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SUMMARY

We analyzed 921 adenocarcinomas of esophagus, stomach, colon and rectum to examine shared 

and distinguishing molecular characteristics of gastrointestinal tract adenocarcinomas (GIAC). 

Hypermutated (HM) tumors were distinct regardless of cancer type and comprised those enriched 

for insertions/deletions, representing microsatellite instability cases with epigenetic silencing of 

MLH1 in the context of CpG Island Methylator Phenotype (CIMP), plus tumors with elevated 

single nucleotide variants (HM-SNV) associated with mutations in POLE. Tumors with 

chromosomal instability (CIN) were diverse, with gastroesophageal adenocarcinomas harboring 

fragmented genomes associated with genomic doubling and distinct mutational signatures. We 

identified a group of tumors in the colon and rectum lacking hypermutation and aneuploidy termed 

Genome Stable (GS) and enriched in DNA hypermethylation and mutations in KRAS, SOX9 and 

PCBP1.
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Graphical Abstract

Liu et al. analyze 921 gastrointestinal (GI) tract adenocarcinomas and find that hypermutated 

tumors are enriched for insertions/deletions, upper GI tumors with chromosomal instability harbor 

fragmented genomes, and a group of genome stable colorectal tumors are enriched in mutations in 

SOX9 and PCBP1.
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INTRODUCTION

Traditional classifications of tumors have utilized tissue of origin and histologic types. These 

categories have been refined with comprehensive molecular characterizations across large 

numbers of tumors. Adenocarcinomas of the gastrointestinal tract share similar endodermal 

developmental origins and exposure to common insults that promote tumor formation. We 

sought to evaluate molecular characteristics that distinguish gastrointestinal tract 

adenocarcinomas (GIAC) from other cancers and to investigate the molecular features of 

GIAC across anatomic boundaries to provide insight into the pathogenesis of these deadly 

malignancies.

Approximately 1.4 million people die each year worldwide from adenocarcinomas of the 

esophagus, stomach, colon or rectum (Arnold et al., 2015; Torre et al., 2016). Non-surgical 

treatment approaches have made only modest progress over the past half-century, inspiring 

efforts to better understand the biological basis of these cancers as a foundation for 

improving prevention, screening and therapy. Prior studies that separately evaluated GIAC of 

the upper (gastroesophageal) and lower (colorectal) GI tract found subgroups such as 
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chromosomal instability (CIN), microsatellite instability (MSI) and tumors with 

hypermethylation phenotypes. However, systematic efforts to characterize how shared 

molecular processes present differently across the GI tract have not been undertaken.

RESULTS

The Cancer Genome Atlas Network obtained fresh frozen tissues from 921 primary GIAC 

(79 esophageal, 383 gastric, 341 colon, and 118 rectal cancers) without prior chemotherapy 

or radiotherapy. All patients provided informed consent, and collections were approved by 

local Institutional Review Boards. Adjacent non-malignant tissues were obtained from 76 

patients. We characterized samples by single-nucleotide polymorphism (SNP) array 

profiling for somatic copy-number alterations (SCNA), whole-exome sequencing, array-

based DNA methylation profiling, messenger RNA (mRNA) sequencing, microRNA 

sequencing, and for a subset of samples, reverse-phase protein array (RPPA) profiling. Key 

characteristics of tumor samples are summarized in Table S1.

Shared Features of GIAC

We investigated whether GIAC share characteristic molecular features compared to other 

adenocarcinomas (Table S2). Joint analysis of GIAC together with adenocarcinomas from 

breast (n=1001), endometrium (506), cervix (24), bile ducts (33), lung (240), pancreas (183), 

prostate (381) and ovaries (503) revealed that GIAC clustered together by DNA 

hypermethylation profiles (Figure S1A), mRNA (Figure S1B), and Reverse Phase Protein 

Array data (RPPA) (Figure S1C). These results are consistent with integrated clustering 

analysis across multiple platforms of 10,000 TCGA tumors, which identified GIAC as a 

distinct group (Hoadley et al., 2018).

Genes mutated significantly more frequently in GIAC compared to non-GI adenocarcinomas 

(non-GIAC) included FBXW7, SMAD2, SOX9, and PCBP1 (Figure 1A and Table S3). A 

GIAC-focused analysis revealed that ATM, PZP, CACNA1C, and FBN3 were significantly 

mutated genes not previously reported in TCGA studies of single cancer types (Figure S1D 

and Table S3). We evaluated SCNA data to identify amplifications and deletions more 

common in GIAC than in non-GIAC (Figures 1B and S1E and Table S4). Arm-level gain of 

chromosome 13q was GIAC-specific (Figure S1F), noteworthy as this region containing 

tumor suppressor RB1 is often deleted in non-GIAC. CDX2 (13q12.2) and KLF5 (13q22.1) 

encoding two transcription factors in this amplified region may contribute to GIAC 

pathogenesis. Other genes preferentially amplified in GIAC included CDK6 (7q21.2), 

GATA6 (18q11.2), GATA4 (8p23.1), EGFR (7p11.2), CD44 (11p13), BCL2L1 (20q11.21), 

FGFR1 (8p11.22), and IGF2 (11p15.5). APC and SOX9 deletions were observed 

preferentially in GIAC, as were frequent mutations in these genes.

GIAC displayed markedly higher frequencies of CpG island hypermethylation than did non-

GIAC (Figure 1C, upper graphs). This finding is attributable in part to the high frequency of 

CpG Island Methylator Phenotype (CIMP) in GIAC, but was also evident in non-CIMP 

tumors. The average density of somatic mutations was also higher in GIAC. Clusters of 

tumors with high mutation densities were observed in gastric and colorectal GIAC as well as 

in breast and uterine non-GIAC (Figure 1C, middle graphs). Frequent SCNA were observed 
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in all GIAC, especially in esophageal adenocarcinomas (EAC), and ovarian and a subset of 

breast non-GIAC (Figure 1C, bottom graphs).

Gene expression analysis revealed 553 genes that were differentially expressed in GIAC 

compared to non-GIAC, after exclusion of genes that differed among corresponding normal 

tissues (Figure S1G and Table S5). Supervised multivariate orthogonal partial least squares-

discriminant analysis ranked 51 of these 553 genes to have significantly higher expression in 

GIAC. Notably, these genes include several that have roles in gastrointestinal stem cell 

biology (e.g. OLFM4, CD44, and KLF4) and genes related to the EGFR signaling pathway 

(Figure S1G).

We next investigated whether genes encoding 139 transcription factors (TFs) that are 

important in GI development (Noah et al., 2011; Sherwood et al., 2009) displayed distinct 

gain- or loss-of-function events in GIAC compared to non-GIAC. Amplifications were 

considered gain-of-function (GOF) events, while deletions, epigenetic silencing, and 

nonsense or indel mutations were considered loss-of-function (LOF) events (Table S6). We 

found 33 transcription factor genes with GOF or LOF exceeding 5% in at least one GIAC 

tumor type (Figure 1D). CDX2 encodes a homeobox transcription factor expressed early in 

endoderm development with evidence as either a lineage-survival oncogene (Salari et al., 

2012) or a tumor-suppressor gene (Bonhomme et al., 2003) in colorectal cancers (CRC), 

depending on context, and is also a marker of intestinal metaplasia in Barrett’s esophagus 

(Moons et al., 2004). Interestingly, we observed CDX2 amplification in esophageal, colon, 

and rectal adenocarcinomas, but LOF in gastric cancers. Although amplifications in the 

genomic loci containing the stem-cell transcription factor KLF5 gene were found in all 

GIAC, these amplifications were associated with increased stemness only in EAC based on a 

gene-expression signature (Malta et al., 2018) (Figure S1H).

Molecular Subtypes within GIAC

Other studies have relied on gene expression, oncogenic pathway, or histopathological 

criteria for subtype delineation among GIAC (Budinska et al., 2013; Cristescu et al., 2015; 

Dienstmann et al., 2017; Guinney et al., 2015; Roepman et al., 2014; Tan et al., 2011). We 

found that unsupervised clustering of GIAC using mRNA, miRNA, and RPPA data was 

strongly influenced by tissue type, thus complicating defining molecular groups spanning 

anatomic boundaries. By contrast, evaluation of mutations, copy-number alterations, and 

DNA methylation patterns yielded tumor subtypes spanning tissue boundaries (Figure S1A). 

Our subgroups are consistent with those identified by recent genomic research across GIAC 

(Cancer Genome Atlas Research Network, 2012, 2014, 2017; Cristescu et al., 2015; Secrier 

et al., 2016; Wang et al., 2014), and rely on molecular features generally evaluable by the 

clinical community.

A subgroup of tumors was characterized by a high Epstein-Barr Virus (EBV) burden, as 

previously determined via mRNA and miRNA analysis (Cancer Genome Atlas Research 

Network, 2014) (Figure 2A). EBV+ tumors, found only in the stomach (n = 30), display the 

most extensive hypermethylation of any tumor type in TCGA (see Figure S4.6 in (Cancer 

Genome Atlas Research Network, 2014). Hypermutated tumors (n = 157), defined by 

mutation density > 10 per megabase (Mb) (Figure S2A) were further substratified based on 
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the implied mechanism of replication error. MSI, arising from defective DNA mismatch 

repair, often yields insertion-deletion (indel) mutations in addition to single nucleotide 

variants (SNV) (Sia et al., 1997), whereas hotspot mutations in polymerase E (POLE) are 

associated with SNV-predominant profiles (Cancer Genome Atlas Research Network, 2012; 

Palles et al., 2013; Zhou et al., 2009) (Figure 2B). Hypermutated samples with an indel 

density of > 1 per Mb and an indel/SNV ratio > 1/150 consisted of almost all tumors with 

clinically-defined MSI (MSI, n = 138; 54% gastroesophageal or GE; 46% colorectal or CR) 

(Figure S2B). All other hypermutated samples were categorized as Hypermutated-SNV 

(HM-SNV, n = 19 (n = 11 with POLE mutations), (47% GE; 53% CR) (Figure 2B and S2B). 

The remaining two groups were distinguished by presence or absence of extensive SCNA 

(Figure S2C). Chromosomal instability (CIN) tumors (n = 625, 48% GE; 52% CR) exhibited 

marked aneuploidy, defined by a clonal deletion score (CDS, See STAR Methods) > 0.0249, 

which is largely determined by chromosome- and arm-level losses. By contrast, Genome 

stable (GS) n = 109, 47% GE; 53% CR) samples lacked such aneuploidy (Figure 2B and 

S2B).

We evaluated the relationship between our molecular subtypes and consensus molecular 

subtypes (CMS), which have been established for CRC based primarily on gene expression 

(Guinney et al., 2015). We applied the CMS classification system to the lower GI tumors in 

our study and found a significant association between the two groupings (p < 2.2×10−16), 

but with noteworthy differences (Figure S2D). The CMS1 - MSI Immune grouping did not 

discriminate MSI tumors from the HM-SNV tumors (Figure S2B). A substantial fraction of 

GS CRC were represented in the CMS3 - Metabolic subtype (p = 1.6×10−6), but the CMS 

subtype system appeared to be largely unable to distinguish CIN and GS (Figure S2D).

Our molecular groupings also correlated with key immune features of GIAC (Figure 2C and 

S2E). As previously reported, EBV+ tumors possessed the highest gene expression scores 

for CD8 T-cells, M1-macrophages, and IFNγ signatures (Figure 2C and S2E) (Derks et al., 

2016; Koh et al., 2017). MSI tumors showed the next greatest IFNγ signature, consistent 

with reported immunogenicity of MSI tumors (Guinney et al., 2015). Moreover, MSI tumors 

displayed diverse immune signatures depending on their tissue of origin (Figures S2F and 

S2G); for example, checkpoint protein CD276 was significantly enriched in MSI CRC 

whereas ENTPD1 was preferentially expressed in MSI gastroesophageal adenocarcinomas 

(GEA) (Figure S2G). HM-SNV also demonstrated heterogeneity in immune signature 

expression when comparing the upper and lower GI tract (Figure S2F). Of translational 

importance, an attenuation in HLA/antigen presentation (Figure S2F) and significant 

elevation in NK-cell gene expression was found in HM-SNV CRC (Figure S2H), suggesting 

that NK cells are found in a subset of tumors and are capable of anti-tumor responses 

(Wagner et al., 2017). The cytotoxic activity of NK cells is finely regulated by the 

integration of activating and inhibitor cues (Ljunggren and Malmberg, 2007), and cells 

lacking MHC expression often are subjected to NK cell cytotoxicity due to the absence of 

inhibitory cues mediated by killer-cell immunoglobulin-like receptor (KIR). These data 

suggest agents to enhance NK activity may be a therapeutic option for HM-SNV tumors.

Unsupervised clustering of DNA methylation data across GIAC using cancer-associated 

methylated sites (excluding CpGs with tissue-specific methylation) revealed extensive CpG 
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island methylation in the EBV+ gastric cancers, distinguishing these tumors (Figure 2D), as 

previously noted by us and others (Cancer Genome Atlas Research Network, 2014; 

Matsusaka et al., 2011; Wang et al., 2014). The remaining tumors could be characterized as 

those lacking a CIMP phenotype (Non-CIMP) and those displaying a low or high frequency 

of DNA hypermethylation (CIMP-L and CIMP-H, respectively).

Hypermutated tumors were located primarily in the central part of the GI tract, the distal 

stomach and proximal colon, whereas CIN tumors were more prevalent in the anatomic 

extremes, the esophagus and distal colon/rectum (Figure 2E) (Budinska et al., 2013). 

Although CIMP-H occurred throughout the upper GI tract and proximal colon (Figure 2F), 

epigenetic silencing of MLH1, responsible for MSI, was observed primarily in the distal 

stomach and proximal colon (Figure 2G). Within the proximal stomach and esophagus, only 

4/29 (14%) of CIMP-H tumors exhibited MLH1 epigenetic silencing and MSI, while 23 of 

the 29 (79%) were MSS and displayed the CIN phenotype (Figure 2H). In the lower GI tract, 

CIMP-H and MSI were largely absent in the descending colon and rectum (Figure 2E, 2H).

Analysis of Hypermethylation and Hypermutation

MSI tumors exhibited distinct expression features independent of tissue of origin, implying 

common biological features of this class of tumors (Figure S3A, S3B). Most sporadic MSI 

cases in both colorectal and gastric cancer arise as a consequence of epigenetic silencing of 

MLH1 by promoter DNA hypermethylation (Herman et al., 1998; Leung et al., 1999) in the 

context of CIMP-H (Weisenberger et al., 2006). MSI tumors with MLH1 methylation were 

associated with BRAFV600E mutation only in the colon, not the stomach (Figure 3A). KRAS 
mutations were found primarily in CIMP-L tumors of the lower GI tract, whereas KRAS 
amplification was observed in upper GI tumors (Figure 3A). TFAP2E promoter methylation, 

which is associated with non-response to chemotherapy in colorectal cancer (Ebert et al., 

2012), was found in a substantial fraction of CIMP-H tumors and in almost all EBV+ gastric 

cancers (Figure 3A). CIMP-H tumors showed near-ubiquitous methylation of the tumor 

suppressor CDKN2A in gastric and colon MSI tumors (Figure 3A and 3B). However, 39% 

of the CIMP-H tumors lacked MLH1 silencing and MSI and instead included other classes 

of GIAC, most commonly CIN tumors in the proximal stomach/esophagus or rectum/

descending colon (Figure 2H, 3B).

Given the tight associations between CIMP-H and MSI and their heterogeneity across 

anatomic boundaries, we studied the collection of tumors containing either of these features 

in more detail (Figure 3B). A portion of MSI cases lacking both MLH1 methylation and the 

CIMP phenotype contained somatic mutations in MLH1 or MSH2, indicating an alternative 

route to loss of DNA mismatch repair (Figure 3B, right side). These tumors were 

preferentially associated with mutations in KRAS rather than BRAF. A small number of 

MSI tumors (n=8) could not be explained by genetic or epigenetic inactivation of a 

mismatch repair gene.

Broadly, the MSI group of CRC harbored lower WNT signatures than did other CRC 

(Figure S3C, S3D), a finding that may be attributable to a reduced reliance of CIMP-H 

tumors on WNT signaling. Among MSI CRC, those arising in the context of CIMP-H have a 

lower percentage of APC mutation (28%) than those arising in either CIMP-L (78%) or non-
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CIMP (58%) (Fisher Exact p = 0.0091). This finding holds true for MSS CIMP-H tumors as 

well, and is discussed in the GS subtype section below. CIMP-H MSI CRC showed a 

reduced combined frequency of either APC or CTNNB1 mutations and decreased WNT 

gene expression signatures compared to non-CIMP-H MSI cases, and were more similar to 

upper GI MSI tumors in their lower reliance on WNT activation (Figure 3C). Despite the 

reduced frequency of APC and CTNNB1 mutations, MSI CIMP-H tumors displayed overall 

greater mutational densities and arose at an older age of onset than did non-CIMP-H MSI 

cases or upper GI MSI cases (Figure 3C).

We investigated the genes silenced by promoter hypermethylation in the molecular 

subgroups (Figure 3D, 3E, and Table S7). Pathway analysis of epigenetically silenced genes 

among all subgroups revealed enrichment for genes encoding DNA binding proteins and 

transcription factors, consistent with previous findings of enrichment for stem-cell Polycomb 

Target Genes (Widschwendter et al., 2007). We identified 135 genes silenced in at least 25% 

of the upper or lower GI MSI tumors and compared their relative frequency of silencing and 

frequency of several key gene mutations (Figure 3E). HUNK, a negative regulator of 

intestinal cell proliferation (Reed et al., 2015), was found to be frequently silenced in MSI 

tumors. Another frequently silenced gene, ELOVL5, lies within the locus with germline 

variants most significantly linked to survival of CRC patients (Phipps et al., 2016).

Molecular Features of the CIN Subtype

The landscape of SCNAs revealed a more finely fragmented genome in GEA compared to 

CRC, despite an overall similar pattern of affected regions of the genome (Figure 4A). 

Evaluation of SCNA distribution, categorized by both focality and intensity, revealed higher 

prevalence of focal copy-number events within the CIN GEA population (Figure 4B and 

S4A). The difference between upper and lower GI was greater for focal amplifications than 

for deletions (Figure 4B), primarily evident in high-amplitude focal amplifications (Figure 

S4A). We developed a score that captures the quantity and intensity of focal high-level 

amplicons (see STAR Methods). CIN tumors with a higher score were designated CIN-Focal 

(CIN-F) whereas those with a lower score, and therefore low-amplitude, broader amplicons, 

were called CIN-Broad (CIN-B) (Figure 4C). The distribution of these two classes of CIN 

differed between upper and lower GIAC, with CIN GEA displaying 74% CIN-F and 26% 

CIN-B, and CRC showing reversed proportions consisting of 22% CIN-F and 78% CIN-B 

(Figure 4C). Despite this difference between upper and lower GI tumors, the ratios of CIN-

B/CIN-F did not vary anatomically within upper GI tumors or within the lower GI tract 

tumors (Figure S4B). Notably, in addition to the higher prevalence of CIN-F in upper GIAC, 

such CIN-F GEA displayed a higher intensity in the focal-amplification score compared to 

their CIN-F CRC counterparts (Figure S4C). CIN-F GEA was associated with advanced 

tumor stage, underscoring its potential clinical significance (Figure 4D).

Although CIMP frequency displayed an anatomic gradient within upper GI (Figure S4D), 

we found no correlation of CIMP class with arm-level or focal SCNA in CIN (Figure S4E). 

CIN-F GEA demonstrated significantly more whole-genome duplication (WGD) than did 

CIN-B GEA, 68% vs. 42% (Figure 4E and S4F), with evidence of two or more genome 

doublings (WGD2) in 18% of CIN-F, compared to 7% of CIN-B in upper GI CIN tumors. 
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WGD2 was associated with poor survival in GEA, independent of age and stage (Figure 

S4G). However, the strong association of genomic doubling and CIN-F was not observed in 

CRC, despite similar total rates of genome duplication (Figure S4H; 59% in lower GI and 

61% in upper GI).

CIN-F GEA sustained significantly more frequent focal amplification of genes encoding 

receptor tyrosine kinases (RTKs), KRAS and cell cycle mediators (Figure 4F). In contrast, 

CIN-B GEA more commonly sustained activating mutations of oncogenes (e.g. KRAS and 

ERBB2) than did GEA-CIN-F tumors (Figure 4F). ERBB2 amplifications significantly co-

occurred with CCNE1 amplifications (p = 0.039) and trended towards co-occurrence with 

gains in chr. 20q/SRC (p = 0.0692). Intriguingly, activating mutations in ERBB2 co-

occurred with ERBB2 amplifications (p = 0.0087). CIN-B GEA harbored more frequent 

somatic inactivation of tumor suppressors related to cell cycle regulation (e.g. CDKN2A), 
WNT-pathway activation (e.g. APC), and TGFβ regulation (e.g. SMAD2 and SMAD4) than 

CIN GEA-F. By contrast, CIN-F GEA showed a higher frequency of TP53 mutations 

(Figure 4F; 76% vs. 54%) and higher rates of oncogene amplifications (Figure 4G).

Among lower GI CIN tumors, the differences in somatic mutations and copy-number 

alterations found in CIN-F and CIN-B tumors were modest (Figure S4I), although CIN-F 

did associate with poorer survival in CRC (Cox regression p = 0.0053, adjusted for stage, 

age, and molecular subtype). We identified amplifications including CDX2, ERBB2, and 

CCND2 enriched in these tumors. Consistent with the different patterns of CIN between 

upper and lower GI cancers, we found that ERBB2+ CRC not only harbor lower CIN-F 

scores (Figure S4J) but also fewer co-occuring genomic alterations than ERBB2+ GEA 

(Figure S4K). These findings are consistent with efficacy in CRC of ERBB2 therapy without 

chemotherapy (Sartore-Bianchi et al., 2016), compared to ERBB2+ GEA, which often carry 

co-occuring amplified oncogenes implicated in de novo resistance (Janjigian et al., 2018; 

Kim et al., 2014; Sartore-Bianchi et al., 2016).

CIN-B and CIN-F CRC displayed comparable rates of APC and KRAS mutations (Figure 

S4I; APC: 79% vs 87%; KRAS: 35 vs 44%). However, PIK3CA mutations and TGFβ 
pathway alterations were more common in CIN-B CRC than in CIN-F CRC (Figure S4I). 

Both groups of CIN CRC had somatic patterns more closely resembling the CIN-B GEA 

group, in which oncogenes were activated more commonly by mutation than by 

amplification. These data suggest that the preponderance of early APC loss and selection for 

mutational activation of oncogenes like KRAS may precede a form of aneuploidy and 

transformation distinct from the catastrophic aneuploidy and resulting oncogene 

amplification occurring in GEA (Figure 4G).

Among CIN CRC, we observed more frequent CIMP, primarily CIMP-L, in proximal, right-

sided CIN tumors and less frequent CIMP in distal, left-sided ones (Figure S5A). Arm-level 

SCNAs were significantly less frequent in CIMP+ CIN CRC (Wilcoxon p = 2.7×10−9), 

despite the lack of an overall difference in focal alterations (Figure S5B). Among 

chromosome arms, gain of 20q was most enriched in non-CIMP CIN CRC, with a mean 

copy-number gain of 1.8 (ploidy-adjusted), compared to 1.1 in CIMP+ CIN CRC (Figure 

S5C). By contrast, except for TP53, which was more frequently mutated in non-CIMP CIN 
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tumors, the frequency of somatic mutations was significantly higher in CIMP+ CIN CRC 

(Figure S5D), notably affecting the TGFβ pathway and key oncogenes including KRAS/
NRAS/BRAF and PIK3CA. Dichotomizing CIN CRC tumors by CIMP status thus showed 

parallels to the division of upper GI CIN tumors by CIN-F/CIN-B status. CIMP+ CIN CRC, 

like CIN-B GEA, harbored more oncogene mutations (Figure 5A). Taken together, these 

data suggest that CIMP status may play an important role in shaping evolution of CIN 

tumors in the lower GI tract, and to a lesser extent in the upper GI tract.

Molecular Features of the GS Subtype

Although CRC are classically divided between hypermutated/MSI and CIN (Bijlsma et al., 

2017), we detected a population of CRC lacking both aneuploidy/CIN and hypermutation, a 

group we classified as GS (Figure 5B). Unlike with MSI, these GS CRC shared few 

underlying biologic features with GS in upper GIAC. As we reported earlier (Cancer 

Genome Atlas Research Network, 2014), upper GI GS tumors are enriched for the diffuse-

type gastric cancer (65.7%) and commonly harbor mutations in CDH1 and RHOA (Figure 

S5E). Thus, upper GI GS, like EBV+ tumors, represent an essentially unique entity confined 

to stomach.

GS CRC shared features of other CRC; like the CIN CRC, GS CRC shared a predilection for 

loss of APC (GS 81% vs CIN 85%, Figure S5F). GS CRC were more common in ascending 

and transverse colon (Figure 2E) and when compared to the CIN CRC, showed significant 

enrichment for the CIMP-L phenotype (79% vs 40%, p = 1.2×10−9, Figure 5B) and for the 

CMS3 metabolic consensus molecular subtype (p = 1.6×10−6, Figure S2D) (Guinney et al., 

2015). Despite having fewer SCNAs, a subset of GS CRC showed amplifications of IGF2 (q 

value < 0.05) (Figure S5G). MAPK pathway mutations were more common in these tumors, 

with KRAS, NRAS or BRAF mutated in 69%, 10%, and 9% of tumors, respectively, and 

with PIK3CA mutations present in 43%, compared to 22% of CIN CRC (Figure 5A). 

Consistent with the relative lack of aneuploidy, TP53 mutations were less common (16%) in 

GS compared to CIN tumors (80%) (Figure S5E). However, we observed enrichment for 

somatic mutations in SOX9, which encodes a transcription factor, and in PCBP1, which 

encodes an RNA-binding protein that regulates splicing, mRNA stability, and translation 

(Leffers et al., 1995) (Figure 5A, 5C, S5H). SOX9, mutated in 29% of GS CRC, encodes a 

WNT-regulated transcription factor that controls cell fate and crypt homeostasis in intestinal 

development (McConnell et al., 2011; Nandan et al., 2014). GS CRC with mutations in 

SOX9 also had more frequent somatic mutations in the TGFβ pathway genes, including 

PCBP1 (Figure S5I). Our mutation analysis within GS revealed highly clustered missense 

mutations in the KH domain of PCBP1 in 13% of GS CRC, raising the potential for a GOF 

event (Figure 5C). Interestingly, overexpression of wild-type PCBP1 was associated with 

oxaliplatin resistance in CRC (Guo et al., 2010).

Overall, GS CRC had more frequent mutations in the TGFβ pathway, RAS/RAF genes, and 

PIK3CA than did CIN CRC (Figure S5F). Comparison of GS CRC to CIN CRC revealed a 

progressive gradation of features between non-CIMP CIN CRC, CIMP-H or CIMP-L CIN 

CRC and GS CRC (Figure 5A). These data suggest a pathway to cancer in the colorectum in 

which APC-mutant cells, typically containing the CIMP-L phenotype, are able to undergo 
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transformation by sustaining additional pathogenic mutations without the need for p53 loss 

or aneuploidy (Figure 5D).

We had noted earlier that CIMP-H MSI tumors appeared to rely less on WNT signaling. 

CIMP-H MSS tumors also display reduced rates of APC mutation (47%) compared to 

CIMP-L (87%) or non-CIMP (86%) (Fisher Exact p = 0.00066). These findings suggest an 

alternative CRC pathway that is not initiated by mutation of APC, but rather by an 

epigenetic aberation causing CIMP-H. If MLH1 is silenced in the context of CIMP-H, then 

the tumor would become MSI, whereas if MLH1 is not affected, the tumor would develop 

along the CIN pathway to give rise to CIMP-H MSS CIN tumors (Figure 5D). Non-

hypermutated CRC from the right-sided (ascending/transverse) colon revealed significantly 

higher rates of KRAS, PIK3CA and SOX9 mutation than those from the left-sided 

(descending) colon/rectum (Figure 5E).

Mutational Signatures in GIAC

MSI and POLE signatures dominated the total mutational signature scores among GIAC as a 

consequence of the high mutational burden in MSI and POLE-deficient tumors in the MSI 

and lower-GI HM-SNV groups, respectively (Figures S6A and S6B). Signature discovery 

following removal of hypermutated cases revealed a BRCA signature (COSMIC signature 

3), two APOBEC signatures, a signature resembling COSMIC signature 17 with common 

AA>AC transversions, and a signature dominated by C>T transitions at CpG dinucleotides 

(COSMIC signature 1) (Figures 6A, 6B, 6C, 6D, 6E and 6F) (Alexandrov et al., 2013; 

Bignell et al., 2010). The APOBEC signatures contributed minimally to the mutational 

profile across GIAC (Figures 6B, 6C, S6C and S6D), but the other three signatures had 

substantial activity in non-hypermutated GIAC with the AA>AC signature limited to upper 

GIAC (Figures 6B, 6C, 6E, and S6D). A recent study, identified the existence of the BRCA 

signature in gastric cancers that lacked mutations in BRCA1 and BRCA2 (Alexandrov et al., 

2015). We confirmed the presence of BRCA signature activity in GIAC, with significant 

enrichment of somatic and germline mutations in several homologous recombination genes 

such as BRCA1, BRCA2 and PALB2 (Figure S6E). BRCA signature activity was also 

significantly enriched in tumors with epigenetic silencing of BRCA1 or RAD51C, including 

within EBV+ GCs (Figure S6F). We observed a significant association between BRCA 

signature activity and upper GI cancers, particularly the CIN subtype (Figure 6D). The 

BRCA signature was associated only with focal SCNA events (Figure S6G), which are 

likely initiated by double-strand breaks. The AA>AC signature was also enriched in upper-

GI CIN (Figures 6E, S6C and S6D), most notably in the tubular esophagus (Figure S6D). 

Moreover, this mutational signature was enriched in CIN-F and TP53-mutated upper GI CIN 

tumors (Figure 6E). The AA>AC signature lacks a known etiology, but its association with 

GEA and its correlation with higher CIN-F scores raises the possibility that this signature 

reflects a process that contributes to greater focal aneuploidy observed in GEA compared to 

CRC and differences in oncogene profiles between upper and lower GIAC (Figure 7).

The CpG>TpG pattern, often termed the “aging signature”, was the most common signature 

among all tumors, but it was especially frequent in right-sided CRC (Figure S6C). This 

signature is thought to arise from spontaneous hydrolytic deamination of 5-methylcytosine, 
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and is consolidated as a persistent mutation if it occurs during DNA replication. Hence, this 

signature tracks the cumulative number of cell divisions and aging. Although we observed 

an association with CIMP status (Figure 6F), we do not believe that this is explained by a 

simple quantitative difference in DNA methylation. The CIMP hypermethylation is 

measured primarily at promoter CpG islands, which are unmethylated in normal cells and 

thus do not sustain many CpG>TpG mutations prior to acquisition of methylation and clonal 

expansion, whereas the mutation signatures were obtained by exome sequencing of gene 

bodies, which are generally highly methylated. The association between CIMP status and 

CpG>TpG signature may reflect the fact that CIMP tumors require more cell divisions to 

progress and thus acquire more CpG>TpG mutations over time.

DISCUSSION

GIAC originate from columnar epithelium with a shared endodermal origin and display a 

spectrum of common molecular features such as aneuploidy and microsatellite instability 

that span anatomic boundaries. GIAC are enriched for activation of the WNT signaling 

pathway, particularly in the lower GI tract, consistent with the importance of WNT in GI 

development (Schepers and Clevers, 2012). We found that CIMP-H CRC appeared less 

dependent on canonical WNT signaling mutations and pathways. GIAC also displayed a 

predisposition for disruptions in TGFβ and SMAD signaling components. TGFβ signaling 

helps to maintain intestinal stem cell equilibrium, promoting growth during development, 

but controlling self-renewal in adult epithelium (Mishra et al., 2005).

The vast majority of sporadic MSI tumors arise as a consequence of promoter methylation of 

MLH1 in the context of CIMP-H. Methylation profiles of CIMP-H tumors are quite 

consistent throughout the GI tract. However, MLH1 silencing within CIMP-H is much more 

anatomically restricted, primarily observed in the distal stomach and proximal (ascending 

and transverse) colon, but notably uncommon in proximal upper GI cancers. The epithelia of 

the distal stomach and proximal colon appear more susceptible to oncogenic effects of 

MLH1 silencing. High rates of epithelial cell turnover with accompanying DNA replication 

may more effectively consolidate replication-associated errors in these sections of the GI 

tract. This hypothesis is consistent with the tumor spectrum observed with germline 

mutations in mismatch repair genes, leading to increased risk of cancers arising in highly 

proliferative tissues (Lynch et al., 2015). In this scenario, stochastic promoter methylation of 

MLH1 from CIMP-H would provide less selective advantage when arising in the less 

proliferative sections of the GI tract.

CIMP-H GIAC possessed other differences in molecular features between various anatomic 

locations. BRAFV600E mutations occurred almost exclusively in CIMP-H tumors of the 

ascending colon and were absent from otherwise similar CIMP-H GEAs. In addition, some 

colorectal CIMP-H tumors with similar DNA methylation profiles lacked BRAFV600E 

mutations, a finding inconsistent with the proposed role for BRAFV600E mutation as a cause 

of CIMP-H (Fang et al., 2016). Alternatively, CIMP may provide a permissive environment 

for BRAFV600E mutation, perhaps by silencing pathways involved in oncogene-induced 

senescence and apoptosis (Hinoue et al., 2009). Despite the large overlap of CIMP-H and 

MSI in GIAC, our data revealed that this co-occurrence occurs predominantly in the distal 
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stomach and ascending colon. The etiology for CIMP-H tumors commonly progressing via a 

CIN pathway in proximal GE and distal CRC is not established.

CIN is a common feature of GIAC and other tumors (Cancer Genome Atlas Research 

Network, 2012, 2014, 2017; Hoadley et al., 2014). Despite the deleterious effect on cellular 

and organismal fitness (Sheltzer et al., 2011; Sheltzer et al., 2017; Torres et al., 2007; 

Williams et al., 2008), CIN with its resultant aneuploidy remains the predominant molecular 

subtype among GIAC, found most frequently in the proximal upper and distal lower GI tract 

(Dulak et al., 2012). Unlike tumors with MSI, CIN tumors had more discrepant molecular 

features between upper and lower GI cancers. Most striking was the preponderance of focal, 

high amplitude SCNAs, especially amplifications, in GEA. Within CIN GEA, we found that 

tumors with high CIN-F scores had a strong association with prior genome doubling, a 

process associated with CIN (Ganem et al., 2007). Amplifications in CIN-F GEA commonly 

targeted mitogen pathway components, cell cycle regulators, and lineage survival 

transcription factors, whereas CIN-B and GS tumors more frequently carried activating 

mutations in these pathways.

A notable finding was the predilection in CIN-B GEA for alterations in tumor suppressors 

such as CDKN2A, APC and SMAD4. These findings suggest that the marked aneuploidy 

found within the CIN-F GEA is less apt to occur in precursors with pathogenic alterations 

other than TP53. One explanation is that precursors with already altered oncogenes/tumor 

suppressors have less requirement for more ‘catastrophic’ aneuploidy to simultaneously 

abrogate multiple such checkpoints. By contrast, such marked instability could facilitate 

transformation in precursors with p53 loss without as many other preexisting pathogenic 

alterations. Indeed, although p53 loss alone is not sufficient to promote aneuploidy (Bunz et 

al., 2002), several lines of evidence support its necessity, most likely by circumventing p53-

dependent cell cycle arrest in response to damage by reactive oxygen species (ROS) (Guo et 

al., 2010), to mutations in ataxia telangiectasia (ATM) (Li et al., 2010), or to spindle 

assembly checkpoint (SAC) activation (Thompson and Compton, 2010). Given these data, 

the lesser rates of CIN-F in lower GI CIN tumors (compared to CIN tumors of the upper GI 

tract) may be a consequence of APC loss as an early event in colorectal neoplasia, thus 

leading to TP53 mutation rarely occurring in the absence of a prior APC loss. Instead, we 

noted that CIMP status likely has a stronger influence on the features of CIN CRC, with 

CIMP being associated with mutations in KRAS and in tumor suppressor pathways such as 

TGFβ. Aneuploid CIMP tumors in the lower GI tract showed lower rates of SCNA, but a 

greater number of oncogenic mutations compared to non-CIMP. Both upper and lower GI 

CIN tumors were also associated with the BRCA mutational signature. However, the 

propensity for greater CIN-F in upper GIAC correlated with the AA>AC mutational 

signature, a signature of unknown etiology, previously reported in upper GI tumors (Dulak et 

al., 2013).

Our exploration of the role of CIMP in shaping the features of CIN in CRC became linked 

with our finding of a GS CRC subtype falling outside the classic CIN/MSI CRC dichotomy. 

This GS subtype may partially overlap with the previously identified Microsatellite and 

Chromosome Stable (MACS) CRC (Chan et al., 2001), while showing important 

differences. The MACS phenotype is an independent predictor of poor outcome (Banerjea et 
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al., 2009), in contrast, GS CRC are enriched for earlier stage tumors. MACS tumors have an 

elevated proportion of early onset cases (Chan et al., 2001), whereas GS CRC have a higher 

mean age at diagnosis than CIN cases. Like MACS, HM-SNV cases are microsatellite and 

genome stable, and also arise in younger patients, so it is possible that some early-onset 

MACS tumors may have represented unrecognized HM-SNV tumors. The GS CRC overlap 

with a subgroup identified by gene expression clustering as CMS3 (Guinney et al., 2015) 

and commonly displaying CIMP-L. Many features enriched in CIMP CIN CRC compared to 

non-CIMP CIN CRC were even more prevalent in GS CRC. Moreover, we found these 

tumors to have recurrent mutations in SOX9 and PCBP1. While the presence of frameshift 

mutations of SOX9 implies LOF, truncating mutations in SOX9 are overexpressed in 

primary tumor specimens (Javier et al., 2016), making their functional significance unclear. 

GS CRC with mutations in SOX9 also had more frequent somatic mutations in TGFβ 
pathway genes, including PCBP1, which impacts TGFβ signaling by regulating Smad3-

associated alternative splicing (Tripathi et al., 2016). Given the strikingly low frequency of 

TP53 mutations in GS CRC, the presence of SOX9 and PCBP1 mutations may cooperate 

with APC and KRAS mutation to facilitate transformation, despite lack of hypermutation 

and low levels of aneuploidy.

Our findings also bear some relevance to the evolving field of immunotherapy, which 

already has established efficacy in MSI tumors. The HM-SNV tumors, which display a large 

SNV burden in the setting of POLE mutations, did not harbor the equivalent CD8 or IFNγ 
signatures as did the MSI tumors, perhaps suggesting that indel mutations may better 

generate neoantigens than do SNVs. The strong signatures in EBV+ tumors suggest a 

potential for immune checkpoint inhibition in this subset. The reason for consistently higher 

IFNγ signatures in upper GI compared to lower GI adenocarcinomas when stratified by 

molecular subtype is less obvious and may simply indicate that GEA are more immunogenic 

than CRC, results consistent with the presence of clinical responses to PD1 inhibitor 

monotherapy in MSS GEA, but not in CRC (Jin and Yoon, 2016; Muro et al., 2016).

In summary, these results highlight how processes such as DNA hypermethylation and CIN 

can manifest themselves in different ways across related tissues. In some instances, as with 

DNA hypermethylation in upper-GI vs. lower-GI MSI tumors, such differences can be 

subtle. However, as the exploration of CIN indicates, other processes can lead to 

substantially different molecular outcomes across these regions. Provision of greater detail 

in the various manifestations of molecular defects may reveal new opportunities for targeted 

therapies for these cancers. Furthermore, these data highlight how consideration of 

molecular subtypes as well as organ of origin will be essential in the study and treatment of 

cancer.

STAR METHODS

CONTACT FOR RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Peter W. Laird (Peter.Laird@vai.org). Sequence data hosted at 

the GDC is under controlled access. Details for gaining access can be found at (https://

gdc.cancer.gov/access-data/data-access-processes-and-tools).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects and Tumor Data Selection—Molecular data were obtained as part 

of the Cancer Genome Atlas Project, from patients untreated by chemo- or radiation therapy 

and who provided informed consent; tissue collection was approved by the local Institutional 

Review Boards (IRBs) as noted below. GIAC cases (n=921) were selected as follows. Of the 

559 Upper GI cases (171 ESCA and 388 STAD) in (Cancer Genome Atlas Research 

Network, 2017), 90 were excluded as ESCC and two as undifferentiated (TCGA-2H-A9GQ, 

TCGA-VR-A8Q7). Of the remaining 467 Upper GI adenocarcinomas, 462 (79 ESCA, 383 

STAD) cases have molecular data available from the five TCGA core platforms (RNASeq, 

miRNASeq, DNA Methylation, SNP6, and mutation calls). We used germline DNA from 

blood or nonmalignant gastrointestinal tissue as a reference for detecting somatic alterations. 

For lower GI, all available TCGA COAD and READ cases were considered, but cases 

bearing the BCR annotation “Redacted” were excluded, as were cases with Notification: 

‘Unacceptable Prior Treatment’ or ‘Item does not meet study protocol’. Review of COAD 

and READ pathology reports led to the exclusion of three additional COAD cases from this 

study (TCGA-AA-A022: Pathology report indicates poorly-differentiated carcinoma of the 

neuroendocrine type; TCGA-AA-A02R: Pathology report shows poorly-differentiated 

carcinoma with positivity for both S-100 and chromogranin, and focal synaptophysin; and 

TCGA-AZ-6607: Pathology report indicates this is likely to be a pancreaticobiliary primary 

tumor metastasizing to colon. The remaining 459 lower GI cases (341 COAD and 118 

READ) with molecular data available for the five platforms were retained.

A group of 2,871 non-GIAC cases was constructed from TCGA tumor types BRCA, CESC, 

CHOL, LUAD, OV, PAAD, PRAD and UCEC, comprising all cases meeting the established 

criteria of the PanCancer Atlas Consortium (exclusion of Redacted,‘Unacceptable Prior 

Treatment’ or ‘Item does not meet study protocol’ and cases with no molecular data). For 

BRCA, CHOL, PRAD, and OV, and UCEC cases annotated as problematic by Expert 

Pathology Review (marked as AWG_excluded_because_of_pathology in the 

PanCancerAtlas Merged Annotation File) were excluded. For CESC, LUAD, and PAAD, 

further exclusions were made based on case review, as follows: CESC, retain only 

adenocarcinomas; LUAD, exclude samples without histology; PAAD, exclude samples with 

cellularity < 20%.

Demographic data for patients are as follows: GIAC (60.3% male, median age 68 years, 

range 29–90 years); Non-GIAC (21.3% male; median age 61 years, range 25 to 90 years).

TCGA Project Management collected necessary human subjects documentation to ensure 

the project complies with 45-CFR-46 (the “Common Rule”). The program has obtained 

documentation from every contributing clinical site to verify that IRB approval has been 

obtained to participate in TCGA. Such documented approval may include one or more of the 

following:

• An IRB-approved protocol with Informed Consent specific to TCGA or a 

substantially similar program. In the latter case, if the protocol was not TCGA-

specific, the clinical site PI provided a further finding from the IRB that the 

already-approved protocol is sufficient to participate in TCGA.
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• A TCGA-specific IRB waiver has been granted.

• A TCGA-specific letter that the IRB considers one of the exemptions in 45-

CFR-46 applicable. The two most common exemptions cited were that the 

research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for 

informed consent, because the received data and material do not contain directly 

identifiable private information.

• A TCGA-specific letter that the IRB does not consider the use of these data and 

materials to be human subjects research. This was most common for collections 

in which the donors were deceased.

METHOD DETAILS

Sample Processing—RNA and DNA were extracted from tumor and adjacent normal 

tissue specimens using a modification of the DNA/RNA AllPrep kit (Qiagen). The flow-

through from the Qiagen DNA column was processed using a mirVana miRNA Isolation Kit 

(Ambion). This latter step generated RNA preparations that included RNA <200 nt suitable 

for miRNA analysis. DNA was extracted from blood using the QiaAmp blood midi kit 

(Qiagen). Each specimen was quantified by measuring Abs260 with a UV 

spectrophotometer or by PicoGreen assay. DNA specimens were resolved by 1% agarose gel 

electrophoresis to confirm high molecular weight fragments. A custom Sequenom SNP 

panel or the AmpFISTR Identifiler (Applied Biosystems) was utilized to verify tumor DNA 

and germline DNA were derived from the same patient. Five hundred nanograms of each 

tumor and normal DNA were sent to Qiagen for REPLI-g whole genome amplification using 

a 100 μg reaction scale. Only specimens yielding a minimum of 6.9 μg of tumor DNA, 5.15 

μg RNA, and 4.9 μg of germline DNA were included in this study. RNA was analyzed via 

the RNA6000 Nano assay (Agilent) for determination of an RNA Integrity Number (RIN), 

and only the cases with RIN >7.0 were included in this study.

Pathology Review—All samples were systematically evaluated by gastroenterological 

pathologists to confirm the histopathologic diagnosis and any variant histology according to 

the most recent World Health Organization (WHO) classification(International Agency for 

Research on Cancer, 2010). All tumor samples were assessed for tumor content (percent 

tumor nuclei), Tumor samples were evaluated for the presence and extent of inflammatory 

infiltrate as well as the type of the infiltrating cells in the tumor microenvironment 

(lymphocytes, neutrophils, eosinophils, histiocytes, plasma cells). Any non-concordant 

diagnoses among the pathologists were re-reviewed and resolution achieved after discussion.

DNA Sequencing data—Exome capture was performed using Agilent SureSelect Human 

All Exon 50 Mb according to the manufacturers’ instructions. Briefly, 0.5–3 micrograms of 

DNA from each sample were used to prepare the sequencing library through shearing of the 

DNA followed by ligation of sequencing adaptors. All whole exome (WES) and whole 

genome (WGS) sequencing was performed on the Illumina HiSeq platform. Paired-end 

sequencing (2 × 101 bp for WGS and 2 × 76 bp for WE) was carried out using HiSeq 

sequencing instruments; the resulting data was analyzed with the current Illumina pipeline. 

Basic alignment and sequence QC was done with the Picard and Firehose pipelines at the 
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Broad Institute. Sequencing data were processed using two consecutive pipelines: (1) 
Sequencing data processing pipeline (“Picard pipeline”). Picard (http://

picard.sourceforge.net/) uses the reads and qualities produced by the Illumina software for 

all lanes and libraries generated for a single sample (either tumor or normal) and produces a 

single BAM file (http://samtools.sourceforge.net/SAM1.pdf) representing the sample. The 

final BAM file stores all reads and calibrated qualities along with their alignments to the 

genome. (2) Cancer genome analysis pipeline (“Firehose pipeline”). Firehose (http://

www.broadinstitute.org/cancer/cga/Firehose) takes the BAM files for the tumor and patient-

matched normal samples and performs analyses including quality control, local realignment, 

mutation calling, small insertion and deletion identification, rearrangement detection, 

coverage calculations and others as described briefly below. The pipeline represents a set of 

tools for analyzing massively parallel sequencing data for both tumor DNA samples and 

their patient-matched normal DNA samples. Firehose uses GenePattern (Reich et al., 2006) 

as its execution engine for pipelines and modules based on input files specified by Firehose. 

The pipeline contains the following steps:

Quality control. This step confirms identity of individual tumor and normal to avoid 

mix-ups between tumor and normal data for the same individual.

Local realignment of reads. This step realigns reads at sites that potentially harbor 

small insertions or deletions in either the tumor or the matched normal, to decrease 

the number of false positive single nucleotide variations caused by misaligned reads.

Identification of somatic single nucleotide variations (SSNVs) – This step detects 

candidate SSNVs using a statistical analysis of the bases and qualities in the tumor 

and normal BAMs, using Mutect (Cibulskis et al., 2013).

Identification of somatic small insertions and deletions – In this step, putative 

somatic events were first identified within the tumor BAM file and then filtered out 

using the corresponding normal data, using Indellocator (Ratan et al., 2015).

Mutation Data—A series of quality-control filters according to the MC3 MAF were 

applied to mutations: (1) A filter for artificial CC>CA mutations caused by sample oxidation 

(8-oxoguanine) was applied to remove potential CC>CA artifacts (Costello et al., 2013); (2) 

Variants that were frequently observed in the Exome Aggregation Consortium (http://

exac.broadinstitute.org) were excluded; (3) mutations with evidence of strand bias were 

excluded; (4) mutations with “ndp” labels were excluded; (5) duplicated mutations due to 

redundant tumor or normal samples were excluded. Somatic mutation calling was focused 

on coding mutations spanning missense and nonsense mutations, in-frame and frame-shift 

indels, and mutations that occurred on splice site, start codon, or stop codon.

The MutSig2CV (Cancer Genome Atlas Research Network, 2011) was applied to the 

quality-controlled mutation data to evaluate significance of mutated genes and estimate 

mutation densities of samples. MutSig2CV combines evidence from background mutation 

rate, clustering of mutations on hotspots and conservation of mutated sites to calculate the 

false discovery rates (q values). Genes of q value < 0.1 were declared significant.
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Microsatellite Instability—DNA samples were evaluated for Microsatellite Instability 

using the MSI-Mono-Dinucleotide assay, which examines four mononucleotide repeat loci 

(polyadenine tracts BAT25, BAT26, BAT40 and transforming growth factor receptor type II) 

and three dinucleotide repeat loci (CA repeats in D2S123, D5S346 and D17S250).

Somatic Copy Number Alterations—DNA from each tumor or germline sample was 

hybridized to Affymetrix SNP 6.0 arrays using protocols from the Genome Analysis 

Platform of the Broad Institute as previously described (McCarroll et al., 2008). From raw. 

CEL files, Birdseed was used to infer a preliminary copy-number at each probe locus (Korn 

et al., 2008). For each tumor, genome-wide copy-number estimates were refined using 

tangent normalization, in which tumor signal intensities are divided by signal intensities 

from the linear combination of all normal samples that are most similar to the tumor. This 

linear combination of normal samples tends to match the noise profile of the tumor better 

than any set of individual normal samples, thereby reducing the contribution of noise to the 

final copy-number profile. Individual copy-number estimates then underwent segmentation 

using Circular Binary Segmentation (Olshen et al., 2004). Segmented copy-number profiles 

for tumor and matched control DNAs were analyzed using Ziggurat Deconstruction, an 

algorithm that parsimoniously assigns a length and amplitude to the set of inferred copy-

number changes underlying each segmented copy number profile, and the analysis of broad 

copy-number alterations was then conducted as previously described (Mermel et al., 2011). 

Significant focal copy-number alterations were identified from segmented data using 

GISTIC 2.0 (Mermel et al., 2011). Allelic copy number, regions of homozygous deletions, 

whole genome doubling and purity and ploidy estimates were calculated using the 

ABSOLUTE algorithm (Carter et al., 2012).

Copy ratios of the genomic segments were adjusted by purity and ploidy using the In Silico 

Admixture Removal (ISAR) method (Carter et al., 2012). The tumor purity and ploidy were 

estimated with ABSOLUTE (Absolute quantification of somatic DNA alterations in human 

cancer (Carter et al., 2012). GISTIC 2.0 (Mermel et al., 2011) was used to identify 

significant genomic regions, and q values that were smaller than 0.1 were considered 

significant. The gene under selective pressure in each significant amplification/deletion peak 

was manually curated with consideration of the common fragile sites (CFS). The gene-level 

copy numbers were obtained from GISTIC, and the gene was considered as amplified or 

deleted if the gene-level copy number change (ploidy-adjusted) was larger than 2 or smaller 

than −1.3, respectively. Whole-genome doubling (WGD) calls, absolute allelic copy 

numbers, and clonal statuses of the SCNAs were all obtained from ABSOLUTE.

Aneuploidy Scores—The aneuploidy scores were calculated to quantify various kinds of 

aneuploidy in terms of length and magnitude of the copy-number events including segment 

gains and losses. The aneuploidy scores in this study were obtained as follows: (1) the 

original copy ratios of the genomic segments were adjusted by purity and ploidy using the 

ISAR method as noted above; (2) GISTIC 2.0 was used to deconstruct the ISAR-adjusted 

copy-number profile into SCNA events (discrete copy-number alterations), and each SCNA 

event could be categorized based on its length and magnitude (with details below); (3) for 

each category of SCNA events, e.g., focal amplifications, the corresponding aneuploidy 
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score was calculated as log10(1 + n), where n is the number of events in that category. 

Similar approaches to the aneuploidy scores in principle were applied in a recent study 

(Davoli et al., 2017) as well as in our previous study (Dulak et al., 2012). The categories of 

SCNA events were defined as (1) Arm-level events: the relative SCNA length (as a 

proportion to the arm length) larm ≥ 0.5, and the absolute value of amplitude |m| > 0.3, and 

the threshold of 0.3 was applied to remove low copy ratio changes that were likely noise; (2) 

Focal events: larm < 0.5, |m| > 0.3; (3) Focal amplifications: larm < 0.5, m > 0.3; (4) Focal 

deletions: larm < 0.5, m < −0.3; (5) High-level focal amplifications: larm < 0.5, m > 1; (6) 

Deep-level focal deletions: larm < 0.5, m < −1. This method serves as a quantification of 

different types of genomic aneuploidy, and it is different from the gene-level amplification 

and deletion mentioned above, where conservative thresholds (2 and −1.3) for the gene-level 

copy number (not SCNA events) were applied to define functional alterations of the genes.

CIN-Focal Score—We developed a CIN-Focal (CIN-F) score to capture the most focal 

high-level amplicons (MFAs), which are likely to be functional gains of specific genomic 

regions that were subject to positive selection during cancer evolution. Based on the 

deconstructed copy-number events from GISTIC 2.0, we defined those MFAs as l < 3 Mb 

and m > 2, where l is the length of the amplicon in mega-bases, and m is the event amplitude 

as mentioned above. Given each of those amplicons, the CIN-F score of a tumor was first 

calculated as the weighted sum of the magnitude ma of each amplicon a (weighted by its 

length la), and then log-transformation was applied:

SCIN−F = log10 (1 + ∑ala · ma)

Because ma is the ploidy-adjusted amplitude of copy-number gain, la · ma is theoretically 

proportional to the relative amount of DNA (compared to the total cancer DNA) of the 

amplicon a, so that the CIN-F score corresponds to the amount of additional DNA within the 

MFAs. An alternative metric to CIN-F score is simply the total number of MFAs in a 

genome regardless of the lengths and amplitudes of the MFAs. The CIN-F score showed a 

binomial distribution in the upper GI cancers. We used kernel density estimation of Gaussian 

kernels (R statistical software, the “density” function) to set the threshold for 

dichotomization at the local minimum of estimated density of the CIN-F score, and this 

analysis yielded a threshold of SCIN-F = 0.438. The CIN tumors was then dichotomized into 

CIN-F and CIN-B as shown in Figure 4C.

Clonal Deletion Score (CDS)—To identify tumors with chromosomal instability, we 

developed a score, termed the Clonal Deletion Score, or CDS, which quantifies the number 

of clonally deleted genomic regions in each tumor’s genome. The CDS of each tumor was 

calculated using absolute allelic copy numbers of genomic segments of the tumor. For each 

genomic segment, the absolute allelic copy numbers are denoted as q1 and q2 for the two 

alleles with lower and higher copy number, respectively. If (1) the segment is a deletion, i.e., 

q1 < q2, and q1 + q2 < ), where ) is the average tumor ploidy; and (2) the deletion is clonal, 

i.e., q1 is a clonal copy number according to ABSOLUTE; then the clonal deletion effect 

(CDE) of the segment is calculated as:
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CDE = 2 1 −
q1 + q2

τ

If a segment does not satisfy the above criteria, the CDE of that segment is zero. The copy 

number of the higher allele q2 was incorporated so as to diminish the CDE when there was a 

gain of the higher allele, e.g., copy-neutral loss of heterozygosity (LOH). Given the CDE of 

each segment s, the CDS of a tumor is the average of CDE weighted by the lengths of the 

segments:

CDS = ∑sws · CDEs, ws =
ls

∑s ls

where ls is the length of a segment. The CDSs from the GI adenocarcinomas showed a clear 

bimodal separation. The kernel density estimation approach as mentioned above was used to 

set the threshold for dichotomization of CDS. A threshold of CDS = 0.0249 was then 

applied for the binary CIN/GS classification (Figure 2B and S2B), which corresponds to 

distinct copy-number profiles as shown in Figure S2C.

Mutational Signatures—Mutational signatures were identified from SNVs using a 

Bayesian version of the non-negative matrix factorization method as described previously 

(Kim et al., 2016). The mutations were deconvoluted into distinct mutational signatures 

based on the number of mutations partitioned by 6 base substitutions (C>A, C>G, C>T, 

T>A, T>C, and T>G) and 16 possible combinations of neighboring bases that resulted in 96 

possible types of mutations. A 96-by-M matrix of mutation counts (M is the number of 

samples) was constructed as the input data for signature discovery. Cosine similarity was 

used to evaluate the resemblance of the identified signatures with the COSMIC signatures 

(http://cancer.sanger.ac.uk/cosmic/signatures). For each sample, the estimated number of 

mutations from a signature was used as the intensity of that signature. A two-stage strategy 

of mutational signature discovery was performed in this study to achieve more accuracy in 

the identification of signatures. In the first stage, all samples were used to identify the 

signatures. In the second stage, the analysis was performed only for the non-hypermutated 

cases with the MSI and POLE signatures removed from the mutation counts to facilitate 

identification of signatures in the non-HM population.

Stemness Index—We used one-class logistic regression (Sokolov et al., 2016) to derive a 

stemness index based on a gene expression signature derived from embryonic and 

differentiated cells from the PCBC dataset (Daily et al., 2017; Salomonis et al., 2016) and 

applied this to GIAC samples using Spearman correlations between the model’s weight 

vector and the GIAC sample’s expression profile (Malta et al., 2018).

Differential Gene Expression Analysis between GIAC and non-GI AC—To 

identify genes differentially abundant in GIAC versus non-GI AC, excluding genes that are 

differentially expressed between normal GI tissue compared to normal non-GI tissue, we 

needed to use external gene expression data normal tissues. We selected 4 gastrointestinal 
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(esophagus, stomach, colon-transverse, and colon-sigmoid) and 5 non-gastrointestinal 

(breast, lung, ovary, prostate, and uterine) normal tissue types through GTEx repository of 

normal tissues (Consortium et al., 2017) (https://www.gtexportal.org/home/datasets, GTEx 

Version 7), and utilized their RNA-sequencing expression dataset. Normalized expression 

values for both TCGA tumor and GTEx normal tissue cases were calculated by robust 

scaling (on values between 2.5 and 97.5 percentile) and winsorizing of each gene’s 

expression (mean ± 3 standard deviations) in the respective case population of tumoral or 

normal cases. Gastrointestinal and non-gastrointestinal normal tissues were selected based 

on the matching with composition of available GI and non-GI adenocarcinomas in TCGA 

PanCancer project. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was 

used to discover a subgroup of genes (n=671) that were not differentially expressed in GI 

and non-GI normal tissues, but were members of our list of differentially expressed genes 

between GI adenocarcinomas (GIAC) and non-GI adenocarcinomas (Non-GI AC). 

Significance was determined by absolute loading in the OPLS discriminant analysis of 

higher than 0.05. The genes for which expression was highly associated with the stromal 

class of GI tumors identified by the method described in Isella et al (Isella et al., 2015) 

(n=118) were excluded from further analysis (absolute loading higher than 0.05). By 

utilizing an OPLS-DA model comparing GIAC and non-GI AC cases, the remaining 553 

genes were ranked by their loadings toward overexpression in GIAC. Results were depicted 

in two heatmaps illustrating the normalized expression values for the selected genes in both 

GIAC and non-GI AC tissues (first heatmap), and normal GI and non-GI tissues (second 

heatmap).

Selection of transcription factors for gain- and loss-of-function studies—We 

used multiple sources to select 139 transcription factors (TFs) that are important in GI 

development. We first identified 40 TFs in the Gene Ontology (GO) database based on the 

intersection of two GO terms, RNA polymerase II transcription factor activity, sequence-
specific DNA binding (GO: 0000981) and digestive tract development (GO: 0048565), in 

Homo sapiens. Further, we collected 24 TFs from the review by Noah et al. on human 

intestinal development and differentiation (Noah et al., 2011). Additionally, 93 genes were 

identified in the study in which Sherwood and colleagues used microarray and dynamic 

immunofluorescence technologies to profile gene expression during mouse endodermal 

organ formation (Sherwood et al., 2009). Finally, we also included nine other TFs that were 

significantly mutated in GIAC. In all, we examined 139 genes (taking the union of the four 

gene lists and removing genes with missing platform data).

DNA methylation data—Illumina Infinium DNA methylation arrays [including both 

HumanMethylation27 (HM27) and HumanMethylation450 (HM450)] were used to assay 

921 GIAC and 76 adjacent non-malignant tissues. Level 3 data from two generations of 

Illumina infinium DNA methylation arrays were combined and further normalized between 

platforms using a probe-by-probe proportional rescaling method as outlined below to yield a 

final common set of 22,601 probes with comparative methylation levels between platforms. 

During data generation, a single technical replicate of the same cell line control sample from 

either of two different DNA extractions (TCGA-07-0227/TCGA-AV-A03D) was included on 

each plate as a control, and measured 44/198 times and 12/169 times on HM27 and HM450, 
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respectively. These repeated measurements were therefore used for rescaling of the HM27 

data to be comparable to HM450. For each probe within each platform, we computed the 

median β value across all technical replicates of each of the two TCGA IDs. We then 

combined the two extractions by taking the mean of the two medians obtained for each of 

the two replicate TCGA IDs, and obtained a single summarized DNA methylation read-out 

(β value) for the corresponding probe i for each platform, noted as Betahm27, i, and 

Betahm450, i, respectively. We then applied a constrained (within the range of 0 to 1 for β 

values) linear rescaling of the HM27 data for each probe and for each patient’s sample using 

Betahm27, i, and Betahm450, i. When the HM27 β value of a patient’s sample j for probe i was 

smaller than the mean of median replicate samples on the HM27 for that probe, we linearly 

rescaled the HM27 β value Betahm27,i,j in the (0, Betahm27,i,j ) space; and when Betahm27,i,j 

was greater, we linearly rescaled the HM27 beta value Betahm27,i,j in the (Betahm27,i,j,1) 

space; This translates into the following mathematical computation: 

Betahm450, i, j = Betahm27, i, j ∗ (Betahm450, i/Betahm27, i), if Betahm27, i, j < Betahm27, i; and 

Betahm450, i, j = 1 − (1 − Betahm27, i, j) ∗ ((1 − Betahm450, i)/(1 − Betahm27, i)), if 

Betahm27, i, j > Betahm27, i.

After the between-platform normalization, we further excluded 779 probes that still showed 

a consistent platform difference (mean β value difference greater than or equal to 0.1) in six 

or more tumor types.

Unsupervised clustering analysis of DNA methylation data—Unsupervised 

clustering analyses of DNA methylation data were performed based on promoter CpG sites 

that did not exhibit tissue-specific DNA methylation in normal tissues and blood cells (mean 

β value < 0.2 for each tissue type), but acquired methylated in tumors.

GIAC and non-GI AC (Figure S1A): We analyzed DNA methylation profiles of 3,759 

adenocarcinomas including 921 GI adenocarcinomas and 2,828 non-GI adenocarcinomas 

representing 12 disease types (four GIAC and eight non-GI AC). We also included data from 

333 histologically normal tumor-adjacent tissue specimens corresponding each disease type 

(BRCA n=101, PRAD n=39, OV n=12, CEAD n=1, UCEC n=43, EAC/GAC n=33, COAD 

n=37, READ n=6, CHOL n=9, PAAD n=10, LUAD n=42). We first used the data from the 

normal tissues and leukocytes to select CpG sites that lacked tissue-specific DNA 

methylation (mean β value < 0.2 in any tissue type and β value >0.3 in no more than five 

samples across the entire set). We then performed clustering analysis of the 

adenocarcinomas using 2,783 CpG sites that were hypermethylated (β value ≥0.3) in more 

than 10% within any of the 12 disease types. To minimize the influence of tumor purity on a 

clustering result, we dichotomized the data using a β value of ≥0.3 to define positive DNA 

methylation and < 0.3 to specify lack of methylation. We applied hierarchical clustering with 

Ward’s method to cluster the distance matrix computed with the Jaccard index. Heatmap 

was generated based on the original β values for 1,000 loci (a subset of 2,783 loci) with the 

highest standard deviation in DNA methylation measurements among all adenocarcinomas.
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GIAC (Figure 2D): We analyzed DNA methylation profiles of 921 GIAC and 77 (33 gastric 

and 44 colorectal) histologically normal tumor-adjacent tissue specimens. The precise 

locations within the GI organs from which the normal-adjacent tissue specimens were 

excised are not available. Unsupervised clustering of GIAC was performed based on 2,845 

gene promoter loci unmethylated in normal tissues and leukocytes (mean β value < 0.2 in 

both normal gastric and colorectal tissues) but methylated (β value > 0.3) more than 5% in at 

least one of the GIAC tumor types. To minimize the influence of tumor purity, we 

dichotomized the data into 0’s and 1’s using a β value threshold of 0.3. The optimal number 

of clusters was assessed based on 80% probe and tumor resampling over 1,000 iterations of 

hierarchical clustering for K = 2, 3, 4…20 using the binary distance metric for clustering and 

Ward’s method for linkage as implemented in the R/Bioconductor ConsensusClusterPlus 

package. The heatmap was generated using the original β values. The probes were displayed 

based on the order of unsupervised hierarchal clustering of the β values using the Euclidean 

distance metric and Ward’s linkage method.

The union of MSI and CIMP-H GIAC (Figure 3B): We used 158 tumors (93 GEA and 65 

CRC) that were classified as either CIMP-H or MSI and 44 normals (12 stomach and 32 

colorectal), which were assayed on the HM450 platform. Unsupervised and dichotomized 

clustering was performed using 35,436 sites lacking DNA methylation in normal tissues 

(mean β value < 0.2 in both normal gastric and colorectal tissues) and methylated (β value > 

0.3) more than 10% in any of the tumor type. Heatmap was generated based on the top 10% 

of the most variably hypermethylated sites across 158 GIAC.

GIAC DNA hypermethylation subtypes—We chose seven GIAC DNA methylation 

clusters defined by the consensus clustering. For further integrative analyses, we focused on 

four prominent clusters showing a high frequency of cancer-associated DNA 

hypermethylation. We found that the gastroesophageal (GEA) and colorectal 

adenocarcinomas (CRC) largely clustered separately. Among GEA, EBV+ gastric cancers 

stood out from all the rest by their extensive DNA hypermethylation (cluster 4) and were 

designated as EBV-CIMP as previous study (Cancer Genome Atlas Research Network, 

2014). Cluster 5 is significantly enriched for MSI tumors originated in both stomach and 

colon. It included well-known CIMP-High CRC associated with BRAFV600E mutations and 

MSI-associated Gastric-CIMP described previously (Cancer Genome Atlas Research 

Network, 2014; Weisenberger et al., 2006). We classified these tumors as GIAC CIMP-H, 

as having a higher prevalence of DNA hypermethylation than all the other clusters with the 

exception of EBV-CIMP. Further, we named cluster 6 as CRC CIMP-L that exhibited 

features consistent with CIMP-Low subtype previously described (Cancer Genome Atlas 

Research Network, 2012). It had a significant association with KRAS mutations (p < 2.2 

×10−16 [vs. CRC in other groups], Fisher’s exact test). Among GEA, cluster 1 was enriched 

for esophageal tumors (p = 8.0 × 10−8 [vs. GEAs in other groups]), and also had a mean 

DNA hypermethylation frequency slightly higher than that in CRC CIMP-L and other GEA 

clusters (cluster 2 and 3). We specified these tumors as GEA-CIMP-L. These tumors 

showed frequent epigenetic silencing of tumor suppressor genes including CDKN2A and 

MGMT (p = 1.5 × 10−10 and p = 1.5 × 10−11, respectively, [vs. GEA clusters 2 and 3]).
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Identification of epigenetically silenced genes—We used 775 GIAC and 44 adjacent 

non-malignant tissues assayed on the HM450 platform. Probes located within potential 

promoter regions (1500 bp flanking regions upstream and downstream of Transcription Start 

Sites (TSSs) of all transcripts annotated by UCSC) were examined for evidence of 

epigenetic silencing. We removed the CpG sites that were methylated in normal tissues and 

blood cells (mean β value > 0.2 for each tissue type). In order to remove the effect of tissue 

specificity on gene expression, we z-score-transformed log 2 gene expression data first 

within each cancer type. The z-scores were derived using the mean and standard deviation 

calculated with the unmethylated tumors only, defined as those with a β value of (0, 0.2). 

Samples across all the cancer types were then pooled. For each probe/gene pair, we chose 

the probes that exhibited epigenetic silencing with the following criteria: 1) at least 8 

samples (>1% of all tumors) were observed with a β value of 0.3 or above (defined as the 

methylated group); 2) mean z-score of the methylated group was lower than −1.65; 3) FDR-

corrected p value according to one-side t-test on z-scores was lower than 0.001 between the 

unmethylated and methylated groups. Probes surviving these steps were retained to call 

epigenetic silencing events based on DNA methylation profiles for each sample. If there 

were multiple probes associated with the same gene, a sample identified as epigenetically 

silenced at more than half the probes for the corresponding gene was also labeled as 

epigenetically silenced at the gene level.

CDKN2A epigenetic silencing calls were made using the exon-level RNA-seq data. 

CDKN2A DNA methylation status was assessed in each sample, based on the probe 

(cg13601799) located in the p16INK4 promoter CpG island. p16INK4 expression was 

determined by the log2(RPKM+1) level of its first exon (chr9: 21974403–21975132). The 

epigenetic silencing calls for each sample were made by evaluating a scatter plot showing an 

inverse association between DNA methylation and expression. For RAD51C, there was no 

common probe between HM27 and HM450 that was located in the promoter region. 

However, probe cg14837411 from HM27 and probe cg27221688 from HM450 were only 

100bp apart, and both correlated with gene expression. Therefore, we combined them in 

determining the silencing status of this gene. Samples with a β value of 0.2 or above for 

either probe were designated as cases with epigenetic silencing.

DNA hypermethylation frequency in GIAC and Non-GI AC—We identified a set of 

13,809 CpG sites that were unmethylated in normal tissues and blood cells (mean β value < 

0.2 for each tissue type). For each CpG locus, tumors with a β value of 0.3 or greater were 

designated as methylated, and tumors with a β value of lower than 0.3 were designated as 

unmethylated. We then calculated the percentage of loci that were methylated among the 

loci investigated in each tumor.

Methods for integrative pathway analysis—We evaluated somatic mutations and 

copy-number changes relevant to well-studied signaling pathways curated in previous 

TCGA publications. Oncogenic relevance was assessed using OncoKB, a knowledge base 

for the oncogenic effects of cancer genes, that is manually curated by researchers and 

physicians at Memorial Sloan Kettering (Chakravarty et al., 2017). Specifically, a mutation 

was counted and included in the diagrams if either (1) it had been reported as a recurrent 
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alteration in COSMIC (Forbes et al., 2011) or (2) it had been labeled as oncogenic or likely 

oncogenic in OncoKB. Amplifications and deep deletions were based on GISTIC calls and 

reflect a change of more than half of the baseline gene copies. The actual list of oncogenic 

and likely oncogenic alterations is regularly updated based on the literature; the most recent 

version can be retrieved online from the OncoKB public website (www.oncokb.org) or 

visualized when viewing the data in the cBioPortal (www.cbioportal.org). For known 

oncogenes, only genetic alterations inferred to be activating were considered; for tumor 

suppressor genes, only alterations inferred to be inactivating were considered.

QUANTIFICATION AND STATISTICAL ANALYSIS

We used Fisher’s exact test for independence between two categorical variables throughout 

the analyses. Wilcoxon rank-sum test was performed for any independence test between a 

continuous variable and a binary categorical variable. For any test between two continuous 

variables or any association test that needed to be adjusted by covariates, a (multiple) linear 

model was fitted to evaluate the significance of coefficients, and analysis of variance was 

used to calculate the proportion of variance explained by each variable. Non-negative 

variables that were heavily right-skewed, which included the aneuploidy scores, CIN-F 

score, number of MFAs, and the intensities of mutational signatures, were log-transformed 

(with a pseudo-count of 1 added) for appropriate fitting of multiple linear models. For the 

association test between aneuploidy scores and BRCA signature, the arm-level score and 

focal score were simultenously included as explanatory variables in the multiple linear 

model. The association test between BRCA signature and PARP1 expression (log-

transformed) was adjusted by the copy number of PARP1. The intensity of the CpG>TpG 

signature was modeled by multiple linear regression with explanatory variables of upper/

lower GI, molecular subtype, age, and CIMP status as an ordinal variable. A logistic 

regression model was fitted when the response variable was binary. The test between the 

CIN-F score and clinical stage was performed using an ordered logit model as the clinical 

stage was considered an ordinal variable, and the p values were calculated using normal 

approximation. The association test between number of MFAs and the CRC stromal subtype 

was performed using negative-binomial regression that models the sparse number of MFAs, 

so as to increase statistical power. Cox regression was used for survival analysis to evaluate 

the significance of the variables. All statistical analyses in this study were performed using 

the R statistical software (https://www.r-project.org).

DATA AND SOFTWARE AVAILABILITY

The raw data, processed data and clinical data can be found at the legacy archive of the GDC 

(https://portal.gdc.cancer.gov/legacy-archive/search/f) and the PancanAtlas publication page 

(https://gdc.cancer.gov/about-data/publications/pancanatlas). The mutation data can be 

found here: (https://gdc.cancer.gov/about-data/publications/mc3-2017). TCGA data can also 

be explored through the Broad Institute FireBrowse portal (http://gdac.broadinstitute.org) 

and the Memorial Sloan Kettering Cancer Center cBioPortal (http://www.cbioportal.org). 

Details for software availability are in the Key Resource Table.
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SIGNIFICANCE

Adenocarcinomas of the gastrointestinal tract share not only a poor prognosis but also 

conserved molecular features. Hypermutated tumors display diverse immune features 

depending on tissue origin and molecular subtype, with implications for targeted 

immunotherapeutics. Upper GI tumors with chromosomal instability display a fine 

genome fragmentation enriched for high amplitude, focal somatic copy number 

alterations associated with whole genome doubling, specific mutational signatures, and 

advanced stage. We identified a genome stable molecular subtype among colorectal 

cancers with an elevated frequency of recurrent mutations in SOX9 and PCBP1.
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HIGHLIGHTS

• GI adenocarcinomas comprised five molecular subtypes: EBV, MSI, HM-

SNV, CIN, and GS

• Hypermutated tumors had diverse immune features varying by tissue and 

subtype

• CIN tumors displayed more fragmented copy number alterations in the upper 

GI tract

• Genome-stable CRC subtype was enriched for recurrent mutations in SOX9 
and PCBP1
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Figure 1. Genomic Features of Gastrointestinal Adenocarcinomas
(A) Significantly mutated genes in gastrointestinal adenocarcinomas (GIAC) indicated by 

green circles, significantly mutated genes identified in other adenocarcinomas (non-GIAC) 

indicated by red circles, and genes identified as significantly mutated in all adenocarcinomas 

indicated by white circles. (B) Genes identified as significantly recurrently amplified (left) 

or deleted (right) in GIAC compared to in non-GIAC. (C) DNA hypermethylation frequency 

(top), mutation density (middle), and arm-level and focal copy-number events (bottom) in 

GIAC and non-GI AC. (D) Percent GOF or LOF events in developmental transcription 

factors by cancer type. See also Figure S1 and Tables S1–S6.
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Figure 2. Molecular Subtypes of Gastrointestinal Adenocarcinomas
(A) Flowchart of molecular subtypes: Epstein-Barr virus (EBV)-positive (red); 

hypermutated-single-nucleotide variant predominant (HM-SNV) (gold); microsatellite 

instability (MSI) (blue); chromosomal instability (CIN) (purple); and genomically stable 

(GS) (green). (B) 3D plot of GIAC by SNV density, indel density, and clonal deletion score 

(CDS). Tumors annoted as Upper GI (crosses) and lower GI (circles) and color-coded by 

subtypes. (C) IFNγ pathway score (top) and CD8+ T-cell score (adjusted for total 

leukocytes; bottom) by subtypes stratified by upper vs lower GI. Horizontal bars indicate 

median values, boxes represent interquartile range, and whiskers indicate values within 1.5 

times interquartile range. (D) Unsupervised analysis of DNA methylation across GIAC. (E, 
F) Distribution of subtypes (E) and CIMP subgroups (F) across anatomic regions. (G, H) 
Distribution of MLH1/CDKN2A silencing (G) and subtypes (H) in CIMP-H tumors by 

anatomic region. See also Figure S2.
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Figure 3. Analysis of MSI and CIMP Tumors
(A) Methylation subtypes with four CIMPs: EBV-CIMP (red), CIMP-high (blue), GEA-

CIMP low (yellow), CRC-CIMP low (green) with alterations of indicated genes. (B) 
Methylation profiles of union of CIMP-high and MSI tumors with MLH1 silencing, KRAS, 
BRAF, MLH1 and MSH2 mutations. (C) Features of MSI tumors stratified by upper vs. 

lower GI and by CIMP-high status. Horizontal bars indicate median values, boxes represent 

interquartile range, and whiskers indicate values within 1.5 times interquartile range. (D) 
Unique and overlapping epigenetically silenced genes (>25%) in upper GI (top left), upper 

GI tumors excluding EBV+ (top right), lower GI (bottom, left), and MSI (bottom, right). (E) 
Frequency of silencing (black) and mutation (blue) of select genes in upper GI MSI (vertical 

axis) vs. lower GI MSI tumors (horizontal axis). See also Figure S3 and Table S7.
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Figure 4. Molecular Features of the CIN Subtype in Upper GI
(A) Copy-number heatmap of non-hypermutated GIAC with amplification (red) and deletion 

(blue) with upper GI CIN tumors (top), CIN CRC (middle) and GS (bottom). (B) Plots of 

arm-level and focal copy-number events in CIN tumors by upper and lower GI tract. 

Horizontal bars indicate median values, boxes represent interquartile range, and whiskers 

indicate values within 1.5 times interquartile range. (C) Distribution of CIN-F (CIN-Focal) 

score by upper and lower GI CIN tumors. CIN-B denotes CIN-Broad. (D) Distribution of 

CIN-F score by clinical stage in Upper GI. Horizontal bars indicate median values, boxes 

represent interquartile range, and whiskers indicate values within 1.5 times interquartile 

range. (E) Whole genome doubling (WGD) in CIN-F and CIN-B tumors in the upper GI 

tract; WGD1 indicates one WGD, and WGD2 indicates >WGD (F) Frequency of distinct 

classes of somatic alterations in RAS and receptor tyrosine kinases (RTK; KRAS, PIK3CA, 
BRAF, ERBB3, ERBB2, NRAS, EGFR, FGFR1, FGFR2), cell cycle (CC; FBXW7, 
CCNE1, CDK6, CDKN2A, CDKN1B, CCND1, CCND2) and tumor suppressor genes 

(TSG) including WNT(APC, RNF43, SOX9, TCF7L2, CTNNB1), TGFβ: TGFBR2, 
ACVR2A, ACVR1B, SMAD4, SMAD2, SMAD) and TP53 in upper GI CIN-F and CIN-B 

tumors (G) Schematic model of CIN-F and CIN-B pathogenesis in upper GI. See also Figure 

S4.
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Figure 5. Molecular Features of CIN and GS Colorectal Cancer
(A) Frequency of somatic alterations in indicated genes or pathways in non-CIMP CIN, 

CIMP-H/L CIN, and GS lower GI tumors. (B) SCNAs (top), mutation density (middle), and 

CIMP classes (bottom) across subtypes in lower GI tract. Horizontal bars indicate median 

values, boxes represent interquartile range, and whiskers indicate values within 1.5 times 

interquartile range. (C) Distribution of somatic mutations in SOX9 and PCBP1 in lower GI 

GS. (D) Schematic model of pathogenesis of molecular subtypes in lower GI. (E) Frequency 

of mutations in indicated genes in lower GI CIN/GS stratified anatomically.See also Figure 

S5.
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Figure 6. Gastrointestinal Adenocarcinoma Mutational Signatures
(A) Mutation signatures in non-hypermutated GIAC displayed by substitution class and 

sequence immediately 3′ and 5′ to the mutated base. (B) Key molecular features of GIAC 

by anatomical distribution. (C) Intensities of mutational signatures in CIN and GS subtypes 

by upper and lower GI. (D) BRCA signature in CIN and GS tumors in the upper and lower 

GI tract. (E) AA>AC signature stratified by CIN-F and CIN-B (top) and TP53 mutation 

(bottom) in upper GI CIN tumors. (F) CpG>TpG signature in CIN and GS tumors in upper 

and lower GI stratified by CIMP status. For all boxplots, horizontal bars indicate median 

values, boxes represent interquartile range, and whiskers indicate values within 1.5 times 

interquartile range. See also Figure S6.
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Figure 7. Integrated Molecular Comparison of Somatic Alterations Across GIAC Molecular 
Subtypes
(A–C) Alterations in select genes and pathways including RTK/RAS/PI3-K (A), TP53, cell 

cycle (B), and WNT/TGFβ (C). Deep deletions representing loss of more than half of the 

gene copies for the given ploidy of the tumor, blue; amplifications, red; missense mutations 

in the COSMIC repository, green; nonsense or frameshift mutations, black. Percentage of 

somatic alteration is indicated by numbers to the left of each gene box and divided by upper 

(U) and lower GI (L).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RPPA antibodies RPPA Core Facility, MD Anderson Cancer Center https://www.mdanderson.org/research/research-resources/core-facilities/functional-proteomics-rppa-core.html

Biological Samples

Tumor and normal tissue and blood samples TCGA Network https://portal.gdc.cancer.gov/legacy-archive/

Critical Commercial Assays

DNA/RNA AllPrep kit Qiagen Cat# 80204

mirVana miRNA Isolation kit Ambion Cat# AM1560

QiaAmp blood midi kit Qiagen Cat# 51185

AmpFISTR Identifiler kit Applied Biosystems Cat# A30737

RNA6000 nano Assay Agilent Cat# 5067-1511

SureSelect Human All Exon 50 Mb Agilent Cat# G3370J

Genome-Wide Human SNP Array 6.0 Affymetrix Cat# 901150

Illumina Barcoded Paired-End Library Preparation kit Illumina http://www.hgsc.bcm.edu/sites/-default/files/documents/-Illumina_Barcoded_Paired-End_Capture_Library_Preparation.pdf

TruSeq PE Cluster Generation kit Illumina PE-401-3001

Phusion PCR Supermix HiFi (2X) New England Biolabs Cat# M0531L

HumanMethylation450 Infinium Cat# WG-314-1002

HumanMethylation450 Infinium Cat# WG-311-2201

mRNA TruSeq kit Illumina Cat# RS-122-2001

Deposited Data

Raw genomic and clinical data NCI Genomic Data Commons https://portal.gdc.cancer.gov/legacy-archive/

MC3 mutation annotation file NCI Genomic Data Commons https://gdc.cancer.gov/about-data/publications/mc3-2017

Processed data files NCI Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

Software and Algorithms

Broad Institute QC on BAM files - ContEst (Cibulskis et al., 2011) PMID: 21803805

Broad Institute Mutation Calling - MuTect (Cibulskis et al., 2013) PMID: 23396013

Broad Institute small indel Calling - Indelocator https://www.broadinstitute.org/cancer/cga/indelocator

Broad Institute Mutation/Indel Annotation - Oncotator (Ramos et al., 2015) PMID: 25703262

Mutation Significance Analysis - MutSigCV (Lawrence et al., 2014) PMID: 24390350

RNA,DNaseq classifier - BioBloomTools(v1.2.4.b) (Chu et al., 2014) PMID: 25143290

Broad Institute - PathSeq (Kostic et al., 2011) PMID: 21552235

RNA read assembly – MapSplice 0.7.4 (Wang et al., 2010) PMID: 20802226

Gene expression quantification - RSEM (Li and Dewey, 2011) PMID: 21816040

Copy number estimation NA http://archive.broadinstitute.org/cancer/cga/copynumber_pipeline

Significant focal copy number change – GISTIC 2.0 (Mermel et al., 2011) http://software.broadinstitute.org/software/cprg/?q=node/31

Purity, ploidy, genome doubling - ABSOLUTE (Carter et al., 2012) http://archive.broadinstitute.org/cancer/cga/absolute

Cluster analysis - ConsensusClusterPlus (Wilkerson and Hayes, 2010) http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html

Mbatch (EB++) NA http://bioinformatics.mdanderson.org/main/TCGABatchEffects:Overview
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