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Abstract

The heart is uniquely responsible for providing its own blood supply through the coronary 

circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of 

dedicated research, is understood to be dictated through multiple mechanisms that include 

extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local 

metabolic, endothelial as well as neural and hormonal influences. While each of these 

determinants can have profound influence over myocardial perfusion, largely through effects on 

end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance 

and act to ensure that the myocardial requirements for oxygen and substrates are adequately 

provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is 

to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with 

emphasis on functional anatomy and the interplay between the physical and biological 

determinants of myocardial oxygen delivery.

Overview

The heart is one of the first organs to which we are conceptually exposed as children. We are 

taught, from an early age, that the heart itself is essential to life and that each cardiac cycle 

(heart beat) is the source of blood pumping through our body. What is often left undescribed 

and unappreciated is the nature of blood flow to the heart as opposed to through the heart. 

Despite being continuously filled with blood throughout the entirety of one’s life, blood 

within the chambers of the heart does not significantly contribute to the viability, 

maintenance and/or function of cardiac tissue in either large animals or humans. Rather, a 

separate and specialized circulation, the coronary circulation, provides the myocardium with 

oxygen and substrates to ensure normal function and viability of the heart. Owing to the 

limited anaerobic capacity of the heart (49, 119, 733), coronary vascular resistance is 

continuously regulated to deliver sufficient quantities of oxygen to meet any change in the 

demand of surrounding myocardial tissue. The specifics of this metabolism-perfusion 

matching are unique in the coronary circulation because of the continuous pumping and high 
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work load of the heart. Based on the requirements for operating a constantly functioning 

contractile machine, the heart demonstrates the highest per gram oxygen consumption of any 

organ (~50–100 μL O2/min/g) and, as such, extracts ~70% to 80% of delivered oxygen even 

under resting conditions (coronary venous PO2 ~18–20 mmHg) (270,331,918), unlike 

skeletal muscle which utilizes only ~30% to 40% of delivered oxygen at rest (venous PO2 

~40 mmHg) (788, 789). This high extraction percentage results in a system that is almost 

completely dependent on delivery of blood to the tissue as enhancements to extraction are 

rather limited. Therefore, for this entirely essential organ to undergo the necessary processes 

to remain normal and compatible with survival, coronary vascular tone must be constantly 

modulated to ensure adequate myocardial perfusion.

Regulation of coronary blood flow is understood to be dictated through multiple 

mechanisms including extravascular compressive forces (tissue pressure), coronary 

perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal 

influences. Together, these mechanisms govern coronary flow and act to ensure an overall 

balance between myocardial oxygen delivery (supply) and metabolism (demand) (Fig. 1) 

(16, 270, 331, 918, 919, 922). This point is evident in examination of coronary responses to 

a variety of physiologic perturbations including alterations in metabolism, perfusion 

pressure, arterial oxygen content, and/or a transient coronary artery occlusion. These well-

established phenomena clearly illustrate the tight coupling between coronary blood flow and 

myocardial oxygen consumption (MVO2) in response to exercise (i.e., functional hyperemia, 

Fig. 2A) (94), the relative maintenance of coronary flow over a wide range of perfusion 

pressures (i.e., pressure-flow autoregulation, Fig. 2B) (96), the marked increase in coronary 

flow in response to hypoxemia (458,670,958) and anemia (323,905) (Fig. 2C), and the 

repayment of “oxygen-debt” incurred following the interruption of myocardial oxygen 

delivery (i.e., reactive hyperemia, Fig. 2D) (97).

The purpose of this Comprehensive Physiology article is to highlight current knowledge 

regarding the physiologic regulation of myocardial perfusion, with emphasis on functional 

anatomy, extravascular compression and transmural flow distribution, and the interplay of 

mechanisms known to influence the regulation of coronary blood flow. For a historic review 

of developments in our understanding of coronary physiology, readers are encouraged to 

study the prior reviews of Gregg (396), Berne (87), Feigl (331), Chilian and Marcus (167), 

Hoffman and Spaan (481), Westerhof (967), Duncker and Bache (270), Beyer and 

Gutterman (100), Tomanek (913), and Tune (918).

Coronary Anatomy

The first description of the blood vessels of the heart is credited to the French anatomist 

Raymond de Vieussens who published Nouvelles decouvertes sur le Coeur (“New 

discoveries of the heart”) in 1706. His observations were expanded in 1715 in his 

publication of Treatise of the Heart where he described not only the coronary vessels, but the 

pericardium and muscle fibers of the heart (627). This work has been heralded as one of the 

most important discussions on the anatomic basis of heart disease. These initial descriptions 

have been followed by over 300 years of subsequent research that has led to a great deal of 

understanding regarding the anatomy of the coronary circulation and the physiologic 
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regulation of this critically important vascular bed. To appreciate how blood flow to the 

myocardium is regulated, it is essential to appreciate the basic anatomical arrangement of the 

coronary vascular tree (76).

Coronary arterial vascular structure

Detailed descriptions of the anatomical basis of blood supply to the myocardium can be 

found in early works by Gross (408), Wearn (962, 963), and Belt (76). They classically 

describe that subsequent to the first main branch of the aorta, the human heart gives rise to 

two main coronary arteries via coronary ostia located within the sinuses of Valsalva. The left 

posterior sinus is the origin of the left main coronary artery which in turn is the progenitor to 

the left anterior descending (LAD) and circumflex coronary arteries. Between these two 

major, epicardial coronary arteries, the majority of left ventricular blood delivery occurs. 

Typically, the circumflex artery tracks along a horizontal plane to the left, in the anterior 

atrioventricular groove, giving rise to obtuse marginal branches along its length. This main 

coronary artery and its associated marginals are responsible for delivery of blood to the left 

atrium as well as the lateral wall of the left ventricle. The sister to the circumflex artery is 

the LAD. Contrary to the horizontal path of the circumflex, the LAD runs vertically from 

base to apex of the heart along the anterior interventricular groove. Along its length, the 

LAD gives rise to numerous diagonals as well as septal branches which supply the anterior 

surface of the left ventricle as well as the anterior portion of the left bundle branch, the mid-

portion of the right bundle branch, and the anterior septal myocardium with blood (Fig. 3) 

(918).

The right ventricle predominately receives blood independent of either the LAD or 

circumflex arteries. Blood delivery to the right heart is instead provided by blood flow 

originating in the anterior aortic sinus and emerging on the anterior surface of the heart in 

the form of the right coronary artery (RCA). The RCA follows a horizontal course along the 

atrioventricular groove, similar to the circumflex though directionally opposite. Along its 

length, the RCA gives rise to numerous acute marginal branches that are responsible for 

providing delivery of blood to the right atrium and right ventricular free wall (76, 396, 398).

An additional epicardial coronary artery, the posterior descending coronary artery (PDA), is 

a highly conserved coronary architectural structure in all humans, but its origin is somewhat 

variable. In instances where the RCA is long enough to cross the acute margin of the heart, 

the PDA emerges as a distinct vascular flow source manifested as a ~90° turn into the 

posterior atrioventricular groove. This is true of ~90% of the human population. In the 

remaining 10% of the population, the origin of the PDA is the circumflex coronary artery. 

Whether the PDA derives from the RCA (right) or circumflex (left) establishes whether a 

heart is so called right dominant or left dominant (respectively). Regardless of the PDA’s 

source, the vessel itself traces a path perpendicular to either the RCA or circumflex, along 

the posterior interventricular groove supplying blood to the surrounding myocardium from 

its origin to the apex. Septal branches from the PDA descend and supply the posterior third 

of the interventricular septum as well as the atrioventricular node.

Overall, perfusion of the heart is typically strictly limited to the distribution of the feed 

vessel supplying blood to that region of the myocardium. This point is clearly illustrated by 
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intracoronary administration of dye which demonstrates a sharp delineation between 

perfusion territories (see Fig. 5). However, there is evidence for a microvascular network of 

anastomoses along the interface of coronary arterial perfusion territories; that is, redundantly 

supplied border zone that aids in perfusion of the outer boundaries if flow through the 

alternate artery is impaired (182, 183, 771).

The heart itself is unique in that its blood is supplied in an outside-in fashion. In other 

words, blood is delivered via epicardial coronary arteries that further divide and penetrate 

into the myocardium. Elegant visualization and how disease can influence this distinctive 

arrangement was provided by the work of Estes et al. in 1966 (Fig. 4) (321). It is important 

to consider that this anatomical arrangement assigns an obligatory role of these large, 

superficial epicardial coronary arteries to perfuse all layers of the myocardium. The 

superficial divisions of the epicardial coronaries diminish in diameter as they course across 

the surface of the heart like a crown; which actually gives rise to the term “coronary” that is 

derived from the Latin coronarius, meaning “of a crown.” As the internal diameter reaches 

~1 to 3 mm, these coronaries feed tributaries that are oriented perpendicular to the surface of 

the heart (321). Descending tributaries (~400–1500 μm in diameter) continue transmurally 

through the outer epicardium and into the inner endocardium. Coronary arteries that exceed 

an ~0.5 mm thickness receive blood supply from the vasa vasorum externa, which is a 

specialized microvasculature within the adventitia. Recent data support a link between the 

expansion of the vasa vasorum with neointimal formation and the progression of 

atherosclerotic disease (179,596,597,695).

Consistent with other vascular beds, the major site of vascular resistance (and therefore flow 

control) exists in microvascular beds of vessels with individual diameters less than 100 μm 

(168). Myocardial arterioles ultimately supply myocardial capillary beds which constitute an 

extremely dense network (~3000–4000 capillaries/mm2) (962) wherein intercapillary 

distances are less than 20 μm (62,193,455,909) (Fig. 4). Detailed morphometric analyses of 

the coronary vasculature have been elegantly outlined in the prior work of Bassingthwaighte 

(61,62,142,414,904) and Kassab and Fung (543, 544, 546–549, 551). Unlike other highly 

metabolic tissues such as skeletal muscle, which show capillary densities of ~600 

capillaries/mm2 (828), the contribution of capillary recruitment to alterations in metabolic 

demand is less well established in the heart. The prevailing belief is that, due to the 

continuously high metabolic demand of the heart, very little capillary reserve exists thereby 

making recruitment contributions secondary to other mechanisms in matching metabolic 

demand with nutrient/oxygen supply. However, data from Honig and colleagues suggest that 

up to 25% of capillaries are not perfused in normal rat heart and that recruitment of these 

capillaries could help maintain functional intercapillary diffusion distances relatively 

constant in response to stress or disease states such as hypertrophy (456, 457, 488, 489).

Coronary venous structure

Subsequent to nutrient/gas exchange, the coronary vasculature must return deoxygenated, 

nutrient poor blood back to the systemic circulation. This is accomplished via a venous 

vascular network that parallels epicardial coronary arteries (see Fig. 3) (869). In normal 

anatomy, anterior surface drainage is facilitated by the interventricular vein which is 
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immediately adjacent to the LAD in the interventricular groove. Virtually all drainage from 

the anterior interventricular vein is derived from the LAD perfusion territory (711, 954). 

This drainage system continues into the great cardiac vein which courses along the anterior 

atrioventricular groove parallel to the circumflex artery. Both major veins drain into the 

coronary sinus located in the posterior atrioventricular groove. Accordingly, venous blood 

within the coronary sinus is supplied by both the anterior (LAD) and posterior (circumflex) 

perfusion territories (196,711,796,954). Approximately 55% of the coronary arterial blood 

supply is returned to the sinus via these two anterior sources. Additionally, ~35% of cardiac 

venous drainage returns directly into the right atrium by means of the anterior cardiac veins. 

The former system accomplishes the majority of return for the left ventricle, whereas the 

latter system facilitates venous return for the right ventricle. This leaves a 10% deficit in 

return which is accomplished by the Thebesian veins (963). Initially identified in 1706 by 

Vieussens, Thebesian veins were largely overlooked for centuries to such an extent that 

often, textbooks would illustrate the inner surfaces of cardiac chambers as completely 

avascular. However, studies by Wearn in the 1920s and 1930s determined that Thebesian 

openings existed in both atrial and ventricular chambers although they were significantly 

more numerous in the ventricles (963). Since that time, these vessels have been shown to 

play a minor role in coronary venous return by allowing for venous drainage directly into the 

left ventricular cavity. Anatomical evidence for the presence of coronary venous valves has 

also been documented and appears to vary by age, gender, and species (11, 12, 741). While 

these valves could possibly hinder interventional access to the coronary venous system (11), 

their functional relevance appears to be modest as it is entirely possible to retroperfuse the 

heart via the coronary venous system (550, 724).

Coronary collaterals

When considering coronary anatomy, it is important to acknowledge the presence of innate 

collateral vessels (natural bypasses) which provide anastomotic connections between arteries 

without an intervening capillary bed (Fig. 5) (574, 835). These vessels provide an alternate 

path for oxygen-rich blood between regional myocardial perfusion territories, typically to 

ischemic myocardium secondary to coronary stenosis. Such anastomoses within the 

coronary circulation were described as early as 1670s by Lower in both normal and 

pathologic hearts (838). Work by Schlesinger and others in the 1930s and 1940s revealed the 

prominent development of these connections in the presence of obstructive coronary disease 

(105,827,838). Detailed studies by Baroldi et al. in the 1950s followed by other later 

investigations have nicely demonstrated the presence at birth of mostly corkscrew-shaped 

collaterals in normal human hearts with lengths ranging from 1 to 2 cm up to 4 to 5 cm and 

luminal diameters of 20 to 350 μm (54–56,104,394,837,937,938). Two types of collateral 

vessels have been described as either connecting branches of the same coronary vessels 

(intracoronary collaterals) or connections between branches of different coronary vessels 

(intercoronary collaterals). The presence of intra-coronary collaterals is approximately five 

times more frequent, have median diameters of ~95 μm, with the density of connections 

highest in the subendocardium (937). Conventionally, functional collateral vessels stem from 

outward remodeling of preexisting connections (arteriogenesis) (359–362, 835, 938, 939); 

however, there is also evidence to support the de novo formation of vessels (angiogenesis) 

(175,431,649–652,772,932). Importantly, the presence of well-developed collaterals exerts 
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protective effects on perfusion, electro-physiologic abnormalities, contractile function, 

degree of infarction, and overall mortality (42, 429, 658–660). For more detailed 

information regarding the coronary collateral circulation, readers are referred to recent 

reviews by Duncker and Bache (270), Schaper et al. (835, 836, 939), Teuissen et al. (906), 

Chilian et al. (176,322,1012), Spaan and Siebes (874,931), Zimarino et al. (1022), and 

Stoller and Seiler (887).

Extravascular Compression and Transmural Flow Distribution

Coronary flow patterns

Few physiologic processes typify the concept of bulk flow better than blood flow. Bulk flow, 

defined as movement resulting from a pressure gradient, can be mathematically described in 

the vascular system as a correlate to Ohm’s Law ( Flow = ΔPressure
Resistance). In other words, flow is 

directly proportional to the magnitude of the pressure gradient (arterial – venous) across the 

vascular tree and inversely proportional to the overall resistance of the vascular network. 

Keep in mind that pressure itself is the difference between transmural expansive pressures 

forcing outward against the vascular wall and compressive tissue pressures counteracting 

that expansion. In the majority of organs, the compressive tissue force is constant and 

therefore is considered to make only a minimal yet consistent contribution to the pressure 

gradient. However, the periodicity of contractions in the heart and tremendous compressive 

forces of the myocardium result in a more complex pattern of flow in the coronary vascular 

system.

Coronary vascular flow is best described as phasic flow in that the compressive forces of 

systole counteract the driving force for flow in the coronary circulation and, therefore, the 

majority of anterograde blood flow to the left ventricle occurs during diastole (Fig. 6). 

Alternatively, much of the forward flow during systole is used to fill the upstream coronary 

compliance, while flow through coronary capillaries is relatively constant throughout the 

cardiac cycle (331,481,967). Indeed, these myocardial compressive forces are so great 

during systole that the coronary circulation can undergo transient periods of retrograde blood 

flow (see example tracing in Fig. 27). This effect was first documented in independent 

studies by Anrep (13) and Gregg (400) in the early 1930s. Subsequent studies of the same 

era attributed this phasic flow pattern to obstruction of the coronary ostia during systole by 

the opening of the aortic valve (738, 765). However, this hypothesis has been extensively 

discredited by anatomical studies highlighting that the ostia are located too far from the 

aortic valve for leaflets to serve as an obstruction. Further refutation can be found in phasic 

flow patterns documented in countless in vivo cannulated artery preparations wherein blood 

is supplied via a bypass circuit thereby removing any contribution of the aortic valve to flow 

behavior (331,863). Evidence of an alternative origin to phasic flow patterns additionally 

exists in the physiology of the heart itself in that right ventricular coronary blood flow is not 

significantly diminished during vascular contraction but rather shows a pattern of flow that is 

elevated during periods of high aortic pressure (i.e., systole) and diminished during periods 

of lower aortic pressure (i.e., diastole) (Fig. 6) (395, 628). This behavior is consistent with 

the nature of the ventricular myocardial layers themselves (612, 794, 889–891). The much 

thicker and more contractile left ventricle generates far greater extravascular compressive 
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force than does the right ventricle (44, 45, 481, 967), resulting in an inversion of flow 

patterns between right and left sides of the heart. Counterintuitively, the phasic nature of left 

ventricular blood flow does not result in lower absolute flow values when compared to the 

right side of the heart. In a typical adult heart, baseline/resting left coronary blood flow 

typically ranges between ~0.5 and 1.0 mL/min/g (270, 331, 918, 919). In contrast, right 

ventricular blood flow averages only ~0.3 to 0.6 mL/min/g (441, 697, 1006, 1026). This 

phenomenon is explained by underlying differences in the rate of MVO2 (i.e., oxidative 

metabolism) between the left ventricle (~50–100 μL O2/min/g) versus right ventricle (~30–

50 μL O2/min/g) (270,276,387,918,919) and highlights how exquisitely dependent 

myocardial perfusion is on myocardial metabolism.

Myocardial-coronary interaction

As previously indicated, the extravascular compressive forces of the heart can have a 

significant impact on phasic and bulk flows within the coronary circulation 

(453,545,673,869,870). The consequence of forceful ventricular contraction was first 

reported by Scaramucci in 1695 when he observed that the heart could limit its own blood 

supply through systolic myocardial compressive forces (834). Based on this initial 

observation and numerous validating studies, it has been established that coronary venous 

pressures are not an accurate factor to consider when determining the overall driving force 

for flow (73,265,331,481,967). Whereas in other, non-compressible tissues, the arterial to 

venous difference holds as the determinants for the pressure gradient (i.e., for Ohm’s law), 

intramyocardial tissue pressures during systole must be accounted for when assessing the 

pressure gradient across the coronary vascular tree (259, 263–265). This phenomenon was 

given a metaphorical moniker, a “vascular waterfall,” by Downey and Kirk in 1975 who 

stated that flow is dependent on the magnitude of the difference between arterial pressure 

and tissue pressure; that is, flow is determined by the driving force (arterial pressure) and the 

highest downstream force that the driving force must overcome (tissue pressure) (265). 

Thus, in principle small coronary arteries behave much like that of a Starling resistor (570) 

wherein chamber pressure limits flow by narrowing a collapsible tube (192, 485, 631, 632, 

973). The “waterfall” metaphor relates to the notion that flow over the falls is determined by 

the elevation between the origin of the waterfall (tissue pressure) and the highest point 

upstream (arterial pressure); that is, the overall height of the waterfall (i.e., arterial-venous 

pressure gradient) does not actually affect the absolute flow of the waterfall (Fig. 7) (253, 

260, 265, 318, 968, 1011).

An extension of the vascular waterfall concept is the “intramyocardial pump.” First proposed 

by Spaan and colleagues, the intramyocardial pumping action of the heart explains the 

phenomenon of retrograde coronary arterial flow and concurrent increases in venous outflow 

observed during systole (871–873). Described in brief, the heart has a large microvascular 

compliance that results in high intravascular blood volumes which reportedly range from 

~0.10 to ~0.25 mL/min/100 g in beating or arrested hearts (174, 481, 532, 533, 951). 

Intramyocardial blood volume of the right ventricle has been reported to average ~0.07 

mL/min/100 g (481). Systolic compression results in bidirectional extrusion of this volume 

and accounts for increased venous outflow (anterograde) as well as retrograde arterial flow 

(Fig. 7) (79, 331, 399, 400, 481). Additional hypotheses to explain the coronary effects of 
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myocardial contraction include recognition of variations in myocardial stiffness during the 

cardiac cycle (varying elastance model) (583–585), increases in cardiomyocyte diameter 

during isotonic cardiac contractions (muscle shortening and thickening model) (977), as well 

as changes in the shape of vascular cross-sections, branching angles, vessel tortuosity 

(vascular deformation model) (342, 770). As with any physiologic system, it is likely that 

the true origins and regulation of phasic coronary flow are the result of multiple processes 

which can only be truly modeled by integrating multiple hypotheses. Indeed, recent data 

from Kassab and Lanir support that the physical basis of intramyocardial tissue pressure and 

the pulsatile nature of coronary blood flow is best described through the combined effects of 

cavity-induced extracellular pressure and shortening-induced intramyocyte pressure (5, 6, 

545).

These findings establish the inextricable link between myocardial compressive forces 

(extravascular compression of intramyocardial compliance) and coronary blood flow 

throughout the cardiac cycle. The nature of the physiologic interaction between myocardial 

contraction and the phasic nature of coronary flow is further complicated by studies in the 

early 1950s by Rushmer who documented a disparity in compressive forces across the wall 

of the left ventricle (813). As such it is now well accepted that the greatest degree of 

vascular compression is found in endocardial layers, with little if any compressive force at 

the level of the epicardium (17, 20, 44, 561, 677). The phenotypic outcome of this disparity, 

with regard to blood flow, is that endocardial tissue receives little if any flow during systole 

as the compressive forces are of sufficient magnitude to exceed the driving force of arterial 

pressure (264, 561, 994). Thus, the endocardium only truly receives flow during diastole and 

is therefore extremely dependent on an adequate diastolic filling period to maintain 

sufficient coronary flow. By contrast, the lack of compressive forces at the epicardial layer 

allow for perfusion throughout the entire cardiac cycle. Therefore, there is a linear decrease 

in dependence on diastolic time fraction for the maintenance of coronary flow in the 

endocardial to epicardial direction. This relationship is schematically depicted in Figure 8 

(72). Taken together, these factors dictate that the left ventricle receives ~80% of its blood 

flow during the diastolic phase of the cardiac cycle (270, 331).

Recognition of the physiologic impact of cardiac contraction on coronary blood flow led to 

much research and debate regarding the most appropriate means in which to determine the 

coronary perfusion pressure gradient during diastole. These studies have largely centered 

around three potential estimates which include: (i) coronary arterial pressure minus 

intraventricular cavity pressure (148, 200, 202, 203, 257, 308, 781); (ii) coronary arterial 

pressure minus intramyocardial tissue pressure (75,265,598,742,781); and (iii) coronary 

arterial pressure minus zero flow pressure (Pzf: systemic pressure at which coronary blood 

flow ceases during prolonged diastole) (73, 74, 135, 136, 300, 759, 857). Given that 

intramyocardial tissue pressure is greater in the subendocardium than in the subepicardium 

(17,20,44,561,677), diastolic arterial pressure minus diastolic intraventricular pressure is 

only a reasonable estimate of coronary perfusion pressure for the innermost subendocardial 

layers of the left ventricle (331,481). In 1983, Feigl proposed that the effective diastolic 

coronary perfusion pressure is best estimated as the smallest gradient between coronary 

arterial pressure minus intramyocardial tissue pressure, or coronary venous pressure, or 
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diastolic Pzf (331). Such estimates also apply to the right coronary circulation as well (74, 

481).

Transmural flow distribution

Based on higher compressive forces and metabolic requirements of the left ventricular 

endocardium, it not surprising that a gradient exists for coronary blood flow across the wall 

of the heart. However, the magnitude of that gradient is relatively modest with reported 

ratios of endocardial to epicardial (ENDO/EPI) blood flow typically ranging from 1.1 to 1.5 

(30, 37, 39, 48, 53, 121, 122, 251, 274, 587, 606, 717, 739, 785, 824,1011). This may seem 

counterintuitive as the epicardium does not experience the periodic zero flow condition 

brought on by systolic compression. However, a combination of higher endocardial 

microvascular density (261,993) and lower endocardial microvascular resistance (165, 173) 

culminates in slightly higher flows in the endocardium versus epicardium. Studies by the 

Chilian laboratory highlight that the magnitude of the difference between endocardial and 

epicardial resistances can be quite extreme. In seminal work to interrogate this question, 

Chilian demonstrated that at a given arterial pressure in maximally dilated hearts, venular 

pressures in the endocardium were significantly higher than venular in the epicardium. Thus, 

the pressure drop (i.e., resistance) across the endocardial microcirculation is markedly lower 

than that of the epicardial microcirculation (165). These findings support that differences in 

transmural flow are related to differences in the structural composition of endocardial versus 

epicardial vessels.

The most direct evidence for a role of extravascular compressive forces in the regulation of 

transmural flow can be found when comparing studies of maximally dilated beating hearts 

against maximally dilated arrested hearts. In the setting of the former, ENDO/EPI ratios 

have been consistently reported to be ~1.0 (261, 274, 787), whereas under conditions of 

cardiac arrest, where compressive force remains constant, ENDO/EPI ratios are reported to 

range from 1.4 to 1.6 (257, 261, 992, 993). These disparate findings highlight the interplay 

between a microvascular structural phenomenon designed to allow for preferential 

endocardial flow and the periodic extravascular compressive forces of the myocardium to 

counteract this preferential endocardial flow. The resultant effect of these physiologic 

influences being the relative normalization of endocardial to epicardial perfusion.

It is important to recognize that the distribution of transmural blood flow is also significantly 

influenced by the duration of diastole. This effect is clearly evidenced by studies performed 

by Bache and Cobb who showed that during periods of maximal coronary vasodilation, there 

is a linear reduction in the ENDO/EPI ratio from 1.0 at 100 beats/min to 0.4 at 250 

beats/min (i.e., endocardial flow is inhibited by reductions in diastolic filling time) (26). 

Other investigators have also corroborated this effect (257, 261, 266). Additional studies also 

indicate that transmural blood flow is significantly influenced by coronary perfusion 

pressure, i.e. by a coronary artery stenosis which diminishes distal driving pressures. In 

1977, Guyton et al. demonstrated that endocardial blood flow begins to progressively fall as 

coronary pressure falls below 70 mmHg, whereas epicardial blood flow does not decline 

until pressures are reduced below 40 mmHg (423). The pressure at which endocardial flow 

begins to decrease is even higher during exercise, which augments MVO2, heart rate, and 
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myocardial tissue pressure (47). Despite this recognition, limitations in endocardial flow 

(i.e., low ENDO/EPI ratios) are not evident in normal hearts under physiologic conditions 

across a wide range of heart rates and MVO2 in either the left (53, 122, 606, 642, 752, 825) 

or right ventricle (39, 48, 606, 739, 1024). Therefore, under normal physiologic conditions 

the coronary circulation is able to integrate compressive forces and microvascular 

resistances in a manner that allows for adequate delivery of substrates to all myocardial 

layers.

Myogenic Control and Pressure-Flow Autoregulation

Myogenic control of coronary vascular resistance

Originally described by Bayliss in 1902, the vascular myogenic response is defined as the 

ability of vascular smooth muscle to constrict in response to an increase in transmural force 

(i.e., perfusion pressure) (69). By extension, a decrease in intravascular pressure is a 

followed by a transient diameter collapse followed by dilation (228). Teleologically, this 

behavior is believed to represent the efforts of the vessel to minimize wall stress; a point 

supported mathematically by the law of Laplace ( wall stress ∝ Pressure×radius
wall thickness ). Further, this 

behavior of small arteries and arterioles leads to the maintenance of a certain degree of 

active force at normal intravascular pressures, that is, basal or myogenic “tone,” which 

allows microvascular resistance to be modulated in either direction by the actions of both 

vasodilators and vasoconstrictors (224,349,662). The myogenic response is thought to reflect 

an increase in the activation state of smooth muscle, as opposed to the well-documented 

length-tension relationship common to essentially all types of mammalian muscle (225). 

Although vascular smooth muscle is not organized into defined sarcomeres (542), the 

relationship between active force and optimal length (preload) still holds in the vasculature 

(434).

While myogenic behavior in the coronary circulation is assumed in vivo (171, 541, 783), the 

majority of evidence for the myogenic phenomena comes from studies in isolated and 

pressurized microvascular preparations (589–591, 593, 674), where coronary arterioles have 

been demonstrated to develop an exceptional degree of myogenic tone. This methodology is 

advantageous in minimizing the number of potential input variables affecting the system, yet 

there is a notable absence of integrated behaviors as a result. Application of isolated vessel 

techniques has demonstrated the myogenic nature of arteriolar constriction in that 

microvascular diameters decrease as intraluminal pressure is increased in incremental steps 

from ~15 through 100 mmHg in both endothelium-intact and denuded vessels (589–

591,593). A classic example of a pressure-induced myogenic response is observed in the 

tracing published by Kuo et al. in Figure 9 in which a step increase in intraluminal pressure 

results in an initial increase in arteriolar diameter that is followed by a steady decline to a 

new steady-state diameter (590). This myogenic constriction is lessened by the onset of flow 

via a pressure gradient across the vessel. Average arteriolar responses to intraluminal 

pressures in vessels with and without flow are shown in Figure 9.

Interestingly, myogenic responsiveness is not uniform throughout the coronary vasculature 

tree as responses have been shown to be the greatest in subepicardial arterioles <100 μm in 
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diameter, with more modest responses in subendocardial arterioles and small arteries ~400 

μm in diameter (590). Based on this relationship between vessel diameter and magnitude of 

myogenic response, the myogenic response is thought to play a significant role in 

maintaining basal vascular tone in the resistance vasculature. It is thus within the presence of 

this “background” vasomotor tone, that nonmyogenic factors bidirectionally influence the 

regulation of coronary flow as necessary to balance myocardial oxygen delivery with 

myocardial oxidative metabolism (Fig. 2A). Mechanisms of the coronary myogenic response 

are discussed in Section “Ion Channels as End Effectors.”

Coronary pressure-flow autoregulation

Although the overall physiologic role of the myogenic response remains to be clearly 

defined, one physiologic phenomenon that has been ascribed to intrinsic myogenic 

responsiveness is coronary pressure-flow autoregulation (see Fig. 2B) (194, 195, 229, 235, 

505, 519, 522, 873). Autoregulatory behavior is characterized as the ability of a vascular bed 

to maintain blood flow relatively constant across a wide range of perfusion pressures. In 

other words, this regulatory mechanism acts to preserve myocardial perfusion despite 

alterations in driving pressure (331, 514, 515). While all tissues have the capacity for 

autoregulation, to various degrees, the coronary vasculature [much like the cerebral and 

renal circulation (303, 515, 807)] displays exquisite autoregulatory capacity (84, 201, 252–

254, 333, 690, 853). Coronary pressure-flow autoregulation is characterized by relatively 

constant coronary blood flow with changes in pressure, which is accomplished by 

comparative changes in microvascular resistance. As such, reductions in perfusion pressure 

diminish coronary vascular resistance, whereas increases in perfusion pressure elevate 

coronary vascular resistance (Fig. 10). Accordingly, the range of the autoregulatory response 

is set by the physiologic limits of microvascular responses to increases in perfusion pressure 

(resistance plateaus at ~120 mmHg) and decreases in perfusion pressure (resistance plateaus 

at ~60 mmHg). However, the lower limits of the autoregulatory range have been reported to 

be as low as ~40 mmHg in conscious instrumented dogs (146). Regardless of the threshold 

value, it should be recognized that once perfusion pressure is outside of this “window,” the 

coronary vasculature becomes completely dependent on upstream driving pressure (i.e., 

arterioles respond passively to changes in pressure). Coronary vasodilation in response to 

reductions in perfusion pressure (e.g., ischemia induced by coronary stenosis) is a critical 

mechanism that acts to mitigate myocardial injury and infarction (147, 331, 367). As such, 

coronary vasodilator capacity informs clinical decision making regarding the severity of the 

stenosis, with indices such as coronary flow reserve (392, 480, 931), fractional flow reserve 

(762, 974), and index of microcirculatory resistance (1007) typically decreasing as the 

severity of luminal narrowing increases (513).

Initial characterization of coronary autoregulatory behavior was documented in the 1950s 

following the development of the cannulated, extracorporeal perfusion circuit, which 

allowed for coronary pressure to be held constant via a roller pump system (84). Definitive 

studies of coronary pressure-flow autoregulation were performed by Berne, who 

demonstrated that this phenomenon occurs rapidly (seconds) in a highly precise manner (84) 

and Mosher et al. who demonstrated the overall level of pressure-flow autoregulation is 

directly dependent on the underlying MVO2 (690). Later studies by Guyton et al. established 
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that although autoregulatory behavior exists transmurally across the left ventricle, the range 

is significantly lower in the endocardial versus epicardial microcirculation (423); an effect 

corroborated by numerous additional studies (106, 127, 144, 407, 423, 808, 1006). 

Autoregulation of right coronary blood flow has also been observed by a number of 

laboratories; however, the overall autoregulatory capacity is significantly lower in the right 

versus left coronary circulation (101, 200, 369, 702, 929, 1005, 1006). In particular, direct 

comparison of pressure-flow autoregulation in conscious, non-cannulated preparations 

demonstrate that right coronary blood flow decreases ~35% when perfusion pressure is 

lowered from 80 to 40 mmHg (101) while essentially no change in left coronary blood flow 

was noted over this same pressure range (146).

Mechanisms of coronary autoregulation

Although the coronary pressure-flow autoregulatory response is directionally consistent with 

a myogenic mechanism, definitive experiments to establish the contribution of myogenic 

responsiveness to pressure-flow autoregulation in vivo are confounded by numerous other 

pathways (e.g., metabolic and endothelial) with the potential to influence coronary 

microvascular resistance in response to changes in perfusion pressure. While modeling 

studies by Spaan and colleagues indicate that a myogenic mechanism is sufficient to achieve 

coronary pressure-flow autoregulation (194, 195, 873), there is also evidence to support a 

role for a metabolic as well as an endothelial-dependent component of this response. In 

particular, support for a metabolic mechanism comes from the observation that coronary 

autoregulation adjusts to the level of myocardial metabolism (690). Further studies 

documenting that effective coronary autoregulation is closely coupled to the underlying 

coronary venous PO2 (balance between flow and metabolism), as autoregulation is only 

observed when coronary venous PO2 is <32 mmHg (255). However, an alternative 

explanation for these data is simply that effective pressure-flow autoregulation is not 

observed in artificially dilated preparations; that is, is dependent on underlying myogenic 

tone. This contention is supported by the loss of autoregulation following the administration 

of vasodilator agents (23, 252, 459) or following coronary vasodilation secondary to the 

inhibition of pathways that contribute to the maintenance of baseline vasomotor tone [e.g., 

L-type Ca2+ channels (96)]. Reports that increases in coronary perfusion pressure augment 

MVO2 independent of changes in coronary blood flow [i.e., Gregg Effect 

(18,326,397,530,562,655,801,1005)] have been shown to be quite modest, and if observed, 

to be mediated by changes in coronary vascular volume in poorly autoregulating 

preparations (43,106,216,217,260,839). Data from Broten and Feigl indicate that myocardial 

oxygen and carbon dioxide levels synergistically influence coronary responses at perfusion 

pressures ranging from 80 to 160 mmHg (123,125). However, efforts to determine specific 

metabolites that contribute to the coronary autoregulatory response have failed to show any 

role for proposed putative dilators such as adenosine (256, 285, 438, 577) or other purinergic 

(adenosine triphosphate, ATP and adenosine diphosphate, ADP) factors (77) (see Section 

“Metabolic Control of Coronary Blood Flow”).

In examining the contribution of coronary endothelium to pressure-flow autoregulation in 

conscious instrumented dogs, Smith and Canty determined that inhibition of nitric oxide 

synthase did not influence coronary blood flow within the autoregulatory range, however it 
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did significantly lower the limits of the autoregulatory response; that is, significantly 

increased the pressure at which coronary flow becomes pressure dependent from 45 ± 3 to 

61 ± 2 mmHg (865) (see Section Endothelial-Dependent Control). These data are consistent 

with other studies which found that blockade of nitric oxide production moderately reduces 

(~15%-20%) coronary vasodilation in response to a transient coronary occlusion (i.e., 

reactive hyperemia) (7, 246, 497). Yada et al. also reported no effect of nitric oxide and 

H2O2 blockade on coronary flow responses to changes in perfusion pressure within the 

autoregulatory range (998). Data from the Chilian laboratory indicate that these mechanisms 

collectively modulate coronary responses to changes in perfusion pressure within specific 

microdomains of the vascular tree in a heterogeneous manner (235,589–593,692). They 

propose that pressure-mediated responses of the coronary circulation are the manifestation 

of metabolic (at the arteriolar level) and endothelial (at the small artery level) responses that 

are reciprocally balanced by a myogenic mechanism within the resistance vasculature (235). 

This hypothesis is supported by studies in isolated vessels demonstrating that flow-induced 

dilation significantly abrogates myogenic constriction across a wide range of intraluminal 

pressures (590). Such a hierarchy has physiologic benefits in that the location and promotion 

of endothelial-dependent dilation in larger upstream arterioles (>100 μm in diameter) would 

act to minimize shear stress and preserve vasodilator (metabolic) reserve in smaller 

downstream arterioles (<100 μm) (520,524,590,592,593,692). Aschematic diagram (Fig. 11) 

outlines this proposed heterogeneous regulation of coronary vascular resistance in which 

coronary reserve is locally established predominantly via local metabolic mechanisms and 

reciprocally balanced by upstream myogenic and flow-sensitive vascular domains (225,692). 

The interaction of these influences along with extravascular compressive forces and neural 

input must also be recognized. Convergence of these mechanisms on coronary ion channels 

is discussed at length below (see Section Ion Channels as End Effectors).

Metabolic Control of Coronary Blood Flow

Balance between coronary blood flow and myocardial metabolism

Metabolic regulation of coronary blood flow relates to the physiologic necessity that, in a 

highly metabolic tissue such as the heart, it is essential that mechanisms exist to assure that 

changes in myocardial metabolism (demand) are balanced/matched by concordant and 

proportional changes in myocardial oxygen delivery (supply) (Fig. 1) (16, 270, 331, 918, 

919, 922). This fundamental concept has been recognized for centuries as the Scottish 

surgeon John Hunter is credited with recognizing that “blood goes where it is needed” in his 

posthumously published work, A Treatise on the Blood, Inflammation and Gun-shot 
Wounds (published circa 1794). To understand the determinants of the balance between 

coronary blood flow and myocardial metabolism, one does not have to look past the 

application of Adolf Fick’s equation which was advanced in 1870 and clearly demonstrates 

that under normal physiologic conditions (assuming myocardial oxygen delivery is not 

limited) MVO2 is the product of coronary blood flow and the arterial-venous difference in 

oxygen content (850). Given that the left ventricle extracts ~70% to 80% of the oxygen 

delivered in the arterial blood under baseline/resting conditions, it is quite apparent that 

increases in MVO2 must be primarily balanced by increases in coronary blood 

flow(87,119,331). The tight coupling and linear dependence between coronary blood flow 
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and MVO2 are illustrated in Figure 12A. The proximity of this normal relationship to the 

physiologic maximum of 100% oxygen extraction clearly demonstrates how predominantly 

dependent the left ventricle is on changes in coronary blood flow to ensure adequate oxygen 

delivery and thus the maintenance of normal cardiac function and output.

Precisely “why” the left ventricle operates within this limited constraint remains a mystery. 

However, it is important to understand that myocardial oxygen supply/demand balance of 

the right ventricle is quite different in that its normal resting MVO2 (30–50 μL O2/min/g) 

and coronary blood flow (0.3–0.6 mL/min/g) are lower, which correspond with an overall 

reduction in myocardial oxygen extraction (~45%; right coronary venous PO2 ~30 mmHg) 

(441, 1024, 1025). Seminal work by H. F. Downey and colleagues demonstrated that initial 

increases in right ventricular MVO2 are first met by increases in oxygen extraction with little 

change in coronary flow; that is until venous PO2 becomes equivalent to that of the left 

ventricle (i.e., venous PO2 ~18–20 mmHg) (Fig. 13A) (441, 919, 1025). Assuming that 

values of coronary venous PO2 reflect levels of myocardial tissue PO2 (469, 919), these 

findings collectively support that mechanisms to invoke metabolic coronary vasodilation are 

progressively activated as myocardial tissue PO2 falls below a critical threshold value. The 

physiologic relevance of this relationship is also supported by the essential observations that 

pronounced reductions in coronary microvascular resistance are also observed in response to 

reductions in perfusion pressure (84, 201, 252–254, 333, 690, 853), arterial PO2 [i.e., 

hypoxemia; (2,22,89,205,262,376,458,608,645,670,671,708,767, 849, 917, 940, 958)], 

arterial oxygen content [i.e., anemia; (59, 102, 120, 204, 206–210, 323, 372, 377, 482, 486, 

509, 691, 905, 934, 935, 947, 957, 976)], and overt myocardial ischemia (27–

29,33,36,97,110,189,246,497,498,730–732) (see Fig. 2). Nevertheless, data from studies of 

exercise-induced increases in MVO2 in swine [which display little change in coronary 

venous PO2 (270)] and hemodilution-induced anemia (normal arterial PO2 with progressive 

increases in coronary venous PO2 [934, 935)] clearly demonstrate that reductions in tissue 

oxygen tension are not required for robust coronary vasodilation (Fig. 13B). In other words, 

other “oxygen sensors” must exist and act to ensure myocardial oxygen delivery is sufficient 

to meet myocardial requirements for oxidative phosphorylation. Other proposed oxygen 

sensing mechanisms include erythrocytes (hemoglobin oxygen saturation) (309, 311, 387, 

388), endothelium and/or vascular smooth muscle cells (507, 985). Despite over 50 years of 

extensive research, precisely how coronary vascular resistance is so tightly coupled with 

myocardial metabolism remains one of (if not) the central questions of coronary 

physiologists to this day.

To understand potential mechanisms responsible for the balance between coronary blood 

flow and MVO2, it is essential to appreciate how inhibition of metabolic vasodilation would 

influence this highly constrained relationship. First, it is apparent from the relationship 

between coronary blood flow and MVO2 shown in Figure 12A, that any interruption of the 

coronary response to increases in metabolism must occur between the normal and the 

maximal physiologic response of 100% oxygen extraction. Second, given the limited 

myocardial oxygen extraction reserve, reductions in metabolic coronary vasodilation will not 

only diminish coronary blood flow, but will also decrease MVO2 in relative proportion to the 

overall reduction in myocardial oxygen delivery. Third, if metabolic coronary vasodilation is 

completely inhibited experimentally, MVO2 would only increase ~20% to 30% (depending 
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on the degree of baseline extraction reserve). Taken together, these physiologic confines and 

consequences significantly complicate interpretation of alterations in the balance between 

coronary blood flow and myocardial metabolism.

An alternate means in which to assess myocardial oxygen supply/demand balance was 

proposed by Heyndrickx et al. in 1982 (469). They proposed that changes in coronary 

venous PO2 relative to MVO2 provide an accurate and more sensitive index of the overall 

balance between myocardial oxygen delivery and metabolism. Data from Berwick et al. are 

used to illustrate how changes in the balance between coronary blood flow and myocardial 

metabolism affect the relationship of both coronary blood flow(Fig. 12A) and coronary 

venous PO2 (Fig. 12B) relative to exercise-induced increases in MVO2 in swine (94). As 

depicted in Figure 12B, coronary venous PO2 typically falls modestly as MVO2 increases 

with exercise (94, 111, 213, 214, 274, 278, 280, 281, 283, 285, 293–295, 

388,389,454,483,484,497,559,642,664,669,920,921,923); however, this response can vary 

with little/no change in swine (94, 111, 281, 663, 664, 667, 669), moderate reductions in 

humans (454,483,484,563), with the largest decreases typically observed in dogs (32, 274, 

276, 282, 283, 285, 424, 920, 921,923–925). These reductions in PO2 reflect slight increases 

in oxygen extraction that occur along with elevations in coronary blood flow in response to 

elevations in MVO2. As such, if increases in MVO2 were perfectly matched by increases in 

coronary blood flow, coronary venous PO2 would remain constant (relationship would 

remain completely horizontal). Inhibition of a “tonic vasodilator” influence, defined as a 

similar reduction in coronary blood flow at rest and during increases in MVO2, results in a 

compensatory increase in myocardial oxygen extraction and equivalent reductions in 

coronary venous PO2 (270, 276, 918, 919). Accordingly, a tonic metabolic influence has 

been classically interpreted by a parallel downward shift in the relationship between 

coronary venous PO2 and MVO2. Inhibition of such a mediator may or may not result in an 

absolute reduction in overall MVO2 and typically produces minimal if any detectable 

reduction in the relationship between coronary blood flow and MVO2 (see “Tonic” influence 

in Fig. 12). An alternative explanation for this scenario was recently posited by Gorman et 

al. who suggested that a downward parallel shift indicates an inhibition of a negative 

feedback control mechanism which allows for coronary blood flow to be maintained by an 

augmented error signal (388). Conversely, the expected result for the inhibition of a factor 

whose production and contribution to metabolic vasodilation increases in proportion to 

MVO2 has characteristically been a steepening of the slope of the relationship between 

coronary venous PO2 and MVO2. The logic here is that the progressive attenuation of the 

coronary response to increases in MVO2 is accompanied by increases in oxygen extraction 

in attempts to meet the myocardial requirements for oxygen (918). This effect is also evident 

in the relatively modest shift of the coronary blood flow versus MVO2 relationship 

downward toward the maximal physiologic response (see “Metabolic” influence in Fig. 12). 

Although these conventional interpretations have been relatively standard for over three 

decades, alternative interpretations and questions regarding the most appropriate means in 

which to assess the balance between coronary blood flow and myocardial metabolism 

continue to generate much debate (270, 271, 388, 460, 917–919).
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Proposed mechanisms of local metabolic control

Although there is widespread agreement that locally derived vasodilators play a dominant 

role in the regulation of microvascular resistance, the precise mechanisms responsible for the 

inextricably tight coupling of coronary blood flow with myocardial metabolism remain 

poorly understood (243, 271, 918, 919). It should be recognized upfront that neural 

(sympathetic) influences play both an indirect and direct role in the regulation of coronary 

blood flow. These effects occur via activation of vascular adrenergic receptors and through 

the augmentation of MVO2 via increases in heart rate and cardiac contractility, respectively. 

A detailed discussion of adrenergic control of coronary blood flow is provided in the Section 

Neural Control.

In considering local metabolic control of coronary blood flow it is important to define the 

experimental findings required to satisfy specific factors as a local “metabolites.” The 

precise criteria defined by Feigl in his classic review of the coronary circulation in 1983 

were (331):

1. The proposed metabolite is released under the appropriate conditions and can be 
recovered from the tissue under those conditions.

2. Artificial infusion of the metabolite into the target tissue should faithfully mimic 
the physiological response.

3. The biochemical apparatus for production of the metabolite is present in the 
tissue in appropriate locations.

4. Mechanisms for inactivation and/or uptake of the metabolite are present in 
appropriate locations.

5. The action of various inhibitors and blocking agents on synthesis, release, target-
organ receptor function, or metabolite inactivation should have effects consistent 
with the hypothesis.

6. Quantitative studies should indicate that the amount and time course of 
metabolite release under physiologic conditions is appropriate to give the 
indicated effect.

While many substances fulfill some of these criteria, arguably few if any have fully satisfied 

all. Summaries of key research findings relating to proposed metabolic vasodilator 

compounds are provided as follows.

Oxygen and carbon dioxide—As early as the 1920s, oxygen was investigated as a 

potential signal for regulation of coronary flow. In separate studies, Hilton and Eicholtz 

(474) and Gremels and Starling (406) demonstrated that coronary flow increases with 

progressive reductions in arterial PO2 (hypoxemia), with more pronounced increases as 

arterial PO2 falls below 40 mmHg. This increase in coronary flow corresponds with 

increases in blood pressure, heart rate, and MVO2 which occur via reflex activation of the 

sympathetic nervous system (338, 767, 917). This vasodilator response is also accompanied 

by an increase in myocardial oxygen extraction (decrease in coronary venous PO2). 

Evidence of overt myocardial ischemia is observed as arterial PO2 falls below 30 to 35 
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mmHg with net myocardial lactate production, ST segment changes, and diminished cardiac 

contractile function (188, 767, 958).

Hypoxic dilation has been observed in isolated vessels preparations which demonstrate 

marked relaxation in small arteries and arterioles in response to reductions in PO2 

(138,370,506,508,512,681). Similar findings have also been demonstrated in isolated heart 

preparations (222, 713, 956). Jackson and Duling proposed that hypoxic vasodilation results 

from the activation of oxygen sensors in terminal arterioles, capillaries, and venules and that 

these sensors initiate conducted vasodilator responses from their origin to distant resistance 

arterioles (506, 508). Studies regarding the role of the endothelium are varied as data support 

the contribution of nitric oxide to hypoxic vasodilation (511,618,956) with others showing 

no effect (618,681,910). Although inhibition of nitric oxide synthase significantly 

diminished coronary responses to hypoxia in conscious dogs, the reductions in coronary 

flow were directly associated with significant reductions in the rate-pressure product (index 

of MVO2) (22). Similarly, inhibition of prostaglandin production by blockade of 

cyclooxygenase has been shown to diminish hypoxic coronary vasodilation (138, 534, 535, 

707, 713, 727, 795). However, this finding is not consistent (609, 618) and evidence for 

hypoxia-induced release of vasoconstrictor prostaglandins must also be considered (672, 

681, 809, 811, 910). Thus, a definitive role of endothelial-derived vasodilators in hypoxic 

coronary vasodilation has not been clearly established.

The Gutterman laboratory found hypoxic vasodilation of isolated human coronary arterioles 

to be exceptionally slow (approximately 15 min to peak effect) (681). These findings, in 

addition to the fact that myocardial tissue oxygenation is relatively maintained during 

physiologic increases in MVO2 (142,233,239,243,625,626,841,867), fail to support a 

prominent role for oxygen itself as a metabolic vasodilator. It is also important to recognize 

that separation of the direct vascular effects of hypoxia from its potential to augment the 

production of other vasodilator factors significantly confound interpretation of a role for 

oxygen as a local metabolic mechanism. In particular, it is well established that myocardial 

adenosine release increases exponentially with the severity of hypoxia (240–242, 458, 893, 

936) and that inhibition of adenosine’s action through enzymatic degradation or receptor 

inhibition significantly diminishes hypoxic coronary vasodilation (~20%–30% at arterial 

PO2’s < 40 mmHg) in isolated hearts (539, 712, 964) and in anesthetized animals in vivo 
(376, 608, 670, 671). Accordingly, it is likely that the effects of oxygen are appreciable, but 

only under pathophysiologic conditions that are sufficient to produce the onset of ischemia.

Considering that CO2 is vasoactive and a natural byproduct of cellular respiration, it is 

intuitive that CO2 could serve as a signal linking changes in coronary blood flow and 

myocardial metabolism. Work by Case et al. demonstrated an inverse linear relationship 

between coronary vascular resistance and increases in coronary venous CO2 levels 

(151,152). However, this hypercapnic vasodilation was later attributed to H+ (acidosis) as 

normalization of pH with sodium carbonate was shown to abolish coronary responses to 

increases in plasma PCO2 (971). Although there is a synergistic effect of combined hypoxia 

and hypercapnia on coronary blood flow (123, 125), such changes are not associated with 

physiologic increases in MVO2 (918, 919). Therefore, it is unlikely that CO2 is a relevant 

mediator of metabolic coronary vasodilation.

Goodwill et al. Page 17

Compr Physiol. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Potassium—In 1938, Katz and Lindner proposed K+ as a potential regulator of coronary 

blood flow, the hypothesis being that there is an increased flux of K+ across the myocardial 

membrane (into the interstitial space) during increases in metabolic activity (553). 

Consistent with this hypothesis, subsequent studies found K+ to be a vasodilator (131, 267, 

373, 701) and myocardial efflux of K+ to be elevated by tachycardia (374, 375, 411, 751, 

897, 975, 986) and myocardial ischemia (150,162,211,375,440,510,751,846). However, the 

vasodilator action of K+ has been shown to be transient (131, 373), and higher 

concentrations of K+ (typically >20 mmol/L) are known to produce vasoconstriction (875). 

These discrepant findings appear to be related to the effect of K+ in setting the basal activity 

of the Na/K-ATPase (355, 721). Work by the Sparks laboratory demonstrated that K+ release 

quickly declines following increases in heart rate in normally oxygenated hearts (699). Thus, 

while K+ could play a transient role in initiating metabolic vasodilation, it is improbable that 

K+ contributes to steady-state increases in coronary blood flow in response to increases in 

myocardial metabolism.

Adenosine—The seminal theory regarding local metabolic control of coronary blood flow 

was proposed by Berne in 1963 (85). The theme of Berne’s hypothesis was that myocardial 

PO2 is the primary regulated variable in a negative feedback loop in which the potent 

vasodilator factor adenosine (breakdown production of ATP) is released from the 

myocardium in proportion to increases in myocardial oxidative metabolism and/or 

reductions in myocardial oxygenation (86–88,91,92,336). Increasing concentrations of 

adenosine in the cardiac interstitium subsequently increase coronary blood flow via 

activation of specific receptors on coronary vascular smooth muscle cells. This increase in 

blood flow would then act to restore myocardial oxygenation toward normal as a part of a 

negative feedback control system (Fig. 14).

The hypothesis itself is quite elegant in linking changes in metabolism to flow with a 

metabolic byproduct which also happens to be a potent coronary vasodilator. Although 

initial studies by the Berne laboratory and others supported that increases in MVO2 were 

accompanied by elevated levels of cardiac adenosine (25, 312–314, 316, 656, 961), 

subsequent studies have failed to show any significant effect of either enzymatic degradation 

or receptor inhibition on coronary blood flow responses in dogs (32,923,996), swine 

(281,664), and humans (293–295) (Fig. 15A). Furthermore, studies to estimate changes in 

interstitial adenosine concentration indicate that adenosine levels remain below a critical 

threshold concentration necessary to elicit vasodilation at rest and/or during increases in 

MVO2 in the absence and presence of adenosine receptor blockade 

(586,790,791,883,886,920,921, 923) (Fig. 15B). Therefore, despite the attractiveness of the 

hypothesis, there is little evidence to support a role for adenosine as a mediator of local 

metabolic coronary vasodilation under normal physiologic conditions.

Additional studies do however indicate that adenosine contributes to the regulation of 

coronary blood flow in the setting of myocardial ischemia, as pharmacologic inhibition of 

adenosine action reduces coronary responses in models of critical coronary stenosis 

(275,607), transient coronary artery occlusion (97, 356, 1014), and severe hypoxemia (376, 

608, 670, 671). Taken together these data indicate that while adenosine is capable of 

eliciting potent vasodilation, such effects are not physiologically evident unless myocardial 
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oxygen delivery is compromised (i.e., myocardium is ischemic). These findings also serve to 

further support the maintenance of myocardial oxygen supply-demand balance within 

physiologic alterations in MVO2 (142, 233, 239, 243, 625, 626, 841, 867) and thus argue 

against an obligatory role for myocardial tissue PO2 as the primary stimulus (error signal) 

responsible for local metabolic coronary vasodilation.

Adenine nucleotides—The adenosine hypothesis has been reimagined in recent years by 

a humoral alternative. This newly adapted model, termed the adenine-nucleotide hypothesis, 

is distinct from the adenosine hypothesis in that it proposes a negative-feedback mechanism 

under which ATP is released from red blood cells as PO2 and hemoglobin saturation fall 

with increases in MVO2 (309–311, 324, 876–878, 945). It is well documented that ATP is 

released from erythrocytes in low oxygen environments (310). Thus, considering the steep 

decline in PO2 found in coronary capillary beds, it is reasonable to assume that the stimulus 

for ATP release by erythrocytes exists continuously within the heart. This negative-feedback 

mechanism is proposed to respond to the magnitude of the hypoxic stimulus with a 

proportional release of ATP, with hemoglobin saturation serving as the sensor. ATP is then 

hydrolyzed to its breakdown products, ADP and AMP which can in turn cause vasodilation 

primarily by binding of ADP to endothelial P2Y1 receptors. Endothelial gap junctions are 

then believed to conduct this response through the endothelial lining allowing for retrograde 

signal transduction (343, 344, 388). The net effect of this conducted activation is nitric oxide 

release by the vascular endothelium both at the site of hypoxic stimulus as well as upstream 

of the initial error signal.

The Feigl group has made significant inroads advancing this hypothesis by demonstrating 

that exercise-induced increases in MVO2 significantly augment coronary venous ATP 

concentration (324, 768). More recently, they documented that combined blockade of nitric 

oxide synthase, P1, and P2Y1 receptors significantly decreases the balance between 

coronary blood flow and myocardial metabolism; as assessed by a parallel shift downward in 

the relationship between coronary venous hemoglobin saturation and MVO2 (388) (Fig. 

16A). However, even though the error signal (coronary venous hemoglobin saturation) was 

significantly augmented, the fact that the overall magnitude of exercise-mediated coronary 

vasodilation was unaffected by this triple blockade indicates that these pathways are not 

required for metabolic control of coronary blood flow (Fig. 16B). Therefore, while the 

adenine nucleotide hypothesis provides a compelling mechanism linking myocardial 

metabolism to coronary blood flow, it currently lacks definitive evidence to support the 

model (177).

Reactive oxygen species (H2O2)—Chilian and colleagues recently proposed a novel 

feed-forward mechanism for metabolic regulation of coronary vascular flow. They proposed 

that the leak of electrons from myocardial mitochondrial complexes I and III is proportional 

to the magnitude of myocardial utilization of ATP and results in production of superoxide 

(820). This superoxide anion is rapidly converted to hydrogen peroxide (H2O2) by the 

actions of abundantly expressed superoxide dismutase (728, 782). Importantly, H2O2 is a 

well-documented vasodilator when administered exogenously (624, 798, 799, 820, 831, 907) 

but, more significant to the model is that H2O2 has been shown to increase (along with 
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superoxide production) as a result of progressive stimulation of isolated cardiomyocytes 

(820). When supernatants from paced myocytes are exposed to isolated coronary 

microvessels ex vivo, a significant catalase-sensitive dilator effect was detected, further 

implicating a role for H2O2 (820).

Unfortunately, in vivo interrogation of the role of H2O2 has been hindered by the lack of 

specific agents to inhibit production or stimulate degradation of H2O2, as catalase is a very 

large tetrameric protein with each subunit having a similar molecular weight of albumin 

(~60 kDa). However, studies in open-chest dogs support that myocardial H2O2 concentration 

increases linearly with pacing or norepinephrine-induced increases in MVO2 and that these 

concentrations of H2O2 directly correlate with an approximately threefold increase in 

coronary blood flow (820) (Fig. 17). Although a specific inhibitor is not currently available, 

there is significant evidence to support that H2O2 produces potent coronary vasodilation 

through redox-dependent modification of smooth muscle K+ channels 

(798,799,820,831,907). Importantly, recent work has shown that inhibition of voltage-

dependent K+ (Kv) channels significantly impairs the balance between coronary blood flow 

and myocardial metabolism in mice (725), dogs (246, 798, 799, 820), and swine (94–96) 

(see Section “Ion Channels as End Effectors”). Although these findings are compelling, 

more detailed studies are needed before a definitive conclusion regarding the role of H2O2 in 

metabolic coronary vasodilation can be made. The role of H2O2 as an endothelial-derived 

hyperpolarizing factor is discussed at length in Section “Endothelial-Dependent Control”.

In summary, despite more than 50 years of research, determination of the mechanisms of 

local metabolic control of coronary blood flow remains one of the most intriguing questions 

of coronary physiologists to this day. At present, it must be acknowledged that our 

knowledge regarding this fundamental physiologic phenomenon is rather limited, as there 

are currently more hypotheses than accepted pathways (243). However, although it is well 

accepted that potent vasodilator mechanisms are recruited at critical levels of myocardial 

oxygenation, Berne’s adenosine hypothesis has been largely refuted as a physiologic 

mechanism of metabolic coronary vasodilation. Currently proposed mechanisms include 

adenine nucleotides, H2O2, and sympathetic activation of vascular β-adrenoceptors (see 

Section “Neural Control”), which implicate erythrocytes, mitochondria, and the autonomic 

nervous system as key mediators of local metabolic control in the coronary circulation (918). 

Clearly, further studies are needed to elucidate the precise sensors, metabolites, and 

downstream end effector pathways involved in this vital process.

Endothelial-Dependent Control

Endothelial derived relaxing factors

Blood vessels were originally thought to merely be tunnels through tissues such as the heart 

until the 19th century discovery of the cellular lining of the vasculature by Friedrich Daniel 

Recklinghausen (118, 449). Although Heidenhahn is credited with describing these cells as 

an active secretory system in 1891 (184), the endothelium was largely viewed as a “sheet of 

nucleated cellophane” until the early 1950s (348, 531). Since this time, countless research 

studies have established the crucial role of the endothelium in many biological processes, 

including the regulation of vascular smooth muscle tone, vascular growth/remodeling, 
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production of cytokines essential to regulation of inflammation, regulation of hemostasis, 

and, by extension, modulation of vascular thrombosis (178, 289, 339, 688). Extensive 

reviews of these physiological effects of the endothelium have been previously published by 

Furchgott and Vanhoutte (363), Moncada (688), Cines (184), and Bohlen (107). A 

discussion of the role of specific endothelial-derived vasoactive factors in the control of 

coronary blood flow is provided below. A schematic diagram of key endothelial-derived 

factors and their associated pathways is shown in Figure 18. Overall, many stimulators of 

endothelial-paracrine signaling in the coronary circulation have been studied. An exhaustive 

review of those factors is not provided here, but it should be recognized that acetylcholine, 

serotonin, ADP, CGRP, substance P, thrombin, bradykinin, histamine, vascular endothelial 

growth factor (VEGF), and others are known to stimulate the coronary endothelium to 

produce vasodilator actions (347, 942).

Nitric oxide—In 1980, Furchgott and Zawadski made the seminal observation of the 

obligatory role of the endothelium in the smooth muscle relaxation to acetylcholine (364). 

This so-called “endothelial-derived relaxing factor” (EDRF) was later identified as the 

gasotransmitter nitric oxide in independent studies by Ignarro et al. (495, 496) and Palmer et 

al. (740) in 1987. Thus, the term EDRF has largely evolved to become synonymous with 

nitric oxide. Since this initial, Nobel-worthy identification, a variety of pathways linked with 

nitric oxide have been extensively characterized. Acetylcholine, amongst other agonists 

(e.g., bradykinin, histamine, serotonin, and substance P), are known to bind to their cognate 

endothelial receptors and initiate a signaling cascade that leads to the activation of a family 

of enzymes termed nitric oxide synthases which catalyze the conversion of L-arginine to L-

citrulline with nitric oxide production occurring as a byproduct of the reaction (107, 124, 

178, 289, 620, 688, 930). In addition to agonist-induced nitric oxide release, mechanical 

forces such as blood flow related increases in friction along the endothelial layer (shear) 

have been demonstrated to induce the release of nitric oxide (145, 620, 884, 885).

Abluminal release of nitric oxide produces vasodilation through cyclic guanosine 

monosphosphate (cGMP) dependent hyperpolarization of vascular smooth muscle via the 

opening of select K+ channels (247, 688, 696). Clinically, nitric oxide containing 

compounds such as nitroglycerin have been utilized to alleviate symptoms of acute angina 

for over a century. Work by the Harrison laboratory documented that the enzymatic 

machinery for converting nitroglycerin to its putative vasodilator metabolites (S-

nitrosocysteine, nitric oxide) is largely absent in the coronary microcirculation (847). Later 

studies by Chilian and colleagues demonstrated that while nitroglycerin induces 

concentration-dependent dilation of coronary arterioles to their maximal diameter in vitro, 

coronary vasodilation in vivo is transient and overwhelmed by intrinsic autoregulatory 

escape mechanisms (523). Although there is minimal if any effect of nitrates on absolute 

coronary blood flow (385, 595, 847, 982–984), relief of angina symptoms appears to be 

related to reductions in MVO2, secondary to diminished ventricular afterload and preload 

(432, 833).

The role of nitric oxide in the control of coronary blood flow has been extensively studied 

over the past few decades. From these studies it is apparent that nitric oxide-dependent 

responses occur primarily in upstream arteries and large arterioles (~100–300 μmin 
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diameter) (170,590,592,593), as inhibition of nitric oxide synthase diminishes resting 

epicardial coronary artery diameter (81,145,180,181,299,317,435,518, 

610,718,745,778,959) and abolishes shear-mediated dilation in small coronary arteries 

(>160 μm in diameter) (884, 885). This effect of nitric oxide synthase blockade is absent in 

the classically defined “resistance vasculature” (<100 μm in diameter) (170). However, 

while this evidence is compelling, controversy about the overall physiologic relevance of 

this effect begins as numerous studies have repeatedly demonstrated little/no effect of nitric 

oxide synthase inhibition on baseline coronary flow (7, 93, 145, 223, 269, 299, 317, 497, 

634,649,718,744,746,854,865,920,959). Logically, if nitric oxide played a significant role in 

resting coronary vascular tone, then blockade of nitric oxide synthesis should result in a 

dose-dependent decrease in coronary flow as basal dilator activity is lost. This is simply not 

the case. However, it should be pointed out that significant reductions in coronary flow are 

typically observed in isolated buffer-perfused hearts (9, 68, 126, 599, 747, 864, 928). These 

discrepant findings are likely related to the extremely high flow rates (>5 mL/min/g) present 

in isolated, crystalloid-perfused heart, which strongly favors shear-mediated increases in 

nitric oxide production (129, 139, 576, 592, 600, 885, 930). Furthermore, the half-life of 

nitric oxide is also likely longer in buffer-perfused hearts due to the lack of hemoglobin 

which rapidly scavenges free nitric oxide in plasma (880).

Although data from Bernstein et al. (93) and Traverse et al. (915) support that exercise-

induced increases in MVO2 are associated with increases in nitric oxide production, 

numerous studies have demonstrated that inhibition of nitric oxide synthesis under these 

conditions has little effect on metabolic coronary vasodilation (7, 93, 279, 497, 667, 920) 

(Fig. 19A). However, blockade of nitric oxide production is associated with a parallel 

downward shift in the relationship between coronary venous PO2 and MVO2 (Fig. 19B), 

which has classically been interpreted to indicate a tonic vasodilator effect of nitric oxide 

across a wide range of MVO2 (7,93,269,497,667,854,920,959). This modest reduction in the 

balance between myocardial oxygen supply/demand, which has essentially no effect on 

either coronary blood flow or MVO2, is consistent with the loss of shear-mediated increases 

in diameters of upstream coronary arteries (81, 145, 180, 181, 299, 317, 435, 518, 610, 718, 

745, 778, 959). Chilian and colleagues proposed that the physiologic benefit of this 

arrangement of endothelial-dependent control is that it would act to prevent excessive shear 

stress on small to large coronary arteries, thus preserving vasodilator reserve capacity in 

coronary resistance arterioles (522).

Cyclooxygenase-derived dilating factors—Another class of endothelial-derived 

vasodilator factors includes the metabolites of arachidonic acid. Arachidonic acid is found in 

the plasma membrane of nearly every cell in the body. Once released by the actions of 

phospholipases, there are three potential fates for free arachidonic acid in the vasculature: (i) 

functionally washed out of the system; (ii) reincorporated into the plasma membrane; and 

(iii)metabolized into different substrates down one of three major metabolic pathways 

involving either the cyclooxygenase, lipoxygenase or cytochrome P-450 pathway (289,307). 

In particular, specific metabolites of the cyclooxygenase pathway termed prostaglandins, 

which won Bergstrom, Samuelsson and Vane the Nobel Prize in 1982 (80,82,83,357,735), 

include a variety of vasoactive compounds, such as the vasodilator prostaglandin I2 (PGI2 or 
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prostacyclin) as well as the vasoconstrictor compounds prostaglandin H2, prostaglandin F2α 
and thromboxane A2 (which are discussed in Section Cyclooxygenase Derived Constricting 
Factors). The vascular actions of prostacyclin are mediated by adenylyl cyclase/cAMP-

dependent activity on K+ channels which has been repeatedly demonstrated to induce 

vasodilation in multiple vascular beds of both animal models and humans (100, 289, 340).

The seminal study regarding the role of cyclooxygenase in the control of coronary blood 

flow was performed by Dai and Bache in 1984 (213). They found that blockade of 

cyclooxygenase with indomethacin significantly diminished arachidonate-mediated 

increases coronary blood flow. However, indomethacin failed to influence coronary blood 

flow at rest or during treadmill exercise in chronically instrumented dogs (Fig. 20). Similar 

findings have also been reported by other laboratories (439,475), including studies by 

Edlund et al. in humans (295). Interestingly, the relationship between coronary venous PO2 

and MVO2 was unaffected by indomethacin in dogs (213), while a significant parallel 

downward shift was noted by Merkus et al. in swine (667). Thus, there are no data to support 

that cyclooxygenase-derived products are required for local metabolic control of coronary 

blood flow. However, prostaglandin release has been shown to be increased following 

hypoxia (2), anoxia (103), and myocardial ischemia (4), and inhibition of cyclooxygenase 

decreases the duration of coronary reactive hyperemia, but only in the presence of a nitric 

oxide synthesis inhibitor (774). These findings support a physiologic interaction between 

prostaglandins and nitric oxide, which is consistent with a significant vasoconstrictor effect 

of cyclooxygenase inhibition reported in patients with coronary artery disease (354).

Endothelial-derived hyperpolarizing factors—Identification of another broad family 

of endothelial-derived vasodilators came about from observations of sustained endothelial-

dependent hyperpolarization and vasodilation in the presence of combined blockade of nitric 

oxide and cyclooxygenase (307, 340, 347, 419, 421, 719). Following their initial 

characterization in the early 1990’s, numerous endothelial-derived hyperpolarizing factors 

(EDHFs) have been identified. Although the list of potential versus accepted EDHFs 

continues to evolve, several factors that have been recognized include cytochrome P-450 

metabolites of arachidonic acid [epoxyeicosatrienoic acids (EETs)], H2O2, potassium, H2S, 

anandamide, and nitroxyl (63, 65, 296, 307, 371, 619, 646, 784). Of these factors, there is 

growing consensus, largely based on the work of the Gutterman laboratory [see 

(289,307,419,528) for review], that endothelial-derived H2O2 and fatty acid epoxides EETs 

are important regulators of coronary vascular tone in response to a variety of stimuli, 

including cyclic stretch, shear stress (flow-induced dilation), and physiological agonists such 

as bradykinin and acetylcholine (143, 306, 859) (Fig. 21). These EDHFs mediate 

vasodilation via direct effects on vascular smooth muscle and may facilitate amplification 

and/or prolongation of endothelial cell hyperpolarization through the opening of KCa 

channels (307). The importance of KCa channels to endothelial-dependent hyperpolarization 

is highlighted by the studies which have demonstrated that inhibition of small (SKCa), 

intermediate (IKCa), and/or large-conductance (BKCa) KCa channels abolishes 

hyperpolarization of coronary arteries from humans (64, 112, 604, 679, 680, 831), pigs (63, 

134, 140, 297, 970), rats (24, 927), guinea pigs (190, 191, 1001), dogs (594, 743), and mice 

(640, 750). At present this hyperpolarization is hypothesized to spread in a radial manner 
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through different layers of the vessel media via homocellular gap junctions in smooth 

muscle (231) and longitudinally via homocellular gap junctions in endothelium (40). 

Evidence for the contribution of KCa channels to endothelial-dependent coronary 

vasodilation has also been demonstrated in vivo (594,743). As outlined earlier, these 

influences are physiologically advantageous as they act to optimize local changes in 

coronary resistance between upstream feed arteries with downstream arterioles in response 

to changes in metabolic demand (100, 307, 519, 520, 522). However, as with nitric oxide 

and prostaglandins, inhibition of specific EDHFs or KCa channels has rather minimal effects 

on the regulation of coronary blood flow in vivo (109–111, 594, 1020) (see Section “Ion 

Channels as End Effectors”).

It is important to point out that the specific factors that contribute to endothelial-dependent 

dilation vary widely across experimental conditions, species and disease states (307, 419). In 

particular, recent data support that the mediators of flow-mediated dilation change with 

aging and disease, with prostaglandins predominating in pediatric subjects, nitric oxide 

primarily contributing in adults without evidence of atherosclerotic disease, and H2O2 

prevailing in subjects with underlying vascular disease (98, 153, 288–290, 527, 680, 760, 

830). These distinct changes have recently been linked with alterations in ceramide and 

telomerase (99, 353). Furthermore, the complexity of endothelial-dependent control of 

coronary blood flow is further complicated by the complementary as well as inhibitory 

interactions among these vasodilator mechanisms (nitric oxide, H2O2, and EETs), which can 

vary depending on the stimulus and/or underlying phenotype of the subject (289, 307). Thus, 

it is quite apparent that endothelial-derived factors play diverse roles in the in control of 

coronary blood flow. The extent to which these changes influence physiologic responses of 

the coronary circulation and/or contribute to the progression of coronary vascular disease 

remains largely unexplored.

Endothelial-derived contracting factors

Endothelins—Shortly after the identification of nitric oxide as an endothelial-derived 

relaxing factor, the Masaki laboratory identified the gene and peptide encoding endothelin in 

1988 (477, 504, 560, 1003). Endothelin-1 is the best characterized of the endothelial-derived 

contracting factors and represents the most potent and long-acting vasoconstrictor known to 

man (473, 638). This 21 amino-acid peptide is produced from nonvasoactive precursors pre-

pro-endothelin and big endothelin by endothelin converting enzyme (810). Studies which 

have focused on the coronary effects of endothelin-1 actually demonstrate disparate effects, 

with the binding of endothelin-1 to endothelial ETB receptors stimulating production of 

nitric oxide and prostacyclin (350, 914) and binding to smooth muscle ETA or ETB receptors 

producing powerful vasoconstriction which can last up to 40 to 60 min (386, 810, 1002). 

The dominance of constrictor (ETA) phenotype is evident in studies where intracoronary 

administration of endothelin-1 produces dose-dependent reductions in coronary flow, with 

the complete cessation of flow typically occurring at concentrations of ~10 μg (386). This 

pronounced vasoconstrictor effect is significantly diminished by preadministration of an 

endothelin receptor antagonist (Fig. 22). However, inhibition of endothelin receptors 

produces modest increases in coronary venous PO2 (~2 mmHg) under normal resting 
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conditions, with relatively little/no change in coronary blood flow or MVO2 (386, 663, 666, 

668, 902).

The finding that blockade of endothelin receptors increases coronary venous PO2 at rest but 

not during exercise led Merkus and colleagues to hypothesize that the withdrawal of 

endothelin-1-mediated coronary vasoconstriction could serve as a metabolic vasodilator 

influence during increases in MVO2 (663, 666). This hypothesis is also supported by data 

which suggest that exercise limits the production of endothelin (230). Although this 

hypothesis offers an intriguing twist to the classic theory of local metabolic vasodilation, 

examination of the relationship between coronary blood flow and MVO2 reveals that 

endothelin receptor blockade has essentially no effect on the overall balance between flow 

and metabolism (Fig. 22). It is important to recognize that if endothelin were acting to 

counter metabolic coronary vasodilation, one would predict to observe a significant increase 

in coronary flow relative to MVO2 (either a parallel shift or increase in slope), which clearly 

does not occur. Therefore, although endothelin-1 is capable of producing profound coronary 

vasoconstriction, the overall effect of this peptide in modulating coronary blood flow under 

normal physiologic conditions appears to be rather modest. In contrast, there is experimental 

evidence to support a more pronounced role of endothelin in disease states such as coronary 

artery disease which should be further explored (868, 898).

Cyclooxygenase derived constricting factors—Despite synthesis in the same 

enzymatic pathway as the vasodilator prostacyclin, prostaglandin H2 and its downstream 

products prostaglandin F2α and thromboxane A2 have been shown to produce marked 

vasoconstriction in the coronary circulation (10,341,529,792). However, evidence supporting 

a role of any of these mediators in the regulation of coronary vascular tone under normal-

healthy conditions has not been demonstrated. In particular, data from Ammar et al. 

demonstrated essentially no effect of combined prostaglandin H2 and thromboxane A2 

receptor blockade on coronary blood flow at rest or during dobutamine-induced increases in 

MVO2 (10). Although there is no effect of these antagonists on coronary blood flow under 

normal physiologic conditions, numerous studies have implicated a pathophysiologic role 

for thromboxane A2 and another vasoconstrictor, 5-hydroxytryptamine (i.e., serotonin), in 

response to platelet activation (21, 301, 379–381, 978, 979) as well as endothelial injury and 

coronary artery disease (502,573,979,980). These factors are also thought to play a role in 

coronary vasospasm (491, 580, 856, 941).

Endothelial dysfunction and progression of vascular disease

Endothelial “dysfunction” is a commonly used term which can have many biological 

meanings. With regard to the vascular effects of the endothelium, this term has classically 

been used to define a state in which diminished vasodilation or paradoxical vasoconstriction 

is observed in response to the administration of an endothelial-dependent agonist (71, 108, 

232, 339, 611). This inappropriate response is typically mediated by a decrease in the 

production or bioavailability of nitric oxide via specific alterations in the nitric oxide 

synthase enzyme or the scavenging of nitric oxide by reactive oxygen species respectively. 

The dysfunction must also be separated from any potential impairment in the response of 

vascular smooth muscle to nitric oxide (289, 942). Such an imbalance shifts the vascular 
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milieu toward enhanced vasoconstriction and a procoagulant, proinflammatory, and 

proproliferative environment (178, 184, 611).

As outlined above, numerous studies of the role of individual endothelial-derived factors 

have demonstrated quite modest effects of both endothelial-derived relaxing and constricting 

factors in the regulation of coronary blood flow, under normal physiologic conditions (7, 93, 

213, 279, 295, 497, 667, 668, 920). However, it is important to recognize that studies from 

the Bache laboratory have demonstrated that inhibition of nitric oxide production 

exacerbates reductions in coronary blood flow produced by exercise in the presence of a 

coronary artery stenosis (reduced coronary pressure <65 mmHg) (Fig. 23), with no effect of 

nitric oxide blockade within normal (nonstenotic) territories (269). These data are consistent 

with the findings of Smith and Canty who noted that inhibition of nitric oxide synthesis 

significantly shifts the lower set point of coronary pressure-flow autoregulation by ~15 

mmHg; that is, the pressure at which physiologic resistance is at its lowest and flow 

becomes pressure dependent (865). Taken together, it is apparent that reductions in 

endothelial “function” in an otherwise normal setting are unlikely to substantially impact 

myocardial perfusion. However, the same decrease in “function” would likely precipitate the 

onset of overt ischemia at earlier stages of disease. Furthermore, given that a portion of 

coronary vascular resistance resides in upstream arterioles (~100–300 μmin diameter) that 

are responsive to shear forces, and generally not responsive to metabolic vasodilator signals, 

endothelial dysfunction could diminish maximal coronary flow rates by blunting flow-

mediated dilation of these vessels (170, 590, 592, 593). As such, coronary endothelial 

dysfunction is associated with many cardiovascular-related diseases (71, 614, 644, 779, 780) 

and thus it is not surprising that impaired endothelial function independently predicts acute 

cardiovascular events in patients with and without atherosclerotic disease (433).

The other aspect of endothelial dysfunction that should be acknowledged is the potential of 

damaged endothelium to contribute to the initiation and progression of coronary artery 

disease. This “response to injury” hypothesis was originally proposed by Ross and Glomset 

in 1973 (806) and has stimulated countless studies in the field of atherosclerotic disease. 

Although our understanding of atherosclerosis has substantially improved over the past 40+ 

years, current dogma continues to cite underlying damage of the endothelium and the 

promotion of a procoagulant, proinflammatory, and proproliferative environment as 

contributing factors (802, 803, 805, 969, 981). For a detailed description of endothelial 

dysfunction and development of vascular disease, readers are encouraged to peruse recent 

reviews by Higashi et al. (472), Barton (58), Vanhoutte et al. (943, 944), Ross (804), and 

Belin de Chantemele and Stepp (71).

With regard to potential mechanisms of coronary disease, there is a growing body of 

evidence implicating adipose tissue that normally surrounds the major coronary conduit 

arteries. This perivascular adipose tissue (PVAT) is a local source of adipocytokines that are 

capable of influencing coronary endothelial and smooth muscle function (132, 720, 737, 

753–755, 786) and may contribute to the initiation and progression of coronary artery 

disease (154,155,736,756). From these studies, it is apparent that cardiac adiposity expands 

with obesity (829), that atherosclerotic plaques occur predominantly in arteries encased by 

PVAT (249, 405, 815, 816, 829), and that coronary PVAT volume is positively associated 
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with underlying plaque burden (639). Recent data support distinct phenotypic expression 

patterns and vascular effects of coronary PVAT relative to other adipose tissue depots (e.g., 

subcutaneous, mesenteric) which are significantly influenced by the species studied (e.g., 

rodent, swine, and human) and the overall health status of the model studied (normal, obese, 

metabolic status, atherosclerosis) (46,154,155,161,654,737, 755, 858). However, the extent 

to which coronary PVAT-derived factors causally contribute to the development of coronary 

atherogenesis has yet to be established.

Neural Control

Innervation and functional receptor distribution

It has been known for more than a century that the coronary vasculature is richly innervated 

with both adrenergic and cholinergic neurons (70). Work by H. H. Woollard in 1926 was 

among the first to describe in detail sympathetic and parasympathetic innervation of the 

coronary circulation (Fig. 24) (989). Later electron microscopy studies demonstrated that 

these nerve fibers are located within the coronary vascular wall (478) and that small arteries 

and arterioles contain more nerve terminals relative to larger coronary arteries (613, 641). 

Work by the Zipes laboratory demonstrated that major sympathetic trunks appear localized 

in the epicardium alongside the coronary arteries, with transmural penetration to innervate 

the rest of the myocardium; that is, superficial application of phenol to adventitial tissue will 

denervate downstream arteries. Alternatively, major parasympathetic ventricular pathways 

remain epicardial until crossing the AV groove where vagal fibers penetrate the myocardial 

to become located predominantly in the ventricular subendocardium (501, 1023). Regional 

interruption of autonomic innervation occurs after myocardial infarction and may predispose 

the heart to arrhythmias and/or alterations in coronary flow, depending on the location and 

the overall extent of injury (1023). In general, sympathetic nerves release norepinephrine, 

neuropeptide Y, and ATP, while parasympathetic nerves release acetylcholine and vasoactive 

intestinal polypeptide (237, 351, 413, 422, 478, 817, 818). Studies by Brody and colleagues 

also provide seminal evidence of a role for central neural pathways in the regulation of 

coronary blood flow. In a series of studies, they demonstrated that the lateral reticular 

formation, anterior hypothalamus, and parabrachial nucleus are major central regions 

involved in sympathetic-mediated coronary vasoconstriction (19, 416–418, 420, 525). This 

pathway overlaps with the “fight or flight” response and thus activation by mental stress in 

the presence of an underlying coronary stenosis can lead to devastating coronary 

constriction, occlusion, and infarction (903, 952).

Adrenergic receptor expression patterns vary throughout the coronary tree, with β1 

adrenoceptors predominantly expressed in larger conduit arteries (8,709,722,773,842,911, 

946, 948, 949, 1010), and β2 adrenoceptors primarily located in arterioles <100 μm in 

diameter (410, 452, 698, 896). Data from Murphree and Saffitz support the relatively equal 

distribution of β1 versus β2 adrenoceptors in smaller coronary arteries (~100–400 μmin 

diameter) and a β1 versus β2 expression ratio of ~2:1 in larger vessels (698). Marked 

coronary vasodilation to β-adrenoceptor activation was demonstrated by Klocke et al. in 

arrested dog hearts in 1965 (566). The functional contribution of both β1 and β2 

adrenoceptors to this response was shown by Trivella et al. in 1990 (916). The primary site 
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for α-adrenoceptors appears to be more upstream in the coronary circulation, with numerous 

studies supporting a non-uniform distribution of α1 adrenoceptors in larger arteries and α2 

adrenoceptors in smaller arteries and large arterioles (67,163,164,172,248,464,467,682). 

Interestingly, functional assessment of α- and β-adrenoceptor responses to norepinephrine in 

isolated, pressurized coronary vessels revealed dose-dependent constriction of vessels >100 

μm in diameter and dilation of vessels <100 μm in diameter (163, 164, 172, 334). Isolated 

coronary arterioles have also been shown to be refractory to α-adrenoceptor agonists (e.g., 

phenylephrine) (521,777,908). However, in vivo studies have clearly established coronary 

vasoconstriction in response to selective α1- and/or α2-adrenoceptor activation, primarily in 

dogs (157–159,248,464,487,555,987,988) and humans (67), with minimal constriction 

evident in swine (840). Reductions in coronary blood flow are typically greater in response 

to α2 relative to α1-adrenoceptor activation (67,157–159,487); however, these responses can 

be substantially altered in the setting of disease (67, 248, 402–404). The discrepant 

responses to α- adrenoceptor agonists are reportedly related to myocardial release of 

endothelin, as inhibition of ETA and ETB receptors attenuates α-mediated coronary 

constriction both in vivo (236, 386) and in vitro (908).

Coronary blood flow responses to muscarinic receptor activation, either via the 

administration of acetylcholine or vagal stimulation, are highly species and concentration 

dependent with experiments in most animal models and healthy human vessels 

demonstrating significant endothelial-dependent vasodilation in vessels ranging between 50 

and 400 μm in diameter (199, 329, 337, 579, 601, 785, 933). Interestingly, acetylcholine 

administration has also been shown to produce vasoconstriction in human atrial arterioles, 

but dilation of human ventricular arterioles (675). Studies in swine, calves, and humans with 

atherosclerosis report vasoconstriction, likely because of the lack of muscarinic receptor 

expression (198,536,538,1008,1009). Muscarinic coronary vasodilation has been attributed 

to both M1 and M2 receptors, with stimulation of M2 receptors resulting in the 

redistribution of blood flow toward the subendocardium (409, 757, 758).

Sympathetic control

Determination of the direct effect of sympathetic neural activation on the control of coronary 

blood flow is significantly complicated by the distinct competing influences this response 

elicits. First, β-adrenoceptor-mediated increases in contractility, heart rate, and MVO2 

initiate local metabolic mechanisms, likely through feedback control mechanisms which 

require an error signal (e.g., decrease in tissue PO2). Second, activation of coronary β-

adrenoceptors leads to direct vasodilation and third, stimulation of coronary α-adrenoceptors 

elicits vasoconstriction. These direct effects occur through open-loop feed-forward control 

mechanisms, which do not require an error signal (Fig. 25) (270, 335, 768). This 

feedforward hypothesis of coronary blood flow control was originally proposed by 

Miyashiro and Feigl in 1993 and is physiologically advantageous as the stimulus responsible 

for augmenting myocardial contractility, heart rate, and MVO2 is the same stimulus 

responsible for increasing myocardial oxygen delivery (683, 684). However, delineation of 

the contribution of sympathetic activation to the dynamic regulation of coronary vascular 

resistance is significantly complicated by the simultaneous stimulation of three separate and 

opposing pathways. In particular, pharmacologic inhibition of β-adrenoceptors will block 
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not only direct coronary responses but also attenuate metabolic vasodilation secondary to 

reductions in heart rate and contractility. Furthermore, administration of α and/or β 
adrenoceptor inhibitors can result in substantial compensatory increases in catecholamine 

release, which subsequently exaggerate responses of unblocked adrenoceptors (390, 470, 

879).

Early evidence for a predominant β-adrenoceptor “feedforward” mechanism of coronary 

blood flow control during sympathetic activation can be found in the 1943 study by Essex et 

al. who demonstrated that decreases in circumflex coronary blood flow in response to 

exercise were greater in totally denervated hearts relative to partially denervated hearts 

(320). Reductions in coronary blood flow and metabolism to cardiac denervation were also 

reported in later studies by Barta et al. in 1966 (57) and by Gregg et al. in 1972 (401). 

Similar findings have also been documented following selective sympathetic denervation 

(245, 426, 843). More definitive evidence for β-adrenoceptor-mediated dilation comes from 

later pharmacologic inhibition studies, which have demonstrated significant reductions in the 

balance between coronary blood flow and myocardial metabolism in response to β- and/or α 
+ β-adrenoceptor blockade in dogs (60, 389, 390, 683, 684), pigs (280, 368), and humans 

(304, 526); that is, significant downward shift and steepening of the slope of the relationship 

between coronary venous PO2 and MVO2 following α + β-adrenoceptor blockade (Fig. 26). 

Therefore, there is considerable support for direct β-adrenoceptor-mediated dilation during 

sympathetic activation. Quantitative analysis of feedforward sympathetic coronary 

vasodilation by Gorman et al. indicates that up to 25% of exercise coronary hyperemia can 

be attributed to norepinephrine-induced activation of coronary β-adrenoceptors, with little 

role for circulating epinephrine (390).

The contention that sympathetic nerves dilate the coronary circulation has been postulated 

since studies by Morawitz and Zahn in 1912. However, work by Szentiványi and Juhász 

Nagy in 1959 clearly demonstrated the ability of sympathetic nerve stimulation to produce 

coronary vasoconstriction (901). This seminal observation was subsequently corroborated by 

several other laboratories (90,302,393,643,657,716,800) and independently identified to be 

mediated by α-adrenoceptors in 1967 by the Feigl laboratory (328) and the Gregg laboratory 

(763). Further investigation of this question has revealed that while the contribution of α-

adrenoceptors has little effect on coronary blood flow under resting conditions, there is 

strong evidence to support a paradoxical increase in α-adrenoceptor mediated coronary 

constriction during increases in sympathetic activity with exercise (34, 67, 214, 284, 389, 

425, 427, 428, 462, 468, 469, 493, 517, 687) and in response to baroreceptor reflex (250, 

315, 702, 766) and muscle metaboreflex (14, 15, 197, 723). This point is illustrated in Figure 

26 wherein a significant increase in the slope of the relationship between coronary blood 

flow and MVO2 is observed following α-adrenoceptor inhibition, which is accompanied by 

a flattening (decrease) in the slope of the coronary venous PO2 versus MVO2 relationship 

(389). Although both α1- and α2-adrenoceptors can produce coronary vasoconstriction, 

adrenergic constriction appears to primarily involve α1 adrenoceptors (215, 888). In 

contrast, minimal changes in coronary blood flow or coronary venous PO2 are observed 

following α-adrenoceptor blockade in exercising swine (280, 840). Definitive data regarding 

the role of α constriction in healthy humans are presently lacking (460, 461). However, 

seminal studies by Heusch and colleagues have demonstrated that sympathetic activation in 

Goodwill et al. Page 29

Compr Physiol. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the presence of mild coronary stenosis results in metabolic vasodilation, while activation in 

the presence of a critical stenosis produces profound α2-adrenoceptor mediated 

vasoconstriction (462). This group has also established that intracoronary administration of 

α blocking agents significantly improves myocardial perfusion in patients undergoing 

elective percutaneous coronary intervention (PCI) (402, 404) and PCI following acute 

myocardial infarction (403).

The presence of coronary α-adrenoceptor constriction in health and disease presents a 

paradox in that this influence acts to augment vascular resistance and thus oppose local 

metabolic and other vasodilator mechanisms stimulated by increases in sympathetic nerve 

activity (460). Feigl proposed this constrictor influence is physiologically beneficial in 

serving to stiffen transmural penetrating (medium-size) arteries which in turn decreases 

vascular compliance and acts to lessen to and fro coronary flow oscillation during systole 

and diastole (689). This effect is quite evident in the study by Morita et al. who determined 

that α-adrenoceptor blockade significantly augmented wasteful coronary flow oscillations in 

penetrating septal arteries (Fig. 27) (689). Similar increases in coronary flow oscillations 

have also been observed during exercise in dogs (389). The consequence of such oscillations 

is the potential for diminished sub-endocardial blood flow, which has been observed in 

following α-adrenoceptor blockade at very high heart rates (~240 beats/min) and MVO2 

(>500 μLO2/min/g) in exercising dogs (493). However, other studies have failed to 

demonstrate alterations in subendocardial flow at lower heart rates and rates of MVO2 

(66,287,424). Thus, it is apparent that α-adrenoceptor constrictor influences limit metabolic 

coronary vasodilation during increases in sympathetic activity in a transmurally homogenous 

manner under most physiologic conditions. However, α-adrenoceptor mediated 

vasoconstriction does appear to augment epicardial resistance and promote subendocardial 

perfusion in the setting of ischemia; that is, lessens transmural “steal” during coronary 

hypoperfusion (128,166,365,378,715). Whether α-constriction augments subendocardial 

flow may depend on the experimental conditions and model studied, as Bache and Laxson 

demonstrated that inhibition of α1-mediated vasoconstriction with prazosin produced a 

uniform increase in coronary flow across the left ventricular wall in exercising dogs with a 

critical coronary stenosis (35).

Parasympathetic control

Experimentation to determine the coronary effects of the parasympathetic nervous system 

date back to vagal stimulation studies by Panum in 1858 (329, 331, 332). However, early 

studies on the parasympathetic control of the coronary circulation were inconclusive because 

of the confounding influences of vagal mediated reductions in heart rate and MVO2. 

Parasympathetic coronary vasodilation was clearly demonstrated by Feigl in 1969 wherein 

efferent vagal stimulation increased coronary blood flow ~30% and diminished late diastolic 

coronary resistance ~60% in dogs with heart rates held constant by cardiac pacing (Fig. 28) 

(329). This vasodilator effect is essentially abolished by muscarinic receptor inhibition with 

atropine and is normally mediated by acetylcholine-induced production of nitric oxide by 

coronary endothelium (124, 331, 855). However, as outlined earlier, parasympathetic 

dilation is species-dependent and contingent on normal endothelial function and the absence 

of atherosclerotic disease (137, 479, 490, 955, 1015). Although data from Duncker et al. 
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indicate that the withdrawal of parasympathetic activity may facilitate β-adrenoceptor 

dilation in swine during exercise (280), the effects of the parasympathetic nervous system on 

the control of coronary blood flow are quite modest under most physiologic conditions (198, 

280, 332, 335). However, there is evidence to support a role for parasympathetic coronary 

vasodilation in the carotid chemoreceptor reflex (430,442,700,703,950), Bezold-Jarisch 

reflex (186,330,1027), and during activation of afferent vagal C fibers in the lung (187, 734).

Hormonal factors

Angiotensin II—Angiotensin II is an octapeptide produced by the cleavage of the 

decapeptide angiotensin I by angiotensin converting enzyme, which is expressed in the heart 

and coronary endothelium (218, 291). Intravenous administration of angiotensin II produces 

concentration-dependent increases in coronary blood flow (Fig. 29), which are relatively 

modest (up to ~15% increase in coronary blood flow at dose of 100 ng/kg) and mediated by 

peripheral vasoconstriction and increases in systemic blood pressure (i.e. afterload), which 

augment MVO2 and subsequently stimulate local metabolic vasodilator mechanisms (258). 

In contrast, intracoronary administration of angiotensin II, which does not produce these 

confounding systemic effects, induces pronounced coronary vasoconstriction (~50% 

reduction in coronary blood flow at dose of 30 ng/kg) that is completely abolished by 

inhibition of AT1 receptors with telmisartan (Fig. 29) (1018). These discrepant findings 

clearly demonstrate that simple examination of coronary blood flow responses, without 

consideration of respective changes in MVO2, can lead to completely erroneous conclusions 

regarding the vasoactive effects of that particular agonist or antagonist (918). Interestingly, 

studies in isolated coronary vessels have found that angiotensin II produces moderate 

constriction of both arteries (319, 616, 706, 764) and arterioles (706, 1017, 1018), with 

concentrations >10 nmol/L producing vasodilation via effects on AT2 receptors (1017). 

Although some studies investigating the physiologic role of angiotensin II in the control of 

coronary blood flow have found that inhibition of AT1 receptors can increase coronary flow 

responses to exercise (881, 899, 900), effects on coronary venous PO2 and the balance 

between coronary blood flow and MVO2 are relatively small in swine (~2 mmHg increase in 

coronary venous PO2) (665), and are unchanged in dogs (1018) and humans (769). However, 

coronary effects of AT1 receptor inhibition or blockade of angiotensin converting enzyme 

are significantly augmented in disease states such as obesity, hypertension, and coronary 

artery disease (319, 635–637, 769, 894, 1018). Thus, it is not surprising that therapeutic 

inhibition of angiotensin II production or receptor signaling is highly effective in 

diminishing rates of myocardial infarction, stroke, and death in a broad range of high-risk 

patients (212, 1013).

Vasopressin—On rare occasions, physiological mediators are named in such a fashion 

that the protein name is sufficient to demonstrate its function. Antidiuretic hormone (ADH) 

is one such protein in that it functions to retain water in the body (710). Additionally, ADH 

bears an additional moniker, vasopressin, because of its demonstrated ability to constrict 

blood vessels. Interestingly, pressor activity of vasopressin is variable throughout the 

coronary circulation with ~35% of coronary arteries demonstrating endothelial-dependent 

dilator responses (705). This dichotomous response appears to relate to the diameter of the 

coronary artery in question in that modest endothelial-dependent dilation of vessels is 

Goodwill et al. Page 31

Compr Physiol. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



constrained to those arteries with diameters greater than 100 μmol/L. By contrast, 

vasopressin has been demonstrated to constrict arteries less than 90 μmin diameter (602). As 

the majority of effect on the resistance is vasoconstrictive, vasopressin is capable of dose-

dependently decreasing coronary flow in vivo by as much as 40% (558, 602, 653, 848). 

While the ability to constrict the coronary circulation is compelling, it does little to elucidate 

the role of vasopressin under physiologic and pathophysiologic conditions. However, work 

by Sellke and Quillen has demonstrated that the coronary microvasculature is sensitized to 

vasopressin subsequent to ischemia-reperfusion injury in that a canine model of that 

condition was found to respond approximately fivefold greater to vasopressin than control 

animals (848). Additionally, while circulating vasopressin levels have been shown to 

increase proportionately with the magnitude of heart failure, studies to date do not support a 

direct causal role as inhibition of vasopressin-2 (V2) receptors (e.g., tolvaptan or conivaptan) 

has largely failed to show improvements in clinical outcomes (581, 603, 685, 826, 844, 895, 

926).

Histamine—In addition to “classical” mediators of vascular tone, agents of the 

inflammatory process are also involved in vasomotor regulation. Histamine, an autocoid 

which is stored in both mast cells and basophils, is formed by the enzymatic decarboxylation 

of histidine and plays an essential role in allergic responses, inflammation, and injury. Upon 

release from immune cells, histamine modulates vascular tone through two cognate 

receptors (i.e., H1 and H2) resulting in arteriolar vasodilation via H2 receptors, 

venoconstriction via H1 receptors and enhanced capillary permeability (676,953). The 

coordinated response of these actions is the notable tissue edema seen in acute allergic 

responses or localized tissue damage. Histamine receptors have been demonstrated in the 

coronary circulation with coronary endothelial H1 receptors having been shown to stimulate 

nitric oxide release to a level sufficient to elicit coronary vasodilation in response to 

exogenously derived and administered histamine (557, 953). However, a role for endogenous 

histamine in the regulation of coronary vascular tone has yet to be demonstrated in response 

to a physiologic stimulus (270).

Ion Channels as End Effectors

Ca2+ and K+ channels in the coronary circulation

As in striated muscle, Ca2+ is the key regulator of contraction in coronary vascular smooth 

muscle, as the activity of myosin light chain kinase is dependent upon association with Ca2+/

calmodulin. In coronary vascular smooth muscle cells, the two sources of Ca2+ are release 

from intracellular organelles and influx from the extracellular space. The sarcoplasmic 

reticulum is the principal organelle for Ca2+ release in coronary smooth muscle and contains 

both ryanodine- and inositol trisphosphate-sensitive Ca2+ channels (503,882). The cytosolic 

volume of sarcoplasmic reticulum is quite low in smooth muscle (2%-5%); therefore, this 

pool of Ca2+, while concentrated, is limited (244). In the unstimulated state, the free Ca2+ 

ions in the extracellular fluid outnumber those in the cytosol by approximately 20,000:1 

(pCa 2.7 vs. 7.0); therefore, a large concentration gradient exists for Ca2+ entry by diffusion. 

For extracellular Ca2+ ions to enter the cytosol, Ca2+-permeable channels in the sarcolemma 

must be open. There are a variety of Ca2+-permeable channels in coronary vascular smooth 
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muscle and they can be assigned to categories based on whether their activity (opening) is 

influenced by membrane voltage (i.e., voltage-dependent vs. independent Ca2+ entry 

pathways exist).

The voltage-dependent Ca2+ channels identified in coronary vascular smooth muscle include 

L-type (CaV 1.2) channels (647, 814) and T-type (likely a CaV 3. X family member) 

channels (366). Voltage-independent Ca2+-permeable pathways in coronary vascular smooth 

muscle include: (i) some purinergic P2X receptor subtypes (615,1021); (ii) select transient 

receptor potential (TRP) family members (471, 1004); and (iii) those composed of STIM 

and Orai subunits (298). A number of important points must be made clear about the relative 

roles of the various Ca2+ entry pathways in coronary vascular smooth muscle. First, L-type 

Ca2+ channels are expressed in all native coronary vascular smooth muscle types that have 

been studied [e.g., (358, 366, 647) Fig. 30]. Second, major species-specific differences are 

noted for the expression of T-type Ca2+ channels in coronary vascular smooth muscle. T-

type channels are not expressed in the coronary smooth muscle cells of rabbits (647), dogs 

(130, 571), pigs (95, 358), or humans (776). While not present in the primary myocytes, T-

type channels appear during the culture of human coronary smooth muscle cells, which may 

represent a phenotypic change elicited by an artificial environment (305,776). T-type 

channels are, however, normally expressed in the coronary smooth muscle of guinea pigs 

(366) and mice (156). Thus, it appears that T-type channels are more characteristic of the 

coronary myocytes from small animal models than of larger animals and humans. Third, 

while a number of voltage-independent Ca2+ channels are expressed in coronary vascular 

smooth muscle, their roles are not entirely clear and may have more to do with, for example, 

cell proliferation than coronary vascular reactivity (476). In contrast, when it comes to 

regulating coronary vascular tone, L-type Ca2+ channels clearly have the most dominant 

role, as: (i) diltiazem [a benzothiazepine-type Ca2+ channel antagonist) blocks ~90% of 

myogenic tone in human coronary arterioles (674); (ii) nifedipine (a dihydropyrdine-type 

Ca2+ channel antagonist) blocks 100% of agonist-induced tone in porcine coronary 

arterioles (50); and (iii) diltiazem completely eliminates coronary autoregulation, a 

mechanism that requires active coronary vasoconstriction (94) Figure 31]. Accordingly, L-

type Ca2+ channels and their regulation in coronary vascular smooth muscle cells determine 

myocardial blood flow, as membrane potential and coronary vascular tone are very closely 

related by electromechanical coupling (647, 661). This electromechanical coupling 

mechanism necessarily involves K+ channels.

K+ channels dominate the membrane conductance of coronary arterial smooth muscle cells; 

therefore, they determine membrane potential and the activity of L-type Ca2+ channels 

(247). Membrane potentials in coronary artery smooth muscle cells are generally reported 

around −40 to −50 mV (503, 564, 661). This negative membrane potential is closer to the 

Nernst potential for K+ (EK; roughly −80 mV because of a highly asymmetric distribution of 

K+) than the equilibrium potentials of other ions. The deviation of membrane potential from 

absolute EK is due to open channels with selectivity for ions with reversal potentials that are 

less negative (e.g., Cl−) or positive (e.g., Na+). A membrane potential in smooth muscle cells 

near −40 to −50 mV is in a voltage window where L-type Ca2+ channel activity and 

intracellular Ca2+ are tightly controlled (346, 540). Several kinds of K+ channels are 

expressed in coronary smooth muscle to control membrane potential and vascular reactivity. 
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Select types include: (i) large conductance Ca2+-activated K+ (BKCa) channels; (ii) ATP-

dependent K+ (KATP) channels; (iii) inwardly rectifying K+ (Kir) channels, and (iv) voltage-

dependent K+ (KV) channels (Fig. 32). There are other important types of K+ channels in the 

coronary vasculature, but they are not discussed at length here. From the standpoint of 

coronary smooth muscle, stimuli that open K+ channels lead to vasodilation through 

hyperpolarization and the resultant inhibition of L-type Ca2+ channels. For example, the 

KATP channel opener pinacidil increases coronary blood flow through this mechanism, 

although it was not completely understood at the time it was observed (729). With regard to 

the endothelium, stimuli that open K+ channels lead to coronary vascular relaxation in two 

ways. First, hyperpolarization, increases the driving force for Ca2+ entry into endothelial 

cells through voltage-independent pathways, which couples to the production of relaxing 

factors (851). Second, the hyperpolarization spreads to the underlying coronary vascular 

smooth muscle through myoendothelial junctions (588). In the converse situations, 

mechanisms that inhibit K+ channels of coronary smooth muscle and endothelium lead to 

vasoconstriction. It is ion channels and this kind of electromechanical coupling that controls 

coronary vascular tone and determines, for example, the transmural distribution of coronary 

blood flow (Fig. 33).

Transmural flow distribution and the role of ion channels

Myocardial perfusion is not the same in the left and right ventricle, nor is blood flow across 

the thickness of the myocardium uniform. Specifically, on a weight-to-weight basis, 

coronary blood flow is modestly higher in the left versus right ventricle and perfusion is 

greater in the endocardial versus epicardial layer (see Section “Transmural flow 
distribution”). This heterogeneity of flow is multifactorial, but the activity of ion channels in 

coronary vascular smooth muscle and their relationship to coronary vascular tone are 

important contributors. Specifically, voltage-dependent L-type Ca2+ channels are 

particularly important in determining the coronary vascular tone and the transmural 

distribution of coronary blood flow. FR 7534, a light-stable derivative of nifedipine, 

increases coronary blood flow more effectively than nitroglycerin (a nitrovasodilator) or 

dipyridamole (a pleiotropic vasodilator) and reduces the ENDO/EPI perfusion ratio (516). 

Similar effects can be seen with other dihydropyridine L-type Ca2+ channel blockers (960). 

For example, nisoldipine increases transmural coronary blood flow and alters the distribution 

of coronary vascular conductance, as it decreases the ENDO/EPI perfusion ratio (272,273). 

Another example of ion channels in the transmural distribution of blood flow can be found 

in diltiazem, which corrects endocardial ischemia downstream of a flow-limiting stenosis 

(38). These data indicate that L-type Ca2+ channels and electromechanical coupling control 

the transmural distribution of coronary blood flow. K+ channels, which regulate the activity 

of those L-type Ca2+ channels through their effects on membrane potential, also influence 

the transmural distribution of coronary blood flow. Data to support that point have been 

revealed using the KATP channel opener pinacidil. Compared to sodium nitroprusside, a 

nitrovasodilator, pinacidil more selectively increased coronary blood flow and normalized 

the ENDO/EPI perfusion ratio (268). Similar effects of pinacidil on coronary blood flow and 

its transmural distribution have been observed in the hypertrophied heart (pressure-

overloaded left ventricle) and downstream of a coronary artery stenosis (31). Thus, L-type 

Ca2+ channels directly control coronary vascular tone and the transmural distribution of 
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coronary blood flow, whereas K+ channels indirectly affect the same parameters by 

regulating membrane potential, and thus L-type Ca2+ channels. This type of interplay 

between L-type Ca2+ channels and K+ channels are important in other aspects of coronary 

vascular reactivity and myocardial flow regulation, such as the myogenic response and 

pressure-flow autoregulation.

Ion channels, myogenic responses, and coronary autoregulation

The myogenic response, which may be part of the mechanism whereby coronary blood flow 

is autoregulated (i.e., flow is maintained relatively constant over a wide range of pressures), 

is characterized as active force development in response to an increase in luminal pressure 

(see Section “Myogenic control of coronary vascular resistance”). Molecular entities that 

transduce stretch of the vascular wall into depolarization and constriction are not entirely 

clear, but may include ion channels themselves. Modeling suggests that channels permeable 

to Ca2+ and/or Na+ in smooth muscle are activated in proportion to wall stress (149). Elegant 

experiments have demonstrated that in single coronary artery smooth muscle cells from the 

porcine coronary artery, graded stretch is associated with the activation of a cation current 

and concomitant increases in intracellular Ca2+ [(226,991) Fig. 34]. Intracellular Ca2+ 

increases because of release from intracellular stores and influx from the extracellular space 

(226). Stretch-induced Ca2+ influx is only partially sensitive to block by nifedipine, 

suggesting the involvement of both L-type Ca2+ channels and stretch-activated cation 

channels (226). These mechanically activated cation channels have been characterized using 

patch clamp techniques and stretching of the cells with dual micropipettes (991). Cation 

current, with a reversal potential of −18 mV, was related to cell length and associated with 

depolarization and increases in intracellular Ca2+ (991). While voltage-independent Ca2+-

permeable channels exist in coronary myocytes, it is Ca2+ influx through voltage-gated L-

type channels that is absolutely required for coronary myogenic responses and coronary 

pressure-flow autoregulation. Other Ca2+-permeable channels like nonselective cation 

channels are not sufficient to support myogenic contractions and autoregulation (although 

Na+/Ca2+ influx and depolarization mediated by these channels contribute importantly). The 

molecular identity of nonselective cation channels underlying stretch-induced responses of 

coronary vascular smooth muscle remains to be determined. No study has addressed whether 

T-type Ca2+ currents play a role in coronary myogenic responses or pressure-flow 

autoregulation. In contrast, L-type Ca2+ channels are critical for the basal tone and myogenic 

constriction of coronary arterioles, as diltiazem completely dilates coronary arterioles from 

human atrium (674) and diltiazem abolishes pressure-flow autoregulation in the swine heart 

((96); Fig. 31).

Manipulating K+ channel activity also shows the importance of voltage-dependent tone (i.e., 

electromechanical coupling via L-type Ca2+ channels) in coronary vascular smooth muscle, 

as the KATP channel opener pinacidil elicits complete relaxation of coronary arterioles from 

swine hearts (912). Open K+ channels produce membrane hyperpolarization, inhibition of L-

type Ca2+ channels, and relaxation of coronary smooth muscle. This inhibition of L-type 

Ca2+ channels secondary to K+ channel activation is fundamental in controlling coronary 

microvascular resistance. For example, through the autoregulatory mechanism, reductions in 

coronary perfusion pressure elicit dilation of coronary arterioles and, as shown by intravital 
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microscopy in dogs, this microvascular adjustment is antagonized by the KATP channel 

inhibitor glibenclamide (578). Glibenclamide also decreases coronary blood flow, linearizes 

the coronary pressure-flow relationship, and reduces the coronary autoregulation index in 

dogs (714). However, this is not a consistent finding; other studies in dogs demonstrate that 

glibenclamide reduces coronary blood flow to a similar degree across a wide range of 

perfusion pressures and this inhibition of KATP channels does not impact autoregulatory 

capability (883). Ion channels in the coronary endothelium also influence pressure-flow 

autoregulation. Specifically, intermediate conductance Ca2+-activated K+ (IKCa) channels, 

through their influence on NO production, modulate coronary autoregulation in dogs (594). 

Not all K+ channels appear to function in coronary myogenic responses or autoregulation. 

For example, inhibition of KV channels with 4-aminopyridine, while reducing coronary 

blood flow at any given pressure, had no effect on autoregulatory gain in swine at coronary 

perfusion pressures ≤100 mmHg (96). However, limiting pressure-induced increases in 

coronary blood flow with 4-aminopyridine at perfusion pressures >120 mmHg suggests that 

KV channels can act as negative feedback to oppose myogenic constriction at especially high 

perfusion pressures (3, 96). Thus, the role of various K+ channels in the regulation of 

coronary arteriolar tone is complex. This idea of heterogeneous roles for individual K+ 

channel types is supported by studies in rat coronary arterioles showing that KV and Kir 

channels are active and contribute to spontaneous myogenic tone, whereas BKCa and KATP 

channels do not exert their effects (990). Moreover, the role of various ion channels in 

coronary vascular regulation is affected by the degree of physical fitness, hormonal status, 

and disease (605).

A variety of ion channels and their contributions to coronary vascular tone have been 

investigated with regard to gender, metabolic and endocrine health, and exercise. There are 

gender-based differences in coronary artery myogenic responses that involve BKCa channels. 

Specifically, compared to coronary arteries from intact female rats or estrogen-treated 

ovariectomized rats, pressure-induced constriction is approximately double in male or 

ovariectomized rats (965). Moreover, specific inhibition of BKCa channels with iberiotoxin 

causes greater constriction in coronary arteries from intact versus ovariectomized females 

(965). A mechanistic link between endocrine function and myogenic tone may be that 

testosterone increases the expression of L-type Ca2+ channels in coronary smooth muscle 

cells through a pathway involving protein kinase C (116, 633). Endurance exercise training 

increases the myogenic tone of coronary arterioles from swine (694). Mechanisms 

underlying this coronary vascular adaptation to exercise include alterations in cellular 

signaling, Ca2+ regulation, and ion channel function (113–115,444,445,582). For example, 

endurance exercise training in swine increases the contribution of BKCa and KV channels to 

coronary arterial tone (115). Another mechanism that might explain greater myogenic tone 

in coronary arterioles from exercise trained swine is that L-type Ca2+ current in coronary 

myocytes is increased (444). Diabetes mellitus, while it impairs the function of KATP 

channels in human coronary arterioles, does not affect their myogenic tone (681). A similar 

lack of effect of diabetes mellitus on myogenic tone has been noted in coronary arterioles of 

mice (41). In contrast, coronary myogenic tone is diminished in diabetic rats (575), an 

observation that correlates with increased coronary blood flow at rest in diabetic patients 
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(761). Mechanisms underlying these species-specific differences and the roles of various ion 

channels remain to be determined.

The role of ion channels in local metabolic coronary vasodilation

The identity of the coronary metabolic dilator(s) has not been conclusively determined; 

however, a number of candidate molecules and/or factors have been examined (see Section 

Metabolic Control of Coronary Blood Flow”). Some putative mediators of coronary 

metabolic vasodilation like PO2 and adenosine have fallen out of favor, while others like 

H2O2 and ATP have garnered interest recently (277, 336, 918). Regardless of the true 

identity of the precise factors that mediate metabolic coronary vasodilation, what the 

candidate molecules/factors generally have in common is that they alter the activity of ion 

channels in coronary vascular smooth muscle.

Oxygen and carbon dioxide—Hypoxia dilates rat coronary arteries, but glibenclamide 

does not inhibit this vasodilation, suggesting that KATP channels are not involved (629). A 

similar lack of effect of KATP channels in hypoxic vasodilation has been demonstrated in 

rabbit coronary arteries (511). In direct contrast, however, other studies in the same species 

show that hypoxia vasodilates the microcirculation of rat and rabbit hearts through the 

activation of KATP channels (539, 609, 713). Moreover, the impairment of hypoxia-induced 

vasodilation associated with diabetes mellitus in coronary arterioles from humans has been 

attributed to diminished activity of KATP channels (681). In support of KATP channels as 

mediators of hypoxic vasodilation, glibenclamide blocks the flow response in guinea-pig 

hearts and the relaxation of porcine small coronary arteries (222, 618). The reasons for 

conflicting views on the role of KATP channels in hypoxic vasodilation are unclear, but the 

majority of the evidence supports a role for glibenclamide-sensitive channels. In fact, 

hypoxia-induced activity of single KATP channels has been observed in swine coronary 

myocytes, and this correlates with the hypoxia-induced and glibenclamide-sensitive 

hyperpolarization of bovine coronary arteries (220,370,537). Other diverse K+ channel types 

have been shown to participate hypoxic coronary vasodilation, as roles have been 

demonstrated for voltage-dependent and independent K+ channels (448, 748). Inhibitors of 

BKCa, KATP, and KV channels attenuate hypoxia-induced dilation of porcine coronary 

arteries, but their inhibitory effects are potentiated by simultaneous addition of KV7 channel 

antagonists (448). Hypoxia activates Ba2+-sensitive Kir current in rabbit coronary myocytes 

and Ba2+ blocks hypoxia-induced vasodilation in Langendorff-perfused rabbit hearts (748). 

While acute hypoxia elicits coronary vasodilation via K+ channels, chronic hypoxia 

decreases the expression of KV channels in rat coronary myocytes (494). Further, ischemia 

secondary to coronary artery ligation in rats increases IKCa expression in a number of cell 

types in the vascular wall (819), but how this might impact coronary vascular reactivity 

remains to be determined. L-type Ca2+ channels in coronary vascular smooth muscle are 

also targets in hypoxic vasodilation, as low PO2 inhibits Ca2+ channel activity in coronary 

myocytes from swine and humans (352, 862).

There is little known about the effect of CO2 on coronary vascular ion channels; however, 

from an integrative point of view, metabolic production of CO2 is associated with acidosis 

and there are some studies available regarding that stimulus. Acidosis dilates swine coronary 
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arterioles by opening KATP channels through a signaling pathway that includes pertussis 

toxin-sensitive G proteins (499, 500). This same intracellular signaling pathway to KATP 

channels is impaired by hypercholesterolemia in rabbit coronary smooth muscle (860). Like 

K+ channels, Ca2+ channels in the coronary vasculature are also affected by pH, as 

intracellular acidification reduces the availability of L-type Ca2+ channels in porcine 

coronary myocytes (568).

Potassium—There are several ways in which extracellular K+ ions might influence 

coronary vascular reactivity through hyperpolarization, such as stimulating the Na+/K+-

ATPase (which is electrogenic due to stoichiometry) and “activation” of Kir channels. 

Extracellular K+ ions do not literally activate (i.e., increase the open probability of) Kir 

channels; rather they bind external sites and relieve the strong rectification by reducing the 

interference of intracellular cations with K+ permeation. This relief increases the small, but 

physiologically relevant, outward current through Kir channels. KCNJ2 (Kir 2.1 gene) likely 

encodes the Kir channel of rat coronary artery smooth muscle (117). These Kir channels in 

rat coronary arteries mediate extracellular K+-induced hyperpolarization and dilation (569, 

797). The functional expression of Kir channels in smooth muscle of the swine coronary tree 

is inversely related to artery diameter (775). Moreover, activation of Ba2+-sensitive Kir 

channels mediates remote dilation of swine coronary arterioles, which is a mechanism 

postulated to be important in metabolic dilation (793).

Adenosine—Adenosine activates whole-cell KATP current and single channels in smooth 

muscle cells from the swine coronary artery (219), effects that should lead to 

hyperpolarization and dilation (221, 565). Accordingly, in dogs, glibenclamide inhibits 

adenosine-induced coronary vasodilation (185, 286, 497). In fact, inhibition of coronary 

KATP channels with glibenclamide dose-dependently diminishes myocardial perfusion until 

ischemia is evident (285, 497, 823). Moreover, in swine, endothelium-denuded coronary 

arterioles dilate in response to adenosine and this response is blocked by glibenclamide 

(450,451). Additionally, the pathway from adenosine stimulation to KATP channels in swine 

coronary arterioles is mediated by A2A receptors, depends on the activation of pertussis 

toxin-sensitive G proteins, but is independent of cyclic nucleotide signaling (450, 451). In 

rabbit hearts, glibenclamide reduces the dilator response to adenosine, but not acetylcholine 

(an endothelium-dependent vasodilator) or papaverine (a vasodilator with multiple actions) 

(712). There is a transmural difference in coronary arteriolar dilation to adenosine in the 

swine heart, as glibenclamide-sensitive adenosine-induced vasodilation is greater in 

endocardial vessels (1016). This difference in epicardial versus endocardial arterioles and 

the role of KATP channels has been observed directly in the canine heart using intravital 

microscopy (995). A K+ channel that is not KATP may contribute to adenosine-induced 

relaxation in human coronary arteries, but glibenclamide is without effect (556, 630). 

Similarly, glibenclamide has no inhibitory effect on adenosine-induced dilation of rat 

coronary arteries (629). In contrast, glibenclamide-sensitive KATP channels are involved in 

adenosine-induced coronary vasodilation in humans in vivo (325).

KATP channels are not the only type of channels involved in adenosine-induced coronary 

vasodilation. For example, KV channels play a role in adenosine-induced dilation of the 
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canine coronary microcirculation (246). Specifically, inhibition of KV channels with 4-

aminopyridine reduces adenosine-induced hyperemia in vivo and adenosine-induced dilation 

of isolated, pressurized arterioles. Moreover, correolide, a selective KV1 channel blocker, 

inhibits the dilation of canine coronary arterioles elicited by adenosine (246). The effect of 

adenosine to increase coronary blood flow in dogs is mediated by A2A receptors and 

blocking KV channels with 4-aminopyridine attenuates this hyperemia (97). In coronary 

arterioles from swine hearts, 4-aminopyridine-sensitive KV channels participate in 

adenosine-induced dilation (78). Iberiotoxin, a selective blocker of BKCa channels, 

antagonizes adenosine dilation of canine coronary arteries (141). In metabolically healthy 

swine, BKCa channels contribute to adenosine-induced dilation of coronary arterioles; 

however, the contribution of BKCa channels is reduced in swine with metabolic syndrome 

(109). Similarly, neither BKCa nor apamin-sensitive small conductance Ca2+-activated K+ 

(SKCa) channels contribute to adenosine dilation of coronary arterioles from patients with 

heart disease, but adenylate cyclase and some unidentified Ca2+-activated K+ channel 

(perhaps IKCa) do (832). Small coronary arterioles are more sensitive to the dilating effect of 

adenosine and small coronary arteries also express more Kir channels (593,775). Moreover, 

in rabbit hearts and coronary smooth myocytes, adenosine increases Kir current through A3 

receptors and protein kinase A signaling (866). KV channels (sensitive to 

tetraethylammonium and 4-aminopyridine) contribute to adenosine-induced dilation of 

swine coronary arterioles in a gender-specific manner (443). Adenosine-mediated relaxation 

is significantly attenuated in coronary arterioles from swine with hypercholesterolemia; this 

is correlated to the loss of KV current in isolated myocytes (447). Endurance exercise 

training in swine does not correct impaired adenosine-induced vasodilation in coronary 

arterioles or activation of KV channels in coronary muscle cells (445). KV and KATP 

channels contribute to adenosine-induced coronary arteriolar dilation swine, but it is only the 

contribution of KATP channels that is impaired by early-stage metabolic syndrome (78).

Adenine nucleotides—Adenine nucleotides (ATP, ADP, and AMP) have coronary 

vascular effects (345). In dogs, the coronary venous plasma concentration of ATP increases 

during dynamic exercise and purinergic receptor blockade decreases the balance between the 

coronary supply of and the myocardial demand for oxygen (324, 388). ATP has been 

included in a model of coronary blood flow regulation where it acts as a signal controlling 

functional hyperemia (768). In that negative feedback scheme, ATP is postulated to act on 

coronary vascular endothelial cells and transmit a hyperpolarizing signal to the smooth 

muscle in upstream resistance vessels. Determining what that signal is and how it is 

transmitted will require additional study, but human coronary endothelial cells possess a Cl− 

channel that is inhibited by ATP (617). In human coronary myocytes, ATP activates BKCa 

and Cl− channels by releasing stored Ca2+ (892). In rat coronary arteries, UTP, which 

activates some of the same receptors as ATP (e.g., P2Y), causes constriction by classical 

electromechanical coupling in smooth muscle (966). Specifically, UTP activates an inward 

Na+-permeable current and inhibits KV current; these effects elicit depolarization and 

increase intracellular Ca2+ by activation of nisoldipine-sensitive L-type Ca2+ channels. A 

similar mechanism is likely responsible for the UTP-induced and diltiazem-sensitive 

constriction of canine coronary arteries (648). When ATP is considered as a signaling 

molecule, it is also important to consider signaling due to products of its hydrolysis, 
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including ADP, AMP, and adenosine (the latter, a nucleoside, described in more detail 

earlier). ADP-induced activation of P2Y1 receptors in swine leads to coronary arteriolar 

dilation and increased coronary flow; however, the ionic mechanisms involved have not been 

determined (77). ADP is further acted upon by endothelial enzymes including CD39 and 

CD37 to produce adenosine; both ADP and adenosine dilate murine and human coronary 

arteries via hyperpolarization (726). Thus, endothelial ecto-5′-nucleotidases can be viewed 

as EDHF synthases.

Reactive oxygen species (H2O2)—When reactive oxygen species (ROS) and coronary 

vascular reactivity are mentioned together, the first images conjured are typically of an 

injurious nature. For example, there are many variations on a theme where ROS damage the 

coronary endothelium and interfere with NO signaling (1). ROS can also impair ion channel 

function in smooth muscle. For example, peroxynitrite inhibits BKCa channel activity in 

smooth muscle of human coronary arterioles (621) and superoxide impairs KV channel 

function in myocytes from rat coronary arteries (622). Importantly, however, it is likely that 

the amount and type of ROS are important factors, as ROS are also important signaling 

molecules for normal coronary vascular function in the healthy heart (133). Specifically, 

recent interest has focused on H2O2 as an activator of K+ channels in coronary myocytes and 

thus a mediator of coronary vasodilation, as studies show that H2O2 is an endothelium-

derived relaxing factor and a candidate coronary metabolic vasodilator (307). There are 

endothelium-dependent and independent effects of H2O2 in the dilation of swine coronary 

arterioles; the smooth muscle effect involves the activation of BKCa, but not KATP, channels 

(907). In human coronary arterioles, the signaling pathway from H2O2 to BKCa-mediated 

dilation involves the redox-sensitive dimerization of protein kinase G (1019). 

Tetraethylammonium-sensitive K+ channels (BKCa or KV) in the coronary microvasculature 

are redox-sensitive targets in the cardioprotective effect of endogenous H2O2 during 

ischemia-reperfusion injury (997). In the dog heart, erythropoietin enhances the H2O2- and 

BKCa-mediated dilation of coronary collateral arterioles during ischemia (999). Redox-

sensitive KV (but not BKCa) channels mediate H2O2-induced vasodilation in canine 

coronary arterioles and in the canine heart in vivo (799). Similarly, it has been reported that 

tetraethylammonium-sensitive K+ channels (BKCa or KV) in the coronary microvasculature 

of dogs are the targets of endogenous H2O2 in pacing-induced metabolic coronary 

vasodilation (1000). In canine coronary myocytes, H2O2-induced activation of BKCa and KV 

channels has been demonstrated using patch clamp techniques (798). In porcine coronary 

myocytes, products of arachidonic acid metabolism mediate H2O2-induced stimulation of 

BKCa channels (51, 52). While multiple K+ channel types are activated by H2O2, KV 

channels may have the most critical role in H2O2-induced coronary metabolic vasodilation 

for four reasons. First, experiments with the generic KV channel inhibitor 4-aminopyridine 

show that endogenous, myocardial-derived H2O2 is a feed-forward (open-loop) signal in 

coronary metabolic vasodilation in vivo in dogs (820). Second, 4-aminopyridine-sensitive 

KV channels contribute to the regulation of coronary blood flow at rest and during increases 

in myocardial oxygen consumption caused by treadmill exercise in swine (94). Third, in 

swine, correolide-sensitive KV1 channels regulate baseline coronary vascular tone and 

vasodilation in response to increased myocardial metabolism [(384) Fig. 35A)]. Fourth, 

there is a requisite role for smooth muscle KV1.5 channels in coronary metabolic dilation in 
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mice [(725) Fig. 35B)]. Specifically, there is a linear relationship between coronary blood 

flow and cardiac metabolism (estimated as the product of mean arterial pressure and heart 

rate) in wild-type mice; the relationship between myocardial oxygen supply and demand is 

markedly depressed in global KV1.5 knockout mice. Smooth muscle-specific restoration of 

KV1.5 channels rescues the coronary vascular phenotype of the global knockout mice (725). 

KV7 channels do not contribute to metabolic or ischemic dilation in the swine heart, but 

these channels do function in coronary vascular responses mediated by the endothelium 

(383).

Ion channel function in endothelial regulation of the coronary circulation

Coronary vascular endothelium releases a variety of substances that contract or relax the 

underlying smooth muscle (see Section “Endothelial-Dependent Control”). This paracrine 

regulation of coronary vascular tone involves ion channels in both the endothelium and 

smooth muscle. For example, ion channels in coronary vascular endothelium are important 

signaling mechanisms activated by humoral stimuli (e.g., substance P) and shear stress. 

Likewise, ion channels in smooth muscle can be the targets or end-effectors of endothelium-

derived vasoactive substances (e.g., endothelin and NO). In endothelial cells, an increase in 

intracellular Ca2+ is often an important step in the production of vasoactive molecules. 

Accordingly, changes in the coronary endothelial cell Ca2+ concentration have been 

recorded during substance P-induced vasodilation in rabbit coronary arterioles (693). 

Substance P elicits both intracellular Ca2+ release and Ca2+ influx in endothelial cells from 

the porcine coronary artery (227). In coronary endothelial cells from swine, increases in 

intracellular Ca2+ are associated with SKCa- and IKCa-mediated hyperpolarization, which 

maintains the driving force for Ca2+ entry through voltage-independent channels (227, 851). 

Moreover, this Ca2+ entry elicited by substance P-induced store depletion in porcine 

coronary endothelium involves signaling via tyrosine kinases (852). The vasodilation 

elicited by substance P in porcine coronary arterioles is mediated entirely by NO (590); 

however, the endothelium-derived factors and the ion channels they act on can vary 

depending upon the type of receptor activated. For example, IKCa and SKCa (but not BKCa) 

channels mediate thrombin-induced endothelium-dependent dilation of human coronary 

arterioles (112), whereas the endothelium-dependent responses to bradykinin in those same 

vessels rely upon the activation of SKCa and BKCa (but not KATP) channels (679). It is not 

only G-protein-coupled transmembrane receptors that lead to the production of endothelial-

derived relaxing factors, as mechanical stimulation of the coronary endothelium is also an 

important mechanism regulating vascular tone. In human coronary arterioles, H2O2 is the 

transferrable factor mediating flow-induced dilation and it acts via SKCa, IKCa, and BKCa 

(but not KATP) channels (619, 678, 680, 1019). The contribution of NO and other 

endothelium-derived relaxing factors to coronary vasodilation differs depending on vessel 

diameter and, for example, BKCa channels are the end-effectors of NO-independent 

vasodilation in smaller caliber coronary vessels of dogs (719). KV channels also contribute 

to endothelium-dependent responses of the coronary circulation (292), as, for instance, KV7 

channel inhibitors attenuate bradykinin-induced coronary vasodilation in swine (160, 383). 

The role of ion channels in endothelial regulation of coronary vascular tone is impacted by 

disease, cardiovascular risk factors, and the degree of physical fitness. For example, SKCa, 

IKCa, and gap junctions contribute to conducted vasodilation in human coronary arterioles, a 
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response that is impaired by aging (327). Similarly, impairments in SKCa and IKCa channels 

contribute to the endothelial dysfunction of coronary arterioles from diabetic patients (623). 

In comparison, endurance exercise training enhances the contribution of BKCa channels to 

endothelium-dependent relaxation of arteries taken from ischemic areas of the swine heart 

(234).

Endothelin is a major endothelium-derived contracting factor and ion channels in smooth 

muscle contribute to endothelin-induced constriction of the coronary circulation (552). 

Signaling centers around L-type Ca2+ channel activity and there are two general mechanisms 

of regulation: (i) transmembrane signaling that directly activates L-type Ca2+ channels and 

(ii) membrane depolarization caused by activation of nonselective cation and Cl− channels or 

inhibition of K+ channels. Endothelin activates L-type Ca2+ currents in coronary myocytes 

(391), an effect that can also be observed at the single-channel level (861). In the cell-

attached single channel experiments, the L-type Ca2+ channels under study were physically 

isolated from the bath (and, thus, application of endothelin) by the patch pipette; therefore, 

these experiments demonstrate that diffusible intracellular signaling entities were 

responsible for activation. Nonselective cation channels can depolarize the membrane and 

also serve as a Ca2+ entry pathway, as TRPC channels are activated by endothelin in 

coronary smooth muscle (572, 821, 822). Similarly, endothelin depolarizes coronary smooth 

muscle membrane potential by stimulating a Ca2+-activated Cl− current (567) and inhibiting 

BKCa, KATP, and Kir channels (492, 686, 749).

Neural control and end effector ion channels

Ion channels in the coronary vasculature integrate with neural input to regulate myocardial 

perfusion. Sympathetic regulation of the coronary circulation, which involves 

catecholamines released from postganglionic fibers innervating the heart as well as those 

introduced to the circulation from the adrenal medulla, is complex. This is because the 

neurohumoral factors have effects on: (i) the myocardium (i.e., impacting metabolism and 

oxygen demand of the heart muscle, which has a major influence on coronary vascular 

tone); (ii) coronary endothelium; and (iii) coronary smooth muscle. Effects secondary to 

stimulation of the myocardium fall under the category of metabolic dilation (389), while 

effects on endothelial cells are in the realm of paracrine signaling (238). Sympathetic 

regulation of coronary vascular tone is further complicated by the presence of multiple 

adrenoceptor types (α and β) and subtypes (e.g., α1 and α2) in coronary smooth muscle. 

While these G protein-coupled transmembrane receptors are closely related, they can link to 

diverse intracellular signaling machinery for vasoconstriction or vasodilation (see Section 

“Neural Control”).

Coronary vasoconstriction elicited by sympathetic stimulation involves α adrenoceptors for 

catecholamines as well as signaling by neuropeptide Y (NPY), a cotransmitter (412, 464). 

By whatever mechanisms sympathetic coronary vasoconstriction occurs, it ultimately 

depends on electrome-chanical coupling in smooth muscle, as nifedipine abolishes it 

(463,466). For example, nifedipine prevents coronary vasoconstriction elicited by α1 and α2 

agonists (464). Sympathetic vasoconstriction mediated by α2 signaling downstream of a 

coronary stenosis in dogs is not relieved by vasodilators like adenosine, dipyridamole, or 
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isosorbide dinitrate, but is ameliorated by the blockade of L-type Ca2+ channels (465). As 

for the cotransmitter, coronary injection of NPY in swine elicits vasoconstriction; in vitro, 

NPY-induced coronary artery contraction is nifedipine-sensitive (812). It is clear that 

signaling through α adrenoceptors can increase coronary microvascular resistance in vivo, 

but the mechanisms involved remain uncertain. This is because mechanistic in vitro work 

with pressure myography, which revealed so many details of myogenic and paracrine 

signaling in coronary arterioles, has been of little use in the study of adrenergic 

vasoconstriction. Specifically, α adrenergic constriction of coronary arterioles cannot be 

observed in vitro, but coronary venules under the same conditions do constrict (521). This 

has led to the idea that α adrenergic coronary vasoconstriction is mediated indirectly via 

endothelin released from cardiomyocytes (908). Coronary vasodilation elicited by 

sympathetic stimulation involves β adrenoceptor signaling to ion channels. There is 

heterogeneous transmural expression of β adrenoceptors, as swine epicardial arterioles dilate 

more to β2 agonists than do endocardial arterioles; but effects are mediated by KATP channel 

activation in both vessel types (452). Stimulation of β adrenoceptors on porcine coronary 

myocytes activates BKCa channels through a membrane-delimited pathway involving the αs 

G-protein subunit (845). Cyclic nucleotide signaling is also involved in the activation of 

BKCa channels by catecholamine receptor signaling (437, 972). Specifically, when receptor 

stimulation increases cAMP production, there is a cross-activation cGMP-dependent protein 

kinase resulting in the activation of BKCa channels (437, 972). In porcine coronary 

myocytes, dopamine D1 receptor agonists activate KATP channels through a protein kinase A 

signaling pathway (554). Another complexity in sympathetic regulation of the coronary 

circulation regards the localization of adrenoceptors and the source catecholamines. 

Specifically, some adrenoceptors are localized to sites of innervation (clustered on the 

postsynaptic membrane), while others are more widely distributed. Thus catecholamines in 

the circulation, whether injected experimentally or released from the adrenal medulla, can 

have effects on the coronary circulation that are quantitatively different from those released 

from sympathetic nerves (169, 390, 436).

Integrative control of the coronary circulation

Normal cardiac function critically depends on adequate myocardial oxygen delivery; 

therefore, it is unlikely that any single vasodilator mechanism is totally responsible for the 

local metabolic control of coronary blood flow. That is, multiple vasodilator mechanisms 

likely participate and compensation is likely to occur when individual mechanisms of 

coronary vasodilation are inhibited. This principle is exemplified in the studies of Ishibashi 

et al. and Tune et al. (497,921). In dogs performing treadmill exercise, a combination of 

pharmacological inhibitors was used to block KATP channels (glibenclamide), adenosine 

receptors (8-phenyltheophylline), and NO production (NG-nitro-L-arginine). As outlined 

above, blockade of these individual vasodilator mechanisms has little to no effect on the 

balance between coronary blood flow and myocardial metabolism. However, Ishibashi et al. 

demonstrated that combining these antagonists significantly steepened the relationship 

between coronary venous PO2 and MVO2 (497) (Fig. 36). This study, along with others by 

the Bache laboratory support a compensatory role for adenosine following the inhibition of 

KATP channels with concentrations of glibenclamide sufficient to diminish baseline coronary 

blood flow and depress regional cardiac function (283, 285, 286, 497). Alternatively, similar 
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triple blockade studies which utilized lower systemically administered doses of 

glibenclamide noted marked reductions in coronary venous PO2 versus MVO2 (Fig. 36). 

This combined inhibition failed to significantly affect exercise-induced increases in coronary 

blood flow and MVO2 under these conditions in either dogs (921) or swine (664). These 

studies further support that adenosine serves as a compensatory dilator mechanism following 

the onset of ischemia and have led to the idea that wholly parallel and/or redundant 

mechanisms of coronary metabolic vasodilation exist and act to preserve the balance 

between myocardial oxygen delivery and metabolism (664). However, understanding of the 

interplay between these redundant pathways remains poorly understood and an area of much 

needed research. Such future studies must acknowledge the potential for species variability, 

the selectivity of antagonists and/or genetic knockout approaches utilized, and the potential 

for acute and chronic (patho)pathophysiologic compensation which is highly dependent on 

the overall level of tissue oxygenation.

Conclusion

The heart is uniquely responsible for supplying its own blood supply through the coronary 

circulation. The coronary arteries arise from the sinuses of Valsalva in the aorta and course 

over the surface of the heart like a crown(Latin coronarius meaning “of a crown”). The 

epicardial coronary arteries divide over the surface of the heart in a base to apex direction, 

sending penetrating branches transmurally through the outer epicardium to the inner 

endocardium. Blood flow through these vessels is influenced on a beat to beat basis by 

changes in extravascular compressive forces (myocardial tissue pressure). As such, the left 

ventricle receives ~80% of its blood supply during diastole whereas the much thinner right 

ventricle, which is subject to much lower myocardial tissue pressures, is primarily perfused 

during systole. Given the higher compressive forces and oxygen requirements of the left 

ventricular endocardium, there is a modest gradient for coronary flow across the wall of the 

heart. Typically, endocardial to epicardial flow ratios range from ~1.1 to 1.5 and are 

facilitated by higher densities and lower resistances of the endocardial microcirculation.

The coronary circulation possesses a high degree of pressure-flow autoregulation and thus 

blood flow is maintained relatively constant over a wide range of perfusion pressures (~60–

120 mmHg). However, this autoregulatory capacity is recognized to be lower in left 

ventricular endocardium and the right coronary circulation. It is well recognized that the 

primary determinant of coronary blood flow and overall myocardial oxygen delivery is the 

rate of myocardial oxidative metabolism (MVO2). Extensive research over the past 50+ 

years has specifically focused on elucidating mechanisms responsible for the regulation of 

coronary vascular resistance in response to a variety of (patho)-physiologic stimuli such as 

perfusion pressure, metabolism, hypoxemia, anemia, and episodes of myocardial ischemia. 

In particular, studies have focused on a variety of mechanisms that include myogenic, local 

metabolic, endothelial, neural, hormonal, and endothelial and vascular ion channels. While it 

is clear that each of these mechanisms can have profound influence over myocardial 

perfusion, our understanding of the collective mechanisms responsible for the regulation of 

coronary blood flow remains rather limited. Comprehension of the control of coronary flow 

is further complicated by the recognition that the determinants of blood flow and factors 

modulating microvascular resistance operate within specific microdomains of the coronary 
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vascular tree. Furthermore, there is evidence to support that these pathways act in a parallel 

and redundant manner such that when specific pathways are inhibited pharmacologically or 

impaired by disease, compensatory mechanisms are activated to prevent an imbalance 

between myocardial oxygen delivery and metabolism (i.e., myocardial ischemia) (270, 285, 

286, 497, 664, 790, 791, 918, 920, 921). Delineation of the precise mechanisms responsible 

for the dynamic regulation of coronary blood flow is more important than ever as it is now 

recognized that impaired coronary microvascular function (in the absence of overt coronary 

atherosclerosis) is a powerful, independent correlate of cardiac mortality (704). Research 

into these mechanisms stands to provide much needed insight and more effective diagnostic 

and therapeutic approaches for the treatment of coronary and cardiovascular disorders.
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Figure 1. 
Schematic diagram of the determinants of myocardial oxygen supply and demand. Adapted, 

with permission, from Ardehali and Ports (16) and reported by Tune (918).
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Figure 2. 
(A) Relationship between coronary blood flow and myocardial oxygen consumption during 

exercise in swine [data, with permission, from Berwick et al. (94)]. (B) Relationship 

between coronary blood flow and coronary perfusion pressure in swine [data, with 

permission, from Berwick et al. (96)]. (C) Coronary blood flow response to reductions in 

arterial oxygen content via hemodilution-anemia [data, with permission, from Tarnow et al. 

(905) and Fan (323)] or hypoxia [data, with permission, from Merrill et al. (670); Walley et 

al. (958); and Hermann and Feigl (458)]. (D) Coronary response to a transient coronary 

artery occlusion [data, with permission, from Borbouse et al. (110)].
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Figure 3. 
Representative pictures of the anatomy of the coronary circulation. Right atrium (RA), RCA, 

right ventricle (RV); interventricular vein (IVV); LAD coronary artery; left atrium (LA); 

circumflex coronary artery (CFX); left ventricle (LV); posterior vein (PV); PDA [data, with 

permission, from Tune (918)].
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Figure 4. 
(A) Radiograph of left ventricular free wall from a 52-year-old man who died of acute 

arsenic poisoning. He had no occlusive coronary disease and no valvular or myocardial 

abnormalities. Adapted, with permission, from Estes et al. (321). (B) Microvasculature of 

the left ventricular myocardium showing an arteriole, A (about 35–40 μm diameter), and two 

venae comitantes, V. The scale below gives 10- and 100-μm intervals. The venule on the 

right is about 40 × 80 μm. This arrangement is the usual one for arterioles from l-mm 

diameter down to those of 15-μm diameter [data, with permission, from Bassingthwaighte et 

al. (62)].
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Figure 5. 
Left: Representative photograph illustrating the apical view of a canine heart 4 months 

following placement of an ameroid occluder around the proximal left circumflex coronary 

artery (entering from the left side of the photograph). Typical canine coronary collateral 

arteries are clearly visible on the epicardial surface, including both large (~1 mm diameter) 

and smaller, tortuous arterial connections between a branch of the completely occluded left 

circumflex coronary artery and a branch of the nonoccluded RCA (446). Right: Green 

fluorescent replica material was infused in the LAD, and red was infused in the LCX and 

RCA. Visual inspection reveals at least 2 coronary collaterals between the LAD and LCX as 

indicated by the two arrows on the right. The arrow on the left indicates a subendocardial 

collateral connection between LCA and LCX. The inset on the left is an enlarged detail of 

the inner half of the myocardium corresponding to the border between LAD an RCA (see 

square in the main image), showing mixing of colors along arterioles. Note that the 

perfusion areas are well defined, yet borders may be frayed between the LAD and LCX or 

RCA perfusion territories. Some green vessel segments within the red LCX area indicate 

that a small amount of green contrast may have entered through collateral connections that 

then has been pushed to smaller vessels upon the arrival of the red dye (932).
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Figure 6. 
Phasic tracing of right coronary blood flow [adapted, with permission, from Lowensohn et 

al. (628)] and left circumflex coronary blood flow [adapted, with permission, from Tune et 

al. (923)] relative to aortic pressure.
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Figure 7. 
Left: Schematic representation of a vascular waterfall in which flow is dependent on the 

elevation between the rim of the falls [tissue pressure (PT)] and the highest point upstream 

[arterial pressure (PA)], irrespective of the overall height of the falls [arterial pressure (PA) – 

venous pressure (PV)]. Right: Principle of the intramyocardial pump. Top: Pressure within a 

closed elastic tube Pi is in equilibrium with the pressure outside Po. Enlarging Po by ΔP 
leads to an increase in Pi also by ΔP. Bottom: When the flexible tube is open, ΔP also will be 

transmitted now causing flow which is impeded by viscous forces [data, with permission, 

from Spaan et al. (871)].

Goodwill et al. Page 102

Compr Physiol. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Schematic cross-section of the myocardial wall at end-diastole and end-systole [data, with 

permission, from Bell and Fox (72)].
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Figure 9. 
Left: Example of interaction between pressure-induced myogenic response and flow-

dependent dilation in isolated, pressurized subepicardial arteriole. Right: Pressure-diameter 

relationship of arterioles with and without flow [data, with permission, from Kuo et al. 

(590)].
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Figure 10. 
Relationship between coronary blood flow and coronary vascular resistance relative to 

coronary perfusion pressure [data, with permission, from Berwick et al. (96)].
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Figure 11. 
Left: Schematic diagram for series-coupled segmental responses of coronary vasculature to 

flow, pressure, metabolic, and adrenergic stimuli [data, with permission, from Davis et al. 

(225)]. Right: Proposed interaction between metabolic, myogenic, and flow-mediated 

regulation of coronary microvascular resistance during increases in myocardial metabolism 

[data, with permission, from Muller et al. (692)].
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Figure 12. 
Relationship between coronary blood flow (left) and coronary venous PO2 (right) versus 

myocardial oxygen consumption in conscious instrumented swine at rest and during exercise 

under control conditions, following inhibition of pathway that produces similar reductions in 

coronary flow and myocardial oxygen consumption (tonic), and during a condition that 

produces progressive limitation in coronary vasodilation with increases in oxygen 

consumption (metabolic). The physiologic limit of these relationships are depicted by the 

red line (maximal physiology response) which represents the condition in which all oxygen 

delivered in extracted and consumed (i.e., 100% oxygen extraction) [data for each plot were 

derived, with permission, from the same animal (swine) under the same conditions from the 

study of Berwick et al. (94)].
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Figure 13. 
Left: Relationship between coronary blood flow and coronary venous PO2 in the right and 

left ventricle at rest and during exercise in dogs [data, with permission, from Tune et al. 

(923) and Hart et al. (441)]. Right: Relationship between coronary blood flow and coronary 

venous PO2 in response to exercise in swine [data, with permission, from Duncker et al. 

(281)] and isovolemic hemodilution-induced anemia [data, with permission, from Van 

Woerkens et al. (935)].
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Figure 14. 
Berne’s adenosine hypothesis of local metabolic control of coronary blood flow as a 

negative feedback control system [data, with permission, from Berne (85)].
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Figure 15. 
Left: Relationship between coronary blood flow and myocardial oxygen consumption with 

and without adenosine receptor blockade [8-phenyltheophylline (8-PT) or 8-

sulfophenyltheophylline (8-PST)] in dogs at rest and during graded treadmill exercise. 

Right: Relationship between estimated interstitial adenosine concentration and myocardial 

oxygen consumption with and without adenosine receptor blockade in dogs at rest and 

during graded treadmill exercise [data, with permission, from Tune et al. (923)].
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Figure 16. 
Relationship between coronary venous hemoglobin saturation versus myocardial oxygen 

consumption (left) and coronary blood flow versus coronary venous hemoglobin saturation 

(right) in instrumented dogs at rest and during exericse with and without inhibition of 

adenosine receptors [8-phenyltheophylline (8-PT), P2Y1 receptors (MRS 2500), and nitric 

oxide synthase: L-nitro-arginine (LNA)] [data, with permission, from Gorman et al. (388)].
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Figure 17. 
Relationship between cardiac H2O2 concentration and myocardial oxygen consumption 

(top) and coronary blood flow and H2O2 concentration (bottom) in anesthetized, open-chest 

dogs at baseline, during cardiac pacing, or norepinephrine infusion [data, with permission, 

from Saitoh et al. (820)].
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Figure 18. 
Endothelium-derived vasoactive substances. ACE, angiotensin-converting enzyme; Ach, 

acetylcholine; AI, angiotensin I; AII, angiotensin II; AT1, angiotensin 1 receptor; Bk, 

bradykinin; COX, cyclooxygenase; ECE, ET-converting enzyme; EDHF, endothelium-

derived hyperpolarizing factor; ETA and ETB, endothelin A and B receptors; ET-1, 

endothelin- 1; l-Arg, l-arginine; M, muscarinic acetylcholine receptor; PGH2, prostaglandin 

H2; ROS, reactive oxygen species; S1, serotoninergic receptor; TX, thromboxane receptor; 

TXA2, thromboxane; 5-HT, serotonin [from, with permission, Gutierrez et al. (415)].

Goodwill et al. Page 113

Compr Physiol. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 19. 
Relationship between coronary blood flow (left) and coronary venous PO2 (right) versus 

myocardial oxygen consumption in dogs at rest and during exercise with and without the 

inhibition of nitric oxide synthase with LNA [data, with permission, from Tune et al. (920)].
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Figure 20. 
Coronary blood flow response to intracoronary arachidonate before (left) and after inhibition 

of cyclooxygenase with indomethacin (middle). Right: Relationship between coronary blood 

flow and myocardial oxygen consumption in dogs at rest and during exercise with and 

without indomethacin [data, with permission, from Dai and Bache (213)].
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Figure 21. 
Left: Biosynthesis and bioavailability of EC-derived EETs and H2O2. The activation of 

phospholipase A2 (PLA2) following stimulation with shear stress or secondary to IP3-

sensitive ER Ca2+ store depletion by agonists leads to synthesis of AA, which is metabolized 

by CYP 2C or 2J isoenzymes to produce EETs, with (sEH; for all EET regioisomers) and 

COX (for 5,6-EET only) metabolizing EETs to DHETs and prostaglandins (PGs), 

respectively, thereby influencing EET bioavailability. Right: Shear stress and agonist 

stimulation also result in the reduction of molecular O2 to form the ROS superoxide (O2
•−), 

as a byproduct of metabolism, by a number of sources, including NOS, CYP, COX, 

lipoxygenase (LOX), and mitochondria (mito). O2
•− is then further reduced by SOD to form 

H2O2, the bioavailability of which is determined by endogenous antioxidant enzymes, which 

include Cat and glutathione peroxidase (GSH-Px). Nox isoforms (Nox2 and Nox4) 

synthesize ROS as their sole enzymatic product, with Nox2 producing O2
•− and Nox4 

mainly H2O2 [adapted, with permission, from Ellinsworth et al. (307)].
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Figure 22. 
Left: Effect of intracoronary endothelin administration on coronary blood flow in 

anesthetized dogs in the absence and presence of endothelin (ET) receptor blockade. Right: 

Relationship between coronary blood flow and myocardial oxygen consumption in dogs at 

rest and during exercise in the absence and presence of ET receptor blockade [data, with 

permission, from Gorman et al. (386)].
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Figure 23. 
Graphs showing the descending limb of the coronary pressure-flow relation in the presence 

of intact vasomotor tone in exercising dogs with and without the nitric oxide synthase 

inhibitor LNNA [data, with permission, from Duncker and Bache (269)].
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Figure 24. 
Representative drawing of innervation of a coronary artery (cat) from Woollard (989).
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Figure 25. 
Schematic diagram of combined adrenergic feedforward (open-loop) and local metabolic 

feedback (closed-loop) control of coronary blood flow [data, with permission, from Feigl 

(335)].
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Figure 26. 
Relationship between coronary blood flow (left) and coronary venous PO2 (right) versus 

myocardial oxygen consumption in dogs at rest and during exercise with and without the 

inhibition of α-adrenoceptors or α + β-adrenoceptors [data, with permission, from Gorman 

et al. (389)].
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Figure 27. 
Recordings from one dog during norepinephrine infusion (0.25 μg · kg−1 · min−1) before and 

after α-adrenoceptor blockade with phenoxybenzamine, with a right atrial paced heart rate 

of 140 beats/min during low-level vagal stimulation to slow the intrinsic heart rate. FFT of 

the septal artery flow velocity is shown with the envelope of the FFT calculated at one-half 

the maximum power. Shown at bottom are septal artery velocity profiles determined every 8 

ms during individual cardiac cycles, before and after α-blockade. Forward flow is shown as 

a curvature of the velocity profile to the right, and retrograde flow is shown by a bowing to 

the left. Note that negative value retrograde flow velocity was greater after α-receptor 

blockade than before blockade during norepinephrine infusion [data, with permission, from 

Morita et al. (689)].
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Figure 28. 
Effects of a 20-s vagal stimulation (30 Hz, 8 volts, and 2 ms) on blood pressure, left 

circumflex coronary blood flow, and heart rate in an anesthetized dog [data, with permission, 

from Feigl (329)].
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Figure 29. 
Left: Coronary blood flow response to systemic (intravenous) administration of angiotensin 

II [data, with permission, from Doursout et al. (258)]. Right: Coronary blood flow response 

to intracoronary administration of angiotensin II with coronary perfusion pressure held 

constant at 100 mmHg by a servo-controlled extracorporeal perfusion system [data, with 

permission, from Zhang et al. (1018)].
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Figure 30. 
Patch clamp recordings of voltage-gated Ca2+ current in smooth muscle cells from the rabbit 

coronary artery. Panel A shows a representative I–V relationship in 2.2 mmol/L Ca2+ before 

(open symbols) and after (filled symbols) 500 μmol/L Cd2+. Panel B contains a portion of 

the family of traces, leak subtracted, used to create the I–V in panel A. Currents were 

elicited from a holding potential of −80 mV. Panel C is a graph of group data (16 cells) 

[data, with permission, from Matsuda et al. (647)].
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Figure 31. 
Dominant role of L-type Ca2+ channels in regulating coronary vascular resistance. The 

coronary pressure-flow relationship in swine was autoregulated under control conditions 

(filled symbols). Coronary pressure was regulated by a servo-controlled extracorporeal 

perfusion system while flow was measured. Inhibiting L-type Ca2+ channels with 

intracoronary diltiazem (10 μg/min) abolished pressure-flow autoregulation, indicating a 

lack of active adjustments to coronary vascular resistance [data, with permission, from 

Berwick et al. (96)].
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Figure 32. 
Three components of macroscopic K+ current in smooth muscle cells from the human 

coronary artery. Panel A contains representative current tracings before and after the 

addition of glibenclamide (Glib; 3 μmol/L), an inhibitor of KATP channels. Only 2 of the 3 

major components of K+ current are active under control conditions: BKCa and KV channels 

(see text for details). Panel B shows that KATP channels, while not open under control 

conditions, can be activated by pinacidil (Pin; 1 μmol/L) and blocked by glibenclamide 

[data, with permission, from Gollasch et al. (382)].
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Figure 33. 
Voltage-dependence of coronary vascular tone: central role of the L-type Ca2+ channel in 

coronary smooth muscle. A cartoon schematic represents a coronary myocyte (1), a coronary 

endothelial cell (2), and metabolic dilators from the adjacent myocardium (3). The L-type 

Ca2+ channel in coronary vascular smooth muscle is a major target of regulatory 

mechanisms, as Ca2+ influx largely controls the amount of Ca2+ available to activate the 

contractile apparatus. Ca2+ release from the sarcoplasmic reticulum (SR; with ryanodine- 

and IP3-sensitive Ca2+ release channels) and Ca2+ influx via nonselective cation channels 

(NSCC) also contribute. NSCC in smooth muscle also contribute to contraction by 

depolarizing the membrane potential (Em) and activating L-type Ca2+ channels. Endothelial 

receptor stimulation (paracrine and mechanical factors) increases Ca2+ in endothelial cells, 

leading to the production of relaxing/hyperpolarizing factors and hyperpolarization of 

endothelial Em. Myo-endothelial junctions can spread Em hyperpolarization to coronary 

smooth muscle. Relaxing/hyperpolarizing factors diffuse to the smooth muscle, where they 

activate cell signaling mechanisms to control the contractile apparatus or hyperpolarize Em 

via K+ channels. The most important physiological stimulus regulating coronary vascular 

resistance on a beat-to-beat basis is metabolic dilators from the myocardium. These factors, 

which have not been identified conclusively, relax coronary smooth muscle, in large part, by 

the activation of K+ (especially KV) channels and subsequent inhibition of L-type Ca2+ 

channels.
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Figure 34. 
Stretch-activated nonselective cation current in coronary vascular smooth muscle: effects on 

the intracellular Ca2+ concentration. Panel A contains a photomicrograph of representative 

porcine coronary smooth muscle cells. A patch clamp pipette is used to hold one end of a 

cell and record electrical activity (1) while longitudinal stretch is applied with a second 

pipette and piezoelectric translator; (2) panel B shows that the magnitude of depolarizing 

inward current (I, lower trace) is related to the degree of longitudinal stretch (L, upper trace) 

in a porcine coronary smooth muscle cell [data, with permission, from Wu and Davis (991)]. 

Panel C demonstrates that, in porcine coronary myocytes, stretch-induced increases in 

intracellular Ca2+ ultimately depend upon extracellular Ca2+. Arrows indicate the initiation 

of longitudinal stretch. In the presence of extracellular Ca2+, stretch-induced increases in 

intracellular Ca2+ were rapid and repeatable. In the absence of extracellular Ca2+, 

longitudinal stretch still elicited Ca2+ transients, but internal stores were quickly depleted 

[data, with permission, from Davis et al. (226)].
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Figure 35. 
Role of KV1 channels in coronary metabolic vasodilation. Panel A contains coronary blood 

flow data from five pigs treated with correolide, a selective KV1 channel blocker, and four 

pigs treated with vehicle only. Myocardial oxygen consumption (MvO2) was elevated from 

rest by infusing dobutamine at three increasing doses. KV1 channels are important for the 

increase in coronary blood flow elicited by cardiac metabolism, as correolide depressed the 

relationship between oxygen supply and demand [data, with permission, from Goodwill et 

al. (384)]. Panel B shows myocardial blood flow versus cardiac double product, an index of 

cardiac metabolic demand, in wild-type mice (WT), global KV1.5 knockout mice 

(KV1.5−/−), and mice with smooth muscle-specific restoration of KV1.5 expression 

(KV1.5−/− RC). Myocardial blood flow was lower at any given level of myocardial demand 

in global KV1.5 knockout mice (P < 0.05 vs. WT). Smooth muscle-specific restoration of 

KV1.5 expression normalized the relationship between myocardial blood flow and metabolic 

demand [not significant from WT; P < 0.05 versus global knockout; data, with permission, 

from Ohanyan et al. (725)].
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Figure 36. 
Left: Relationship between coronary venous PO2 and myocardial oxygen consumption at 

rest and during exercise before and during triple blockade of KATP channels, nitric oxide 

synthase and adenosine receptors [data, with permission, from Tune et al. (921)]. Right: 

Relationship between coronary venous PO2 and myocardial oxygen consumption at rest and 

during exercise before and during inhibition of adenosine receptors (8PT), KATP channels 

(Glib) and/or nitric oxide synthase (LNNA) [data, with permission, from Ishibashi et al. 

(497)].
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