations for d and M are provided by Asparouhov and Muthén

(2006).

Past Research

A handful of studies have examined the performance of the aforementioned test sta-

tistics in the context of modeling approximately continuous ordered polytomous data

(i.e., data in which the items are based on a 5-point scale). We focus on research

involving 5-point scales, not only because 5-point scales are the most commonly

used (Lozano et al., 2008), but because there seems to be little empirical or theoreti-

cal support for treating data based on fewer response categories as continuous (e.g.,

Sass et al., 2014).

Overall Model Fit

With respect to the test of the exact-fit hypothesis, the focus has been on TML�LFM

and TWLSMV�CFM . For a single-factor model across varying sample sizes, Babakus,
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Ferguson, and Jöreskog (1987) and B. Muthén and Kaplan (1985) found that the

Type I error rate of TML�LFM became increasingly inflated as the distribution of

observed responses became increasingly skewed. The biggest limitation of B.

Muthén’s and Kaplan’s study is that the results were based on only 25 replications,

making it difficult to disentangle variability due to the study factors from simulation

error. Although Babakus et al. relied on a greater number of replications, they col-

lapsed their results across factor loading conditions, thereby overlooking a poten-

tially important study factor. Importantly, neither study considered power. Power is a

particularly important consideration for high-stakes MI applications in which nonin-

variance presents a source of bias. Finally, both studies were conducted in the con-

text of a single-group analysis, and thus, it remains unclear whether the results

generalize to the context of testing MI.

Lubke and Muthén (2004) considered a multiple-group analysis of a single-factor

model and observed that the TML�LFM Type I error rate was particularly inflated

when the sample size and factor loadings were large, and the items were skewed.

Unfortunately, the item distribution condition (i.e., all items bell-shaped vs. items

skewed in varying directions) was confounded in that it is unclear whether inflation

was due to the skewness itself, or due to the fact that the distribution varied across

items. In addition, the interpretability of results was limited by relatively large

amounts of simulation error (only 100 replications were used) and lack of attention

to power.

Three studies have considered the performance of TWLSMV�CFM in the context of

modeling approximately continuous ordered polytomous data. Flora and Curran

(2004) found that for a single-group analysis, TWLSMV�CFM was too liberal for the

smallest sample size (N = 100), particularly when the model was complex. The

authors did not consider power, however, and called for future research to address this

limitation. The study by Kim and Yoon (2011) partially filled this gap. Their results,

based on a multiple-group single-factor model, indicated that the TWLSMV�CFM Type I

error rate was acceptable across sample size conditions (n = 200 or 500 per group).

Power to detect model misfit exceeded .80 only when the degree of misfit was large.

Although these results provide some insight into the power of TWLSMV�CFM , the rela-

tive nature of power and the study’s lack of comparison test statistic make it difficult

to meaningfully interpret the results. Notably, Beauducel and Herzberg (2006)

directly compared the performance of TML�LFM and TWLSMV�CFM . For a single-group

analysis of data based on a 5-point scale, results indicated that both test statistics had

inflated Type I error rates, but TML�LFM was slightly more liberal when the factors of

the multidimensional model were uncorrelated and TWLSMV�CFM was slightly more

liberal when the factors were correlated. Unfortunately, results were averaged across

sample sizes and degrees of model complexity, preventing more nuanced conclu-

sions. Lack of attention to power also limited the comparison.

Past research provides some insight into the effects of model parameterization

and estimation decisions on the performance of the test for the exact fit hypothesis,

but there remain important gaps in the literature. In particular, the performance of
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TMLR�LFM when analyzing ordered polytomous data needs to be evaluated. Likewise,

direct comparisons among TML�LFM ,TMLR�LFM , and TWLSMV�CFM are needed. Power

should be evaluated in addition to the Type I error rate, as power is especially critical

when assessing MI. Relatedly, more research is needed to determine whether previ-

ous findings generalize to the multiple-group MI context. Finally, the impact of fac-

tor loading magnitude and distribution of the observed ordinal variables on the

performance of TWLSMV�CFM needs to be investigated.

Change in Model Fit

Two studies have performed comparisons involving the chi-square and/or likelihood

ratio difference test for the equal-fit hypothesis that are particularly relevant to the

present study. Kim and Yoon (2011) compared DG2
ML�CFM and DTWLSMV�CFM in the

context of simultaneously evaluating metric and scalar invariance using a Bonferroni-

corrected constrained-baseline approach where each item was tested individually.

Their results indicated that the Type I error rate (i.e., the number of times model fit

significantly improved upon freeing a non-DIF item) for DTWLSMV�CFM was generally

inflated, particularly for larger sample sizes and increased DIF. A similar pattern held

for DG2
ML�CFM , but the magnitude of inflation was smaller. Holding the Type I error

rates approximately equal, DTWLSMV�CFM generally had greater power than

DG2
ML�CFM . The biggest limitation of this study is the use of a constrained-baseline

approach for detecting DIF, as this approach has been found to produce considerably

inflated Type I error rates when compared to a free-baseline approach (Stark,

Chernyshenko, & Drasgow, 2006).

Using a free-baseline approach, Sass et al. (2014) compared the performance of

DTML�LFM , DTMLR�LFM , and DTWLSMV�CFM for simultaneously evaluating metric and

scalar invariance within the context of a multiple-group single-factor model. They

found that DTML�LFM generally held the correct size (i.e., the Monte Carlo estimated

Type I error rate was approximately equal to a)2 across sample sizes, regardless of

whether the observed responses followed a symmetric or asymmetric distribution,

whereas DTMLR�LFM was overly conservative when the distribution was asymmetric.

For small sample sizes, DTWLSMV�CFM was overly liberal regardless of the distribu-

tion of responses. Holding the Type I error rates approximately constant,

DTWLSMV�CFM had the greatest power to detect metric noninvariance. As expected

based on the Type I error results, DTMLR�LFM was considerably less powerful than

the other test statistics under the asymmetric condition.

The findings of Kim and Yoon (2011) and Sass et al. (2014) provide initial insight

into the effects of model parameterization and estimation decisions on the perfor-

mance of the chi-square and likelihood ratio difference tests when analyzing approxi-

mately continuous ordered polytomous data. However, additional research is needed

in this area. Evaluations of the Tobit model using DG2
ML�TFM and DG2

MLR�TFM are

nonexistent. Given the regularity of floor and ceiling effects when studying special

populations (e.g., gifted students), the Tobit model should be investigated as an
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alternative to the LFM. Comparisons of the LFM and CFM using full-information

estimators are also needed. In addition, comparisons of limited- and full-information

estimators for the CFM should be conducted using a free-baseline approach. Finally,

the effect of factor loading magnitude on the performance of the test statistics needs

to be evaluated. The present study seeks to fill these gaps.

Method

Data Generation

Our aforementioned review of recently published articles describing applications of

MI indicated considerable variability in the types of factor models being evaluated.

For example, across articles the number of factors ranged from 1 to 11, and the num-

ber of items per factor ranged from 2 to 27. Likewise, item parameter estimates var-

ied widely. It was therefore impossible to design a study that would generalize across

all scenarios. However, to strengthen the generalizability of our results, we attempted

to model our simulation after that of previous research and based on general guide-

lines offered in the literature on latent variable modeling. As we note below, in a few

instances we sacrificed some external validity in favor of minimizing confounding

variability, which would have threatened the internal validity of our results.

In the first phase of data generation, the Monte Carlo procedure in Mplus Version

5.2 was used to generate multiple-group multivariate normal data from a 10-item

(cf., Flora & Curran, 2004; Sass et al., 2014) single-factor model (cf., Babakus et al.,

1987; Kim & Yoon, 2011; Lubke & Muthén, 2004; B. Muthén & Kaplan, 1985; Sass

et al., 2014) specified as

Xig = ni + ligj + dig, ð15Þ

where g = 1, 2 denotes group membership, j ; N 0, 1ð Þ for both groups, and all other

terms are defined above. Item factor loadings were manipulated as a condition in the

study, but across conditions, the total variance for each item was fixed at one by spe-

cifying the item residual variances to be uig = 1� l2
ig. Item intercepts were specified

to be zero for all items within and across groups. In the second phase of data genera-

tion, performed in SAS Version 9.2, the continuous normally distributed data were

converted into ordered 5-category items by imposing a set of categorization thresh-

olds (cf., Babakus et al., 1987; Flora & Curran, 2004; Lubke & Muthén, 2004; B.

Muthén & Kaplan, 1985):

~Xig =

0 if Xig\t1

1 if t1 � Xig\t2

2 if t2 � Xig\t3

3 if t3 � Xig\t4

4 if Xig � t4

8>>><
>>>:

, ð16Þ

where the thresholds were manipulated as a condition in the study.
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Four sample design factors were manipulated, including the degree of metric non-

invariance, size of the sample, magnitude of factor loadings, and distribution of the

observed responses. Each of these factors is described below.

Three levels of metric noninvariance were considered: (1) 10 invariant items and 0

noninvariant items (invariance condition); (2) 8 invariant items and 2 items exhibiting

moderate noninvariance (zlig
� zlig0 = :32, where z is Fisher’s z-transformation of the

factor loading); and (3) 8 invariant items and 2 items exhibiting large noninvariance

(zlig
� zlig0 = :60). Specifying 20% of the items to be noninvariant is in line with past

MI research (cf., French & Finch, 2006; Sass et al., 2014).

The total sample size was either 400 or 1,000, evenly balanced across groups (n1 =

n2 = 200 or 500). We chose group sizes of 200 and 500 because they have been sug-

gested as rough guidelines for the minimum sample size necessary to perform latent

variable modeling (e.g., Barrett, 2007; de Ayala, 2009).

The magnitude of factor loadings was also manipulated. For the invariant condi-

tion, lig = :5, :7, or :9. These represent standardized loadings, as the total variance

for each item was fixed at 1. Kline (2016) recommends using items with standardized

loadings of at least .7, so the lig = :7 condition corresponds to a minimally adequate

setting, whereas the lig = :5 and lig = :9 conditions correspond to inadequate and

more than adequate settings, respectively. We note as a limitation that the assumption

of tau equivalence may not be realistic in many practical applications. However, we

felt this restriction was necessary to minimize confounding differences across condi-

tions due to nonmanipulated differences in true score variability. For the noninvariant

conditions, lig = :7 for all 10 items in the reference group and for the 8 invariant items

in the focal group, and lig = :5 or :9 for the 2 items in the focal group exhibiting mod-

erate and large noninvariance, respectively.

Finally, we manipulated the distribution of observed responses by imposing dif-

ferent sets of categorization thresholds: (1) Approximately normal distribution based

on the set of thresholds, 21.645, 20.643, 0.643, 1.645, resulting in Response

Options 0 to 4 being endorsed on average by 5%, 21%, 48%, 21%, and 5% of the

sample, respectively (based on B. Muthén & Kaplan, 1985), and resulting in skew =

.00 and kurtosis = .02; (2) Approximately normal distribution but censored from

below based on the set of thresholds, 20.842, 0.050, 0.995, 1.960, resulting in

Response Options 0 to 4 being endord on average by 20%, 32%, 32%, 13.5%, and

2.5% of the sample, respectively, and resulting in skew = .25 and kurtosis = 2.59;

and (3) L-shaped distribution based on the set of thresholds, 0.000, 0.527, 0.845,

1.290, resulting in Response Options 0 to 4 being endorsed on average by 50%,

20%, 10%, 10%, and 10% of the sample, respectively, and resulting in skew = .98

and kurtosis = 2.38. The approximately normal and censored distributions were cho-

sen to reflect situations in which the assumption of a normal or censored normal dis-

tribution, respectively, may be practical despite the discreteness of the data. The L-

shaped distribution was chosen to reflect a situation in which the data are skewed but

the assumption of a normal or censored normal distribution is implausible. We

acknowledge as a limitation that these thresholds are arbitrary in the sense that they
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are not estimated from actual data. Ultimately, we felt it was most informative to

evaluate the LFM and TFM under ideal situations (our reasoning being that if they

do not perform well under ideal situations then it is unlikely they will perform well

under nonideal situations), which necessitated purposeful selection of thresholds.

Crossing the design factors resulted in a total of 30 data generation conditions.

Ten thousand samples, or as many samples as necessary to obtain 10,000 samples

with all 5 response categories being endorsed at least once by both groups for all 10

items, were generated for each condition. This constraint was applied to ensure com-

parability across estimators, as the use of WLSMV with the grouping option in

Mplus requires that both groups endorse the same response options.

Data Analysis

Data were analyzed using multiple combinations of models and estimators. The three

measurement models included the LFM, TFM, and CFM. The three estimators

included ML, MLR, and WLSMV. Default link functions were used in conjunction

with the CFM—the logit link for ML and MLR and the probit link for WLSMV. ML

and MLR were fully crossed with each of the measurement models, but WLSMV

was paired only with the CFM. This resulted in seven different combinations of mod-

els and estimators.

Combining the generation and analysis conditions produced a total of 210 study

cells. All 210 cells were evaluated in Mplus under each of two MI hypotheses: con-

figural and metric invariance. In testing configural invariance, item parameters were

freely estimated across groups. The latent factor was identified in each group by fix-

ing the mean at zero and the variance at one. In testing metric invariance, factor load-

ings were constrained to be equal across groups resulting in 9 additional degrees of

freedom (10 constrained factor loadings minus the corresponding freely estimated

factor variance for Group 2).

Outcome Measures

Outcome measures included the Monte Carlo estimated Type I error rate and

power of the chi-square tests of the exact-fit hypothesis (TML�LFM , TMLR�LFM ,

and TWLSMV�CFM ) and chi-square and likelihood ratio difference tests of the

equal-fit hypothesis (DTML�LFM , DTMLR�LFM , DG2
ML�TFM , DG2

MLR�TFM , DG2
ML�CFM ,

DG2
MLR�CFM , and DTWLSMV�CFM ). The nominal Type I error rate for both sets of test

statistics was .05. The tests of the exact-fit hypothesis were based on the constrained

(metric invariance) model. While overall fit is most relevant to testing the hypothesis

of configural invariance, assessing overall fit of the metric invariance model allowed

us to evaluate both the Type I error rate and power. The difference tests were calcu-

lated using a free-baseline approach in which the fully constrained metric invariance

model was compared to the unconstrained configural model.
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Results

Summary of Replications

Due to the simplicity of the factor model, lack of model misspecification within

groups, and adequacy of the overall sample size, nonconvergence and inadmissible

solutions were a nonissue. However, as previously noted, samples were discarded if

not all five response categories were endorsed at least once for each item in each

group. Table 1 shows the total number of replications required to obtain 10,000 anal-

ysis replications. As expected, the conditions in which the sample size was small and

the responses followed a censored distribution required the greatest number of repli-

cations to be generated. This is due to the fact that the average response frequency

was set to 2.5% for the final response option under this condition and was therefore

more likely to be unobserved for any given replication. Very few additional replica-

tions were required under all other conditions. The general implication of discarding

replications is that the data for the analysis replications were, on average, slightly

less sparse than the data for the complete set of generation replications. As such, the

impact of the categorization thresholds on the performance of the test statistics may

have been slightly attenuated.

Overall Model Fit

See Table 2 and Figure 1 for the Monte Carlo estimated Type I error rate and power

of the test of the exact-fit hypothesis across generation and analysis conditions. For

the invariant condition, using a normal approximation to the binomial,

:0561:963

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:053 1� :05ð Þ

10, 000
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, ð17Þ

it is expected (with 95% confidence interval) that test statistics with a true size of .05

will have an estimated size between .0457 and .0543. Following the approach of Sass

et al. (2014), we use a more liberal criterion of two standard errors (between .0415

and .0585) to evaluate the acceptability of the test statistics. Type I error rates outside

this range are boldfaced in the table.

Linear Factor Model. TML�LFM was too liberal across all generation conditions. The

Type I error rate was most noticeably inflated for the conditions in which the

responses followed an L-shaped distribution, with inflation reaching as high as .931

under the small sample size, large factor loading condition. The error rate was much

less pronounced for the approximately normal and censored conditions, where these

conditions had very similar effects on the error rate. Across all three response distri-

bution conditions, inflation increased with decreased sample size and increased mag-

nitude of the factor loadings. TMLR�LFM was also consistently liberal, but compared

to ML, the Type I error rate was considerably less inflated for the L-shaped
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distribution condition. Across factor loading and response distribution conditions,

inflation decreased with increased sample size. Inflation increased with increased

magnitude of the factor loadings but only for the L-shaped distribution condition.

Categorical Factor Model. TWLSMV�CFM held the correct size when the magnitude of

the factor loadings was large, but the error rate was inflated when the factor loadings

were of a smaller magnitude. The sample size and response distribution conditions

had a noticeable (albeit small) effect on the error rate for the smaller factor loading

Table 1. Total Number of Replications Generated to Obtain 10,000 Analysis Replications.

Outcome n1/n2 t l Total replications

Type I error rate (invariance) 200/200 N .5 10,012
.7 10,013
.9 10,012

C .5 11,332
.7 11,295
.9 11,121

L .5 10,000
.7 10,000
.9 10,000

500/500 N .5 10,000
.7 10,000
.9 10,000

C .5 10,002
.7 10,001
.9 10,000

L .5 10,000
.7 10,000
.9 10,000

Power (noninvariance) 200/200 N .5 10,017
.9 10,019

C .5 11,304
.9 11,339

L .5 10,000
.9 10,000

500/500 N .5 10,000
.9 10,000

C .5 10,002
.9 10,002

L .5 10,000
.9 10,000

Note. n1/n2 = sample size of Group 1/Group 2. t = distribution of responses (N = approximately normal,

C = censored, L = L-shaped). l = factor loading for all 10 invariant items under the full metric invariance

condition or for the 2 noninvariant items in the focal group under the metric noninvariance condition

(where the loadings for the other items were .7).
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conditions, where inflation was greater for the small sample size and less skewed

conditions.

In addition to size, the Monte Carlo estimated power of the chi-square test of the

exact-fit hypothesis was evaluated by examining the average rejection rate for each

Table 2. Monte Carlo Estimated Type I Error Rate and Power of the Chi-Square Test of the
Exact-Fit Hypothesis for Evaluating Metric Invariance.

LFM CFM

Outcome n1/n2 t l ML MLR WLSMV

Type I error rate (invariance) 200/200 N .5 0.070 0.085 0.107
.7 0.073 0.078 0.079
.9 0.127 0.082 0.047

C .5 0.081 0.083 0.105
.7 0.090 0.082 0.079
.9 0.120 0.081 0.046

L .5 0.264 0.090 0.080
.7 0.562 0.099 0.068
.9 0.931 0.132 0.050

500/500 N .5 0.059 0.064 0.071
.7 0.063 0.064 0.063
.9 0.108 0.061 0.051

C .5 0.064 0.060 0.069
.7 0.076 0.065 0.061
.9 0.099 0.065 0.057

L .5 0.229 0.065 0.060
.7 0.517 0.067 0.060
.9 0.910 0.076 0.050

Power (noninvariance) 200/200 N .5 0.199 0.218 0.721
.9 0.262 0.277 0.958

C .5 0.234 0.222 0.747
.9 0.302 0.284 0.968

L .5 0.693 0.203 0.590
.9 0.823 0.283 0.889

500/500 N .5 0.446 0.448 0.989
.9 0.606 0.602 1.000

C .5 0.510 0.481 0.992
.9 0.681 0.651 1.000

L .5 0.856 0.365 0.961
.9 0.963 0.583 1.000

Note. LFM = linear factor model; CFM = categorical factor model; ML = maximum likelihood, MLR =

robust maximum likelihood; WLSMV = weighted least squares mean and variance-adjusted. n1/n2 =

sample size of Group 1/Group 2. t = distribution of responses (N = approximately normal, C =

censored, L = L-shaped). l = factor loading for all 10 invariant items under the full metric invariance

condition or for the 2 noninvariant items in the focal group under the metric noninvariance condition

(where the loadings for the other items were .7). For the Type I error rates, values are boldfaced if they

exceed .0415, .0585, (i.e., if they are more than 2 standard errors away from .05).
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of the two noninvariant conditions. Because the error rate was inflated under most

conditions, power must be interpreted with caution. In particular, it is meaningless to

evaluate power for the linear model with ML estimation under the L-shaped distribu-

tion. Nonetheless, focusing on conditions in which the Type I error rate was below

.10, certain comparisons are worth noting. As expected, across conditions, power

increased as a function of increased sample size and increased magnitude of metric

noninvariance. In comparing model–estimator combinations, TML�LFM and TMLR�LFM

demonstrated similar levels of power, while TWLSMV�CFM demonstrated much greater

levels of power. For TMLR�LFM and TWLSMV�CFM , power was noticeably lower for the

most skewed (L-shaped) distribution condition.

Change in Model Fit

See Table 3 and Figure 2 for the Monte Carlo estimated Type I error rate and power

of the chi-square and likelihood ratio difference tests for the equal-fit hypothesis

across generation and analysis conditions.

Linear Factor Model. Compared to TML�LFM , DTML�LFM better held the correct size,

particularly when the distribution of responses was approximately normal. The Type

I error rate was not affected by sample size, but for the censored and L-shaped distri-

butions, the error rate decreased with increased magnitude of the factor loadings.

Figure 1. Monte Carlo estimated Type I error rate and power of the chi-square test of the
exact-fit hypothesis for evaluating metric invariance.
Note. LFM = linear factor model; CFM = categorical factor model. l = factor loading for all 10 invariant

items under the full metric invariance condition or for the 2 noninvariant items in the focal group under

the metric noninvariance condition (where the loadings for the other items were .7). n1/n2 = sample size

of Group 1/Group 2.
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DTMLR�LFM was even more stable, as it held the correct size across all generation

conditions.

Tobit Factor Model. DG2
ML�TFM was sensitive to the distribution of responses and mag-

nitude of factor loadings but not to the sample size. The test was too liberal for the

Table 3. Monte Carlo Estimated Type I Error Rate and Power of the Chi-Square and
Likelihood Ratio Difference Tests of the Equal-Fit Hypothesis for Evaluating Metric Invariance.

LFM TFM CFM

Outcome n1/n2 t l ML MLR ML MLR ML MLR WLSMV

Type I
error
rate
(invariance)

200/200 N .5 0.052 0.051 0.075 0.052 0.058 0.053 0.097
.7 0.054 0.056 0.104 0.059 0.044 0.055 0.088
.9 0.058 0.055 0.155 0.058 0.038 0.070 0.078

C .5 0.041 0.050 0.061 0.048 0.057 0.049 0.091
.7 0.021 0.048 0.070 0.053 0.044 0.057 0.085
.9 0.016 0.052 0.096 0.054 0.034 0.064 0.077

L .5 0.077 0.044 0.027 0.046 0.056 0.044 0.077
.7 0.057 0.047 0.011 0.053 0.046 0.053 0.075
.9 0.032 0.051 0.008 0.051 0.034 0.062 0.072

500/500 N .5 0.053 0.053 0.076 0.053 0.054 0.050 0.066
.7 0.051 0.052 0.098 0.050 0.041 0.055 0.065
.9 0.055 0.051 0.144 0.049 0.029 0.054 0.057

C .5 0.041 0.053 0.060 0.052 0.055 0.053 0.069
.7 0.026 0.053 0.069 0.052 0.039 0.050 0.063
.9 0.016 0.054 0.098 0.053 0.032 0.058 0.062

L .5 0.069 0.048 0.026 0.049 0.052 0.049 0.061
.7 0.055 0.050 0.012 0.051 0.043 0.051 0.060
.9 0.031 0.054 0.007 0.054 0.029 0.054 0.059

Power
(noninvariance)

200/200 N .5 0.450 0.454 0.506 0.395 0.660 0.685 0.804
.9 0.591 0.590 0.629 0.500 0.989 0.992 0.981

C .5 0.408 0.524 0.439 0.393 0.679 0.702 0.818
.9 0.580 0.700 0.546 0.485 0.994 0.995 0.987

L .5 0.461 0.424 0.184 0.366 0.548 0.565 0.674
.9 0.693 0.668 0.211 0.428 0.974 0.977 0.939

500/500 N .5 0.894 0.895 0.898 0.837 0.985 0.988 0.996
.9 0.963 0.962 0.958 0.919 1.000 1.000 1.000

C .5 0.905 0.945 0.869 0.848 0.990 0.992 0.998
.9 0.977 0.990 0.935 0.916 1.000 1.000 1.000

L .5 0.900 0.889 0.640 0.821 0.962 0.967 0.982
.9 0.988 0.987 0.701 0.875 1.000 1.000 1.000

Note. LFM = linear factor model; TFM = Tobit factor model; CFM = categorical factor model; ML =

maximum likelihood; MLR = robust maximum likelihood; WLSMV = weighted least squares mean and

variance-adjusted. n1/n2 = sample size of Group 1/Group 2. t = distribution of responses (N =

approximately normal, C = censored, L = L-shaped). l = factor loading for all 10 invariant items under the

full metric invariance condition or for the 2 noninvariant items in the focal group under the metric

noninvariance condition (where the loadings for the other items were .7). For the Type I error rates, values

are boldfaced if they exceed .0415, .0585 (i.e., if they are more than 2 standard errors away from .05).
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approximately normal and censored response distributions and too conservative for

the L-shaped response distribution, where these patterns became even more apparent

with increased magnitude of the factor loadings. DG2
MLR�TFM performed much better,

holding the correct size for all but one of the generation conditions. This condition

corresponded to the approximately normal response distribution, where a TFM would

not generally be applied.

Categorical Factor Model. DG2
ML�CFM and DG2

MLR�CFM performed relatively well,

although DG2
ML�CFM was too conservative when the magnitude of the factor loadings

was large, and DG2
MLR�CFM was too liberal when the magnitude of the factor loadings

was large and the sample size was small. DTWLSMV�CFM , on the other hand, was con-

sistently too liberal, with greater inflation occurring for the small sample size and

less skewed (approximately normal and censored) response distribution conditions.

The power of the difference tests was examined by considering the noninvariant

conditions. Again, power must be interpreted with caution due to instances in which

the tests did not hold the correct size—only general patterns should be considered.

As before, power increased with increased sample size and magnitude of

Figure 2. Monte Carlo estimated Type I error rate and power of the chi-square and
likelihood ratio difference tests of the equal-fit hypothesis for evaluating metric invariance.
Note. ML = maximum likelihood; MLR = robust maximum likelihood; WLSMV = weighted least squares

mean and variance-adjusted; LFM = linear factor model; TFM = Tobit factor model; CFM = categorical

factor model. l = factor loading for all 10 invariant items under the full metric invariance condition or for

the 2 noninvariant items in the focal group under the metric noninvariance condition (where the loadings

for the other items were .7). n1/n2 = sample size of Group 1/Group 2.
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noninvariance. Across conditions, power levels were generally similar across estima-

tors for a given measurement model, although DTWLSMV�CFM was more powerful

than G2
ML�CFM and DG2

MLR�CFM when the magnitude of noninvariance was small. In

contrast, power levels were noticeable different across each of the three measurement

models. Specifically, power was greatest for the CFM tests, and smallest for the

Tobit tests. In general, power was greater for the less skewed response distribution

conditions.

Discussion

We evaluated the impact of several model parameterization and estimation methods

on the performance of the chi-square test of the exact-fit hypothesis and chi-square

and likelihood ratio difference tests of the equal-fit hypothesis in the context of

evaluating MI with approximately continuous ordered polytomous data. Our study

makes several novel contributions to the MI literature by providing (1) an evaluation

of understudied test statistics (i.e., TMLR�LFM , DG2
ML�TFM , DG2

MLR�TFM , and

DG2
MLR�CFM ), (2) a more elaborate factorial comparison of the various model para-

meterization and estimation methods, considering both Type I error rates and power,

and (3) an evaluation of additional study factors such as the magnitude of the factor

loadings.

With respect to evaluating overall model fit, TML�LFM was extremely unstable. In

line with past research, but now extended to the multiple-group case, the Type I error

rate was particularly inflated when the observed responses were highly skewed (cf.,

Babakus et al., 1987; B. Muthén & Kaplan, 1985). We also found that TML�LFM was

sensitive to the magnitude of factor loadings. This finding provides greater support

for past research that relied on a small number of replications (cf., Lubke & Muthén,

2004).

TMLR�LFM and TWLSMV�CFM were clearly preferred to TML�LFM as they demon-

strated more controlled Type I error rates, although the error rate for TMLR�LFM was

inflated when the sample size was small, and the error rate of TWLSMV�CFM was

inflated when both the sample size was small (as observed within a single-group con-

text; Flora & Curran, 2004) and the magnitude of factor loadings was large. The pri-

mary distinction between TMLR�LFM and TWLSMV�CFM was in their power to detect

model misspecification. Comparatively speaking, TMLR�LFM was extremely under-

powered. This may be particularly problematic for evaluations of MI in high-stakes

settings where issues of fairness are at a forefront. In these settings, it may be better

to error on the side of overflagging noninvariance in order to allow subject matter

experts to perform further investigations. Thus, at least under the conditions exam-

ined in our study, TWLSMV�CFM may be preferred to TMLR�LFM (with the caveat that

the chance of making a Type I error may be slightly elevated).

In addition to evaluating overall fit of the metric invariance model, change in fit

between the configural and metric invariance models was examined. In terms of the

Type I error rate, DTMLR�LFM , DG2
MLR�TFM , DG2

ML�CFM , and DG2
MLR�CFM generally
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performed comparably and adequately. Although DTML�LFM performed considerably

better than its exact-fit counterpart (TML�LFM ), its performance fluctuated across the

different observed response distributions and magnitudes of factor loadings, as did

the performance of DG2
ML�TFM . Consistent with the findings of Sass et al. (2014),

DTWLSMV�CFM was too liberal when the sample size was small. In line with Kim and

Yoon (2011), but now extended to use of a free-baseline approach, the full-

information CFM approaches (DG2
ML�CFM and DG2

MLR�CFM ) generally outperformed

the limited-information CFM approach (DTWLSMV�CFM ).

In comparing the tests that held the correct size, DG2
ML�CFM and DG2

MLR�CFM

demonstrated the greatest power to detect metric noninvariance, and DG2
MLR�TFM

demonstrated the least power. This lack of power suggests that the TFM may not be

particularly useful in the context of evaluating MI with ordered polytomous data, at

least not under the conditions examined in this study. On the other hand, the full-

information CFM approaches appear to perform well. For particularly complex mod-

els in which numerical integration is not a viable option, a limited-information CFM

approach might be considered if the sample size is not too small. Although

DTWLSMV�CFM was found to be too liberal in many instances, the Type I error rate

never exceeded .10. When taking into account the considerable gains in power

achieved by using DTWLSMV�CFM over DG2
MLR�LFM and DG2

MLR�TFM , minor inflations

in the Type I error rate may be of less concern. As we previously noted, power is a

particularly important consideration when assessing MI in high-stakes contexts.

As with any simulation study, we considered only a finite number of factors that

may influence the performance of the test statistics. In line with previous studies

(e.g., French & Finch, 2006; Meade & Bauer, 2007; Yoon & Millsap, 2007), we

focused on metric invariance. However, past research has shown that the type of

measurement noninvariance (metric, scalar, or both) affects the relative performance

of the test statistics across different measurement specifications and model estimators

(Kim & Yoon, 2011; Sass et al., 2014), as does the presence of structural noninvar-

iance (e.g., group mean differences; Lubke & Muthén, 2004). Although the CFM

approaches were more powerful than the linear approaches for detecting metric non-

invariance, the linear approaches may be more powerful for detecting scalar nonin-

variance (cf., Sass et al., 2014). Likewise, it is possible that other estimator and

measurement model combinations may perform better than the ones evaluated in our

study. In particular, Bayesian estimation may be useful for evaluating MI when deal-

ing with complex models and small sample sizes (Sinharay, 2013).

Another limitation of our study is that we focused only on global assessments of

model fit and change in model fit. In high-stakes settings, examinations are typically

done at the item level (e.g., Kim & Yoon, 2011). Relatedly, we examined only the

performance of test statistics; we did not compare model-estimator combinations with

respect to parameter recovery or variance estimation. Point estimation is particularly

important when using an effect size paradigm to assess MI (Wang et al., 2013).

Finally, although we used past research on MI and recommendations from the

broader literature on latent variable modeling to guide our generating model and
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simulation conditions, our generating parameters were not based on estimates from

actual data. Whereas simplifications like the assumption of tau equivalence allowed us

to minimize extraneous variability across conditions (thereby increasing the internal

validity of our study), such simplifications also weakened the external validity of our

study. In particular, the results of our study may not generalize to other contexts. Of

course, this is a limitation of any study, even when parameters are based on actual data.

Because it is impossible to investigate all possible scenarios, we encourage researchers

to use the Monte Carlo facilities available in Mplus (see B. Muthén, 2002) or other soft-

ware environments to evaluate the impact of measurement parameterization and estima-

tion decisions under data conditions that are directly relevant to their study.

The results of our study have important implications for researchers in the fields

of psychology and education where the use of Likert-type scales is widespread and

the need to investigate MI is essential. In line with Hayduk et al. (2007) and Kline

(2016), we believe that researchers should always report and give serious consider-

ation to the tests of the exact-fit and equal-fit hypotheses. All too often, researchers

gloss over evidence of misfit in the form of significant chi-square tests, as if they feel

compelled to find statistical support for the underlying hypothesis of MI. However,

detection of noninvariance is crucial for maintaining fair testing procedures and

ensuring validity of group comparisons. Although past research has identified limita-

tions with these test statistics when applied to Likert-type data, our study demon-

strates that selecting an appropriate estimation method and model parameterization

can help mitigate such limitations. Furthermore, examination of global test statistics

is only the first step in evaluating MI. A significant result merely alerts researchers

to a potential problem. Regardless of whether the hypotheses of exact-fit and equal-

fit are rejected, researchers must inspect local fit in the form of model residuals. If

residuals are small and unsystematic, then MI may still be practically supported. As

Kline (2016) reminds us, ‘‘At the end of the day, regardless of whether or not you

have retained a model, the real honor comes from following to the best of your abil-

ity a thorough testing process to its logical end’’ (p. 269).
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Notes

1. Other models for ordered polytomous data include the rating scale (Andrich, 1978) and

partial credit (Masters, 1982) models that assume all items are equally discriminating, and

the generalized partial credit model (Muraki, 1992) that, like the GRM, does not make this

assumption. We focus on the GRM because it is the default parameterization in Mplus, a

software program that is often used to assess measurement invariance.

2. See Casella and Berger (2002, p. 385) for further definition of a size a test.
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