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to promote pro-tumorigenic TH2 T cell differentiation. In 
addition, we have shown that NK cells become functionally 
exhausted in melanoma patients. We identified the expres-
sion of Tim-3 as one of the factors responsible for NK cell 
exhaustion and showed that anti-Tim3 antibodies partially 
reversed this exhaustion. We have initiated local interven-
tion strategies such as intra-tumoral administration of DC 
activating Poly-ICLC and compared the efficacy of differ-
ent TLR agonists and melanoma antigens for use as com-
bination tumor vaccine in clinical trials. Such approaches 
will provide a unique insight into tumor biology and will 
facilitate in development of highly effective and cell type-
specific immune therapies.
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Abstract  A recent report from the Center for Disease 
Control identified melanoma as being among the high-
est causes of cancer-related mortalities in the USA. While 
interventions such as checkpoint blockade have made sub-
stantial impact in terms of improving response rates and 
overall survival, a significant number of patients fail to 
respond to treatment or become resistant to therapy. A bet-
ter understanding of the tumor microenvironment in these 
patients becomes imperative for identifying immune sup-
pressive mechanisms that impact the development of effec-
tive anti-tumor immune responses. We have investigated 
innate immune cells (dendritic cells, NK cells) in the tumor 
microenvironment (TME) in order to devise effective tar-
geted anticancer immune therapies. We find that matrix 
metalloproteinase-2 (MMP-2), secreted from melanoma 
cells and stromal cells, cleaves IFNAR1 and stimulates 
TLR-2 on dendritic cells (DC) within the TME. Both these 
events independently culminate in programing the DCs 
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Introduction

Melanoma, an aggressive form of skin cancer, has been 
defined as a heterogenous disease. Melanoma begins in 
the lowest layer of the epidermis and is a highly metastatic 
tumor where dissemination is a multistage process. Mela-
noma compromises of malignant cells, mainly melano-
cytes, but also the supporting stroma. These tumor cells 

actively interact with their microenvironment and modulate 
the cells in this niche to promote tumor growth and metas-
tasis. The tumor microenvironment (TME) is described as 
a complex arrangement of stromal cells, mutated cancer 
cells and immune cells such as macrophages, dendritic 
cells (DCs), natural killer (NK) cells and T cells. Herein we 
will discuss the recent advances made by our group toward 
understanding the molecular switches that dictate the con-
struction of a TME, specifically focusing on innate immune 
cells (DCs, NK cells), and how intra-tumoral administra-
tion of DC activating agents could potentially reprogram 
the TME and promote tumor regression. In addition, the 
effects of clinical vaccine trials performed using different 
combinations of tumor antigens and adjuvants that target 
innate immune cells will be described.

Dendritic cell driven TH2 cell differentiation 
in melanoma: role of MMP‑2

The immune cell component of the TME largely dictates 
the inflammatory milieu and can regulate cancer growth. 
A higher ratio of TH1 vs TH2 inflammatory phenotype is 
associated with tumor regression and a more promising 
prognosis. Inversely, a TH2 heavy TME has been correlated 
with metastasis and higher patient mortality [1]. One of the 
goals of our laboratory is to characterize elements in the 
TME that promote TH2 skewing, and to identify approaches 
to reverse or block their differentiation. In this context, 
we have explored the role of matrix metalloproteinase-2 
(MMP-2) in conditioning DCs to promote TH2 polariza-
tion. MMP-2 is a secreted proteinase that degrades the 
extracellular matrix (ECM) [2] and is basally expressed in 
several cells including lymphocytes, endothelial cells, glan-
dular cells, stromal cells, supportive tissue cells, smooth 
muscle cells and skeletal muscle cells [3, 4]. Interestingly, 
increased expression of active MMP-2 has been directly 
correlated with increased metastasis and poorer prognosis 
in both human and murine models of cancer [5, 6]. Besides 
promoting metastasis, MMP-2 has been known to enhance 
tumor growth by cleaving death ligands on tumor cells, 
enhancing angiogenesis [6], increasing bioavailability of 
growth factors and aiding in immune evasion [7].

Surprisingly, despite the large number of pro-tumorigenic 
functions of MMPs, broad inhibitors of MMP activity have 
yielded disappointing results in clinical trials [8], suggest-
ing that a deeper exploration of MMP functions is required 
before it can be targeted for cancer therapy. MMP-2-specific, 
tumor-infiltrating CD8+ T cells have been identified in the 
tumor-infiltrating lymphocytes (TILs) of melanoma patients. 
These CD8+ T cells were specific for HLA-A*0201–restricted 
antigen derived from secreted MMP-2 and cross-presented on 
αvβ3-positive melanoma cells. However, the anti-tumorigenic 
contribution of these cells remains unknown [9, 10]. Our 
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investigations into the role of MMP-2 as a tumor antigen for 
activation of CD4+ T cells led us to discover MMP-2-specific 
CD4+ tumor-infiltrating lymphocytes in 13 out of 31 mela-
noma patients. Noticeably, 40 % of these TILs secreted TNF-α 
and IL-4 upon stimulation, indicating a TH2 phenotype. In 
concert with the pro-tumorigenic role of TH2 cytokines, we 
were able to depict a trend between MMP-2-specific CD4+ 
T cell responders and poorer clinical outcome. Significantly, 
DCs pre-loaded with MMP-2-differentiated naïve T cells into 
a TH2-type cell characterized by secretion of TNF-α, IL-4 and 
IL-13 with concomitant expression of GATA-3 [11]. As IL-12 
secretion is a widely known inducer of TH1 polarization, we 
investigated whether exposure to exogenous MMP-2 could 
affect IL-12 production in DCs. We confirmed the significance 
of DC-derived IL-12 in TH1-T cell polarization and observed a 
marked decline in IL-12 secretion from DCs exposed to active 
MMP-2. Further investigation revealed that active MMP-2 
degraded the type I IFN receptor1 (IFNAR1) on DCs, thus 
inhibiting Stat1 phosphorylation and subsequent IL-12 p35 
transcription in response to stimulation with the TLR-3 ago-
nist Poly-ICLC [11].

OX40L is a co-stimulatory molecule that has been 
implicated in T cell differentiation and tumor progres-
sion. Engagement of thymic stromal lymphopoietin 
(TSLP)-induced OX40L on DCs with cognate binding 
partners, such as OX40 on activated T cells, has been 
shown to enhance TH2 differentiation in the absence of 
IL-I2. Such TH2-differentiated CD4+ T cells were char-
acterized by secretion of TH2 cytokines IL-4, IL-5, IL-13 
and high amounts of pathogenic TNF-α but no IL-10. 
Furthermore, OX40L-mediated TH2 differentiation was 
reversed by introduction of exogenous IL-12, indicating 
that the mechanism of DC-mediated T cell differentiation 
is amenable to manipulation by pharmacological interven-
tion [12–14]. We found that apart from directly inhibit-
ing IL-12 and consequent TH1 polarization, exogenous 
MMP-2 also enhanced TH2-polarization by upregulating 
OX40L expression on DCs [11, 15]. It is interesting to 
note that while only active MMP-2 could degrade IFNAR1 
and thus inhibit IL-12 secretion, both active and inactive 
forms of MMP-2 were able to enhance OX40L expression 
and stimulate secretion of inflammatory cytokines via the 
canonical NFκB pathway. Screening for MMP-2-signaling 
partners led us to identify Toll-like receptor-2 (TLR-2) 
as a direct binding partner for MMP-2, independently of 
TLR-1 and TLR-6 [15]. These findings were corroborated 
in human monocyte-derived DCs, murine bone marrow-
derived DCs as well as in HEK cells over expressing TLR-
2. To ascertain physiological relevance for these findings, 
WT, myd88-/- and tlr2-/- mice were injected with MMP-
2. Analysis of serum cytokines revealed a distinct inflam-
matory signature (TNF-α and IL-6) only in sera obtained 
from WT mice where as the sera from knockout mice had 

no inflammatory cytokines. Similarly, WT and tlr2-/- mice 
adoptively transferred with OT-II cells and injected with 
OVA +  MMP-2 revealed TH2 polarization upon re-stim-
ulation only in WT-derived T cells and not in tlr2-/- cells 
[15]. Taken together, these studies indicate that MMP-2 
primes DCs to skew the adaptive immune response toward 
a pro-tumorigenic TH2 phenotype through multiple mecha-
nisms. First, MMP-2 inhibits the production of IL-12 in 
response to Poly-ICLC stimulation, by degrading IFNAR1 
and preventing phosphorylation of Stat1. Second, MMP-2 
directly binds to and activates TLR-2, which results in the 
induction of OX40L expression (Fig. 1).

Overall, our group has uncovered novel signaling mech-
anisms activated by MMP-2 that could actively affect 
inflammation, DC activation and tumor progression. Our 
discovery of enzymatically inactive MMP-2 as a novel 
endogenous alarmin for TLR-2 underscores the complex-
ity of MMP-2 signaling and highlights its multifaceted 
roles in crafting the inflammatory landscape. A thorough 
examination of the TLR-2-MMP-2 axis and its contribution 
in melanoma enhancement will not only expand our global 
understanding of signaling events within the TME but also 
uncover new druggable targets for treating cancers.

Fig. 1   MMP-2 in the TME promotes DC driven TH2 differentia-
tion. MMP-2 derived from melanoma cells initiates two independent 
signaling cascades in DCs that cause TH2 polarization. (1) MMP-2 
cleaves IFNAR1 on DCs, thus inhibiting Stat1 phopshorylation and 
downregulating IL12 secretion and (2) MMP-2 interacts with TLR-2 
to activate canonical NFκB signaling and upregulate TH2-promoting 
OX40L
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NK cell function and tumor surveillance in melanoma

Natural killer (NK) cells are one of the cellular mediators of 
innate defense. They are lymphoid cells that, in the absence 
of pre-activation, can recognize and kill aberrant cells and 
rapidly produce soluble factors such as chemokines and 
cytokines that have antimicrobial or anti-tumor effects or 
prime other cells of the immune system [16]. NK cell pre-
cursors (NKP) which are primarily found in bone marrow, 
and also thymus, liver and/or spleen, have a role in the NK 
cell diversification that results in NK cell heterogeneity 
[16]. NKP mature to become NK cells under the influence 
of IL-2 or IL-15 [17] and acquire lytic and cytokine pro-
duction capabilities [17]. NKP maturation is followed by 
the acquisition of maturation molecules, for example, KIR, 
CD57, CD85j [18].

Active NK cells have cytolytic potential and produce 
IFN-γ that allows them to function in first-line defense 
against tumors. Partial regression of primary growth has 
been correlated with higher NK cell infiltration and a 
more favorable prognosis in patients suffering from mela-
noma, renal cell carcinoma and esophageal squamous cell 
[19–21]. In fact, increased NK cell infiltration has been 
directly correlated with regression in melanoma patients 
[22]. Moreover, selective reduction of peripheral NK cells 
in transgenic mice was associated with an impaired acute 
in vivo reduction of tumor cells [23]. In addition, there is 
evidence of early benefit from NK cell adoptive cell thera-
pies (ACT) in leukemia and melanoma patients [24, 25]

The role of peripheral blood NK cells has been described 
mainly during the course of acute and chronic infections 
where NK cells undergo transient or persistent modulation 
of activating receptor expression and function [26]. NK 
cells can become dysfunctional, resembling the phenotype 
previously described in T cells as a state of cellular exhaus-
tion that arises as a consequence of continuous and chronic 
stimulation by viral or tumor antigens, as well as by immu-
nosuppressive cytokines. NK cell dysfunction has been 
demonstrated during HIV, CMV, hepatitis C and hepatitis B 
infections [27–31]. We recently demonstrated, for the first 
time, that NK cells also become exhausted in the setting 
of advanced cancer. While NK cell dysfunction has been 
described in several human cancers [32, 33] and animal 
tumor models [34], we demonstrated that the aberrant func-
tion of blood NK cells in advanced melanoma resembles 
the panoply of dysfunction shown by exhausted T cells. 
This was shown by (1) reduction of proliferative capacity 
to IL-2 and cytotoxic activity against melanoma lines, as 
well as cytokine production (IFN-γ) in response to activa-
tion; (2) reduced expression of activation receptors (CD16, 
NKG2D, NKp46 and DNAM-1), IL-2R subunits and NK 
cell regulatory transcription factors (T-bet, Eomes), (3) 
upregulation of inhibitory receptors (KIR3DL1, KIR2DL3) 

and (4) expression of high levels of the checkpoint mole-
cule Tim-3, but not CTLA-4 or PD-1, when compared to 
freshly isolated NK cells from healthy donors.

Interestingly, when the expression of the three IL-2 recep-
tor (IL-2R) chains [α-(CD25), β-(CD122) and γ-(CD132)] 
in each NK cell subset (CD56bright and CD56dim) was ana-
lyzed, we noted low expression levels of CD25 in each sub-
set of NK cells, slightly lower levels of CD122 and lower 
levels of CD132 in CD56dim and in total NK cells in mela-
noma patients compared to healthy donors. Altered IL-2R 
expression in melanoma donors (MD) generated different 
responses to IL-2 stimulation. After 6 days of in vitro IL-2 
stimulation, freshly isolated NK cells from MD failed to 
upregulate CD25 expression and the overall expression of 
CD132 was substantially lower compared with the response 
of healthy donor (HD) NK cells.

Another characteristic that defined exhausted MD NK 
cells was the failure to reverse exhaustion even following 
long-term IL-2 stimulation. Exhausted NK cells from MD 
failed to produce IFN-γ in response to combinations of 
IL-12 and IL-18, or IL-15 cytokine alone, or after co-cul-
ture with K562 cells. Likewise, it was not possible to restore 
cytotoxic activity (as assessed by LAMP-1 expression) after 
stimulation by either IL-2 or IL-15, or proliferative capac-
ity to IL-2, IL-12, IL-15 or IL-18. The immunoregulatory 
protein T cell immunoglobulin- and mucin-domain-con-
taining molecule-3 (Tim-3) has been described as a media-
tor of T cell exhaustion and to contribute to the suppression 
of immune responses in both viral infections and tumors. 
Tim-3 was significantly overexpressed at different stages of 
melanoma, I, II and III/IV, showing a pattern of gradually 
increasing Tim-3+ NK cells numbers (percentage) and MFI 
as the stage advanced. Tim-3 expression increased in those 
subjects who had poor prognostic factors, such as thickness 
>1 mm, mitotic rate ≥1/mm2 and ulceration. Moreover, the 
intensity of Tim-3 expression (MFI) was higher in patients 
with distal metastases. Therefore, the levels of Tim-3 appear 
to associate with functional NK cells defects in the setting 
of progressive disease. Significantly, exhausted NK cell 
phenotypes can be partially reversed in  vitro after using 
Tim-3-blocking antibodies, restoring up to 30–65 % of NK 
cell function [35, 36]. These data suggest that other check-
point molecules may be operative in conferring exhaus-
tion to NK cells. Figure  2 represents a schematic view of 
NK cell exhaustion phenotype and its in vitro reversal after 
checkpoint inhibitor treatment.

The tumor microenvironment in melanoma is character-
ized with an increase in immunosuppression factors such 
as PD-L1, IDO, TGF beta, IL-10 and suppressor cells 
(regulatory T cells, myeloid-derived suppressor cells) that 
clearly contribute toward T cell exhaustion. Besides Tim-
3, exhausted T cells are also characterized by overexpres-
sion of other checkpoint inhibitory molecules like PD-1, 



1265Cancer Immunol Immunother (2016) 65:1261–1268	

1 3

CTLA-4, LAG-3 and TIGIT [37, 38]. However, we found 
that, unlike T cells, exhausted NK cells in melanoma do 
not show significant differences in the expression levels of 
PD-1 and CTLA-4 between melanoma patients and healthy 
donors [35]. In fact, they have low levels of these checkpoint 
molecules. Despite this finding, we have preliminary data 
suggesting that anti-CTLA-4 antibody treatment can restore 
NK cell function in a subset of patients. Recent studies indi-
cate that NK cells also have a distinct set of checkpoint mol-
ecules that in coordination with Tim-3 could participate in 
sustaining their global exhaustion such as Ceacam-1, CD96, 
TIGIT, Siglec-7 [39–41]. An in-depth understanding of the 
exact mechanisms that cause NK cell exhaustion to iden-
tify novel strategies for reversing this exhaustion will be 
required and is the subject of further study in our laboratory.

Vaccine strategies to prime effective dendritic cell 
adjuvant function

DCs are natural adjuvants and their activity in priming T 
cells has been well documented in our laboratory and sev-
eral others. In the first controlled clinical trial, we showed 
that DCs were essential for stimulating immunity against 
peptide and protein antigens [42] and that maturation was 
required to prevent the induction of tolerance [43]. Sub-
sequently, we have made efforts to iteratively test adju-
vants that can activate DC in vivo, focusing in particular 

upon the ligation of specific Toll-like receptors. In a series 
of studies, we explored the immunogenicity of the can-
cer testis antigen NY-ESO-1 given in combination with 
TLR agonists in the adjuvant setting of melanoma. Sub-
jects, who were disease free, were immunized with topi-
cal imiquimod and NY-ESO-1 protein [44]. In a study of 
nine patients, who tolerated the intervention well, we 
observed both humoral and cellular responses in a signifi-
cant fraction of patients. Topical imiquimod-induced der-
mal mononuclear cell infiltrates in all patients composed 
primarily of T cells, monocytes, macrophages, myeloid 
DCs, NK cells and, to a lesser extent, plasmacytoid DCs 
with evidence of DC activation. However, no CD8+ T 
cell responses were detected. Subsequently, we compared 
the adjuvant CpG ODN 7909, a TLR-9 agonist, this time 
delivered with the water in oil emulsion Montanide ISA-
51 to ensure that adjuvant and protein could be introduced 
as a form of depot [45]. This combination delivered sub-
cutaneously led to the development of antigen-specific 
humoral and CD4+ TH1immunity in almost all patients (an 
integrated immune response) and CD8+ T cell responses 
in about 50 % of patients. Vaccine-induced antibodies pro-
moted in vitro cross-presentation of NY-ESO-1 protein by 
dendritic cells to vaccine-induced CD8+ T cells, suggest-
ing that a humoral response may benefit the induction of 
a cellular response through immune complex formation, 
although this has yet to be proved in vivo.

Fig. 2   Schematic representation of NK cell exhaustion pheno-
type and its in  vitro reversal after checkpoint inhibitor treatment. 
Exhausted NK cells in melanoma are characterized by (1) reduction 
of proliferative capacity to IL-2 and cytotoxic activity against mela-
noma lines, as well as cytokine production (IFN-γ) in response to 
activation; (2) reduced expression of activation receptors and IL-2R 
subunits and NK cell regulatory transcription factors (T-bet, Eomes), 
(3) upregulation of inhibitory receptors. In this figure, we made a 
schematic representation for an in  vitro assay shown in Da Silva., 
et  al. where after 1  h treatment with anti-Tim-3-blocking antibody 

freshly isolated NK cells from melanoma donors were able to reverse 
this phenotype and state of exhaustion in vitro, restoring 30–65 % of 
the NK cell dysfunction. The black oval ligand represents anti-Tim-
3-blocking antibody. Blockade of Tim-3 in vitro was able to overex-
press IL-2 receptor on NK cell surface, as well as expression of the 
transcription factors T-bet and Eomes. Moreover, blockade of Tim-3 
is enough for exhausted NK cells (1) to recover their capacity for pro-
ducing IFN-γ after IL-12 stimulation, (2) to recover their cytotoxic 
capacity for killing other targets cells and (3) to proliferate
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These studies did not evaluate the relative contribution of a 
TLR agonist vs. Montanide, however. Therefore, we next evalu-
ated the immunogenicity of NY-ESO-1 given in combination 
with Montanide subcutaneously with or without the topically 
administered TLR-7 agonist resiquimod in patients with high-
risk melanoma [46]. The majority of patients in both arms tol-
erated the treatment well and developed NY-ESO-1-specific 
CD4+ T cell responses and antibodies. CD8+ T cell responses, 
however, were only seen in 3 of 12 patients in the arm receiving 
antigen together with Montanide and resiquimod. Notably those 
patients who expressed the TLR-7 SNP rs179008 had a greater 
likelihood of developing NY-ESO-1-specific CD8+ responses. 
This study determined that NY-ESO-1 protein in combination 
with Montanide with or without topical resiquimod is safe and 
induces both antibody and CD4+ T cell responses in the major-
ity of patients. Resiquimod appeared to have a small benefit in 
terms of inducing CD8+ T cell responses, but larger studies will 
be needed to assess the contribution of the TLR7 SNP rs179008 
toward the activity of resiquimod. Most recently, in an ongo-
ing study we are comparing the safety and immunogenicity of 
NY-ESO-1 protein given in combination with Poly-ICLC, a 
TLR-3 and MDA5 agonist, with or without Montanide, injected 
subcutaneously. The purpose of the study was to determine 
whether a TLR agonist can suffice to induce potent immunity 
in the absence of Montanide. Patients tolerated the vaccines 
well. Most developed an integrated antigen-specific humoral 
and CD4+ T cell response. The determination of CD8+ T cell 
immunity is ongoing although these studies will shed light on 

which adjuvants induce potent immunity and determine the 
contribution of Montanide.

Finally, we are testing the efficacy of TLR agonists when 
delivered intra-tumorally. In a case report, we showed how 
the injection of intra-tumoral Poly-ICLC can dramatically 
impact tumor burden in a subject with facial embryonal 
rhabdomyosarcoma with extension to the brain [47]. A fol-
low-up pilot study in patients with head and neck squamous 
cell cancers, still being evaluated, demonstrated that intra-
tumoral Poly-ICLC modulates the tumor microenvironment, 
changing it from a T cell poor to a T cell rich environment. 
We speculate that Poly-ICLC is effective in this regard 
due to its multifactorial effects: It has direct antineoplastic 
effects by inducing apoptosis and also an immune stimula-
tory effect through activation of NK cells, macrophages and 
DCs. This results in the release of cytokines and chemokines 
and also T cell priming. In situ cell activation and priming 
may therefore enhance anti-tumor immunity. In our study, 
there was evidence of DC infiltration and activation, upreg-
ulation of PDL-1 and systemic immune activation. Larger 
studies are in progress to confirm these findings in several 
histologies.

Conclusion

In summary, we are developing immunotherapeutic strate-
gies and vaccine platforms that are targeted to prime DC 

Fig. 3   Vaccine strategies to 
prime effective dendritic cell 
adjuvant function. Strategies 
for priming classical DCs in 
general by using (1) adjuvants 
or immune modulators, (2) 
combined therapies, (3) DC 
antigens and (4) mobilization 
modulators. Our vaccine trials 
in particular have been designed 
to target classical DCs (Poly-
ICLC) and plasmacytoid DCs 
(imiquimod and resiquimod)
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function, TH1 differentiation and restore NK cell activ-
ity, thereby promoting immune activation and prevent-
ing immune suppression. In Fig.  3, we show a schematic 
representation of different vaccine strategies. Our team 
is actively exploring ways to improve DC adjuvant func-
tion, including mobilizing DCs in vivo with Flt3L, deriving 
DC subsets from CD34+ progenitor cells to yield distinct 
populations (plasmacytoid DC, CD1c+, CD141+ DCs) 
and testing them in combination with other modalities, 
e.g., cytokines, preconditioning methods or novel sources 
of antigens, e.g., neoantigens. The overall goal is to tip the 
balance in the TME from being immunosuppressive to pro-
inflammatory by using these interventions, eventually in 
combination with checkpoint blockade, which promises to 
be the platform for many cancer histologies. 
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