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Abstract

We consider the problem of estimating a signal from noisy circularly-translated versions of itself, 

called multireference alignment (MRA). One natural approach to MRA could be to estimate the 

shifts of the observations first, and infer the signal by aligning and averaging the data. In contrast, 

we consider a method based on estimating the signal directly, using features of the signal that are 

invariant under translations. Specifically, we estimate the power spectrum and the bispectrum of 

the signal from the observations. Under mild assumptions, these invariant features contain enough 

information to infer the signal. In particular, the bispectrum can be used to estimate the Fourier 

phases. To this end, we propose and analyze a few algorithms. Our main methods consist of non-

convex optimization over the smooth manifold of phases. Empirically, in the absence of noise, 

these non-convex algorithms appear to converge to the target signal with random initialization. 

The algorithms are also robust to noise. We then suggest three additional methods. These methods 

are based on frequency marching, semidefinite relaxation and integer programming. The first two 

methods provably recover the phases exactly in the absence of noise. In the high noise level 

regime, the invariant features approach for MRA results in stable estimation if the number of 

measurements scales like the cube of the noise variance, which is the information-theoretic rate. 

Additionally, it requires only one pass over the data which is important at low signal–to–noise 

ratio when the number of observations must be large.
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Index Terms

bispectrum; multireference alignment; phase retrieval; non-convex optimization; optimization on 
manifolds; semidefinite relaxation; phase synchronization; frequency marching; integer 
programming; cryo-EM

I. Introduction

We consider the problem of estimating a discrete signal from multiple noisy and translated 

(i.e., circularly shifted) versions of itself, called multireference aligment (MRA). This 

problem occurs in a variety of applications in biology [1], [2], [3], [4], radar [5], [6], image 

registration and super-resolution [7], [8], [9], and has been the subject of recent theoretical 

analysis [10], [11]. The MRA model reads

ξ j = Rr j
x + ε j, j = 1, …, M, (I.1)

where εj are i.i.d. normal random vectors with variance σ2 and the underlying signal x is in 

ℝN or in ℂN. Operator Rrj rotates the signal x circularly by rj locations, namely, (Rrjx)[n] = 

x[n − rj], where indexing is zero-based and considered modulo N (throughout the paper). 

While both x and the translations {rj} are unknown, we stress that the goal here is merely to 

estimate x. This estimation is possible only up to an arbitrary translation.

A chief motivation for this work arises from the imaging technique called single particle 

Cryo-Electron Microscopy (Cryo-EM), which allows to visualize molecules at near-atomic 

resolution [12], [13]. In Cryo-EM, we aim to estimate a three dimensional (3D) object from 

its two-dimensional (2D) noisy projections, taken at unknown viewing directions [14], [15]. 

While typically the recovery process involves alignment of multiple observations in a low 

signal-to-noise ratio (SNR) regime, the underlying goal is merely to estimate the 3D object. 

In this manner, with the unknown shifts corresponding to the unknown viewing directions, 

MRA can be understood as a simplified model for Cryo-EM.

Existing approaches for MRA can be classified into two main categories. The first class of 

methods aims to estimate the set of translations {rj} first. Given this set, estimating x can be 

achieved easily by aligning all observations ξj and then averaging to reduce the noise. The 

second class, which we favor in this paper, consists of methods which aim to estimate the 

signal directly, without estimating the shifts.

Considering the first class, one intuitive approach to estimating the translations is to fix a 

template observation, say ξ1, and to estimate the relative translations by cross-correlation. 

This is called template matching. Specifically, rj is estimated as

r j = arg max
k

ℜ ∑
n = 0

N − 1
ξ1 [n]ξ j[n + k] , j = 2, ⋯, M,
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where ℜ{z} and z̄ denote the real part and the conjugate of a complex number z. This 

approach requires only one pass over the data: for each observation, the best shift can be 

computed in O(N log N), and the aligned observations can be averaged online. This results 

in a total computational cost of O(MN log N), see Table I. While this approach is simple and 

efficient, it necessarily fails below a critical SNR—see Figure I.1 for a representative 

example.

The issue with template matching is that we rely on aligning each observation to only one 

template: this is error prone at low SNR. Instead, to derive a more robust estimator, one can 

look for the most suitable alignment among all pairs of observations. The M2 relative shifts 

thus computed must then be reconciled into a compatible choice of M shifts for the 

individual observations. This is a discrete version of the angular synchronization problem, 

see [16], [17], [18], [19], [20], [21]. The computational complexity of aligning all pairs 

individually is O(M2N log N), while storing the results uses O(M2) memory.

Alternative algorithms for estimating the translations are based on different SDP relaxations 

[22], [23], iterative template alignment [24], zero phase representations [5] and neural 

networks [6]. The statistical limits of alignment tasks were derived for a variety of setups 

and noise models, see for instance [25], [26], [27], [28]. For example, for a continuous, 2D 

version of the MRA model, it was shown that the Cramér–Rao lower bound (CRLB) for 

translation estimation is proportional to the noise variance σ2 [25]; crucially, it does not 

improve with M, even if the underlying signal is known. This is motivation to consider the 

second category of MRA methods, where shifts are not estimated.

Section VI elaborates on expectation maximization (EM) which tries to compute the 

maximum marginalized likelihood estimator (MMLE) of the signal—marginalization is 

done over the shifts. This method acknowledges the difficulty of alignment by working not 

with estimates of the shifts themselves, but rather with estimates of the probability 

distributions of the shifts. As a result, EM achieves excellent numerical performance in 

practice. However its computational complexity is high and its performance is not 

understood in theory.

It has been shown recently that the sample complexity of MRA, under assumption that shifts 

are distributed uniformly, is proportional to σ6 in the low SNR regime. In other words, the 

number of measurements M needs to scale like σ6 to retain a constant estimation error [11].

In this work, we propose a framework which achieves this sample complexity by estimating 

the sought signal x directly using features that are invariant under translations. For instance, 

the mean of x is invariant under translation and can be estimated easily from the mean of all 

observations. We further use the power spectrum and the bispectrum of the observations—

which are Fourier-transform based invariants— to estimate the magnitudes and phases of the 

signal’s Fourier transform, respectively.

For any fixed noise level (which may be arbitrarily large), these features can be estimated 

accurately provided sufficiently many measurements are available. Hence, our approach 

allows to deal with any noise level. Besides achieving the sample complexity, the 

computational complexity and memory requirements of the methods we describe are 
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relatively low. Indeed, the only operations whose computational cost grows with M are 

computations of averages over the data. These can be performed on-the-fly and are easily 

parallelizable. We mention that a recent tensor decomposition algorithm also achieves this 

estimation rate [29].

Given estimators for the mean and power spectrum of x, estimating the DC component and 

Fourier magnitudes of x is straightforward. In this paper, we thus focus on the task of 

recovering the Fourier phases of x from an estimator of its bispectrum. We propose two non-

convex optimization algorithms on the manifold of phases for this task, which we call 

bispectrum inversion. We also discuss three additional algorithms which do not require 

initialization (and hence could be used to initialize others), based on frequency marching, 

SDP relaxation and integer programming. The first two methods recover the phases exactly 

in the absence of noise.

Beyond MRA, the bispectrum plays a central role in a variety of signal processing 

applications. For instance, it is a key tool to separate Gaussian and non-Gaussian processes 

[30], [31]. It is also used to investigate the cosmic background radiation [32], [33], seismic 

signal processing [34], image deblurring [35], feature extraction for radar [36], analysis of 

EEG signals [37], MIMO systems [38] and classification [39] (see also [40], [41], [42], [43], 

[44] and references therein). In Section III, we review previous works on bispectrum 

inversion [45], [46], [34]. Reliable algorithms to invert the bispectrum, as studied here, may 

prove useful in some of these applications.

The paper is organized as follows. Section II discusses the invariant feature approach for 

MRA. Section III presents the non-convex algorithms on the manifold of phases for 

bispectrum inversion. Section IV is devoted to additional algorithms that can be used to 

initialize the non-convex algorithms. Section V analyzes one of the proposed non-convex 

algorithm. Section VI elaborates on the EM approach for MRA, Section VII shows 

numerical experiments and Section VIII offers conclusions and perspective.

Throughout the paper we use the following notation. Vectors x in ℝN or ℂN and y ∈ ℂN 

denote the underlying signal and its discrete Fourier transform (DFT), respectively. In the 

sequel, all indices are understood modulo N, namely, in the range 0, …, N −1. The phase of 

a complex scalar a, defined as a/|a| if a ≠ 0 and zero otherwise, is denoted by phase(a) or ã. 

The conjugate-transpose of a vector z is denoted by z*. We use ‘∘’ to denote the Hadamard 

(entry-wise) product,  for expectation, Tr(Z) for the trace and ||Z||F for the Frobenius norm 

of a matrix Z. We reserve T(z) for circulant matrices determined by their first row z, i.e., 

T(z)[k1, k2] = z[k2−k1], and ℋN for the set of Hermitian matrices of size N × N.

II. Multireference Alignment via Invariant Features

We propose to solve the MRA problem directly using features that are invariant under 

translations. Unlike pairwise alignment, this approach fuses information from all M 
observations together—not just of pairs—and it only aims to recover the signal itself—not 

the translations. The essence of this idea was discussed as a possible extension in [22, 

Appendix A]. The invariant features can be understood either as auto-correlation functions 
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or as their Fourier transform. In this work, we make use of the first three invariants defined 

as

c1 = μx = 1
N ∑

n = 0

N − 1
x[n],

c2[n1] = 1
N ∑

n = 0

N − 1
x[n]x[n − n1],

c3[n1, n2] = 1
N ∑

n = 0

N − 1
x[n]x[n − n1]x[n + n2],

(II.1)

for n1, n2 = 0, …, N−1. It is clear that c1, c2, c3 are invariant under circular shifts of x. For 

higher-order invariants based on auto-correlations, see for instance [47].

The first feature is the mean of the signal which is the auto-corrleation function of order one 

(i.e., c1 in (II.1)). The distribution of the mean of ξj is then given by μξ j
𝒩 μx, σ2

N  and we 

can estimate μx as

μx = 1
M ∑

j = 1

M 1
N ∑

n = 0

N − 1
ξ j[n] 𝒩 μx,

σ2

NM . (II.2)

Estimating the signal’s mean supplies only limited information about the signal itself. Thus, 

we consider also the auto-correlation function of order two (i.e., c2 in (II.1)). Its Fourier 

transform, the power spectrum, is explicitly defined as

Px[k] = ∣ y[k] ∣2,

for all k, where y is the DFT of x. An alternative way to understand the invariance of the 

power spectrum under shifts is through the effect of shifts on the DFT of a signal:

DFT(Rsx) [k] = y[k] · e−2πiks/N . (II.3)

Thus, shifts only affect the phases of the DFT, so that PRsx = Px for any shift Rs. 

Furthermore, owing to independence of the noise with respect to the signal itself and to the 

shift,

𝔼 {Pξ j
[k]} = Px[k] + Nσ2,
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where the second term is the power spectrum of the noise εj. Therefore, we estimate the 

power spectrum of x as:

Px[k] = 1
M ∑

j = 1

M
(Pξ j

[k] − Nσ2) . (II.4)

It can be shown that P̂
x is unbiased and its variance is dominated by σ4

M  for large σ. Hence, 

P̂x → Px as M → ∞. In particular, accurate estimation of the power spectrum requires M to 

scale like σ4. In the sequel, we assume that σ is known.1

Recovering a signal from its power spectrum is commonly referred to as phase retrieval. 
This problem received considerable attention in recent years, see for instance [48], [49], 

[50], [51], [52], [53], [54]. It is well known that almost no one-dimensional signal can be 

determined uniquely from its power spectrum. Therefore, we use the power spectrum merely 

to estimate the signal’s Fourier magnitudes. As explained next, we use the auto-correlation 

of third order and its Fourier transform, the bispectrum, to estimate the Fourier phases.

Since phase retrieval is in general ill posed, we use the auto-correlation function of order 

three (that is, c3 in (II.1)) through its Fourier transform, the bispectrum, to estimate the 

Fourier phases of the sought signal. The bispectrum is a function of two frequencies k1, k2 = 

0, …, N −1 and is defined as [55]:

Bx[k1, k2] = y[k1]y[k2]y[k2 − k1] . (II.5)

Note that, if y[0] ≠ 0, the power spectrum is explicitly included in the bispectrum since Px[k] 

= Bx[k, k]/y[0]. The fact that the bispectrum is invariant under shifts can also be deduced 

from (II.3). Indeed, for any shift Rs,

BRsx[k1, k2] = y[k1]e
−2πik1s/N

y[k2]e
2πik2s/N

· y[k2 − k1]e
2πi(k1 − k2)s/N

= Bx[k1, k2] .

In matrix notation, we express this as

1If σ is not known, it can be estimated from the data as

σ2 = 1
N . variance ∑

n = 0

N − 1
ξ j[n]

j = 1, …, M
.
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Bx = yy∗ ∘ T(y), (II.6)

where T(y) is a circulant matrix whose first row is y, that is, T(y)[k1, k2] = y[k2 − k1]. 

Observe that if x is real, then y[k] = y[ − k] so that T(y) and Bx are Hermitian matrices. 

Simple expectation calculations lead to the conclusion that

𝔼 Bξ j
= Bx + σ2N2μxA, (II.7)

where A = Aℝ or A = Aℂ depending on x ∈ ℝN or x ∈ ℂN and

Aℝ =

3 1 1 1 … 1
1 1 0 0 … 0
1 0 1 0 … 0
1 0 0 1 … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 0 0 0 … 1

, Aℂ =

2 1 1 1 … 1
0 1 0 0 … 0
0 0 1 0 … 0
0 0 0 1 … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 … 1

.

Since the bias term is proportional to μx, we propose to estimate B̂
x−μx by averaging over 

Bξj−μx for all j. This estimator is unbiased and its variance is controlled by σ6
M  for large σ. 

Therefore, M is required to scale like σ6 to ensure accurate estimation. In practice, μx is not 

known exactly. Thus, we estimate the bispectrum by

Bx − μx
= 1

M ∑
j = 1

M
Bξ j − μx

, (II.8)

which is asymptotically unbiased. For finite M and large σ, bias induced by the 

approximation μ̂x ≈ μx is significantly smaller than the standard deviation of (II.8).

The bispectrum contains information about the Fourier phases of x because, defining ỹ[k] = 

phase(y[k]) and B̃
x[k1, k2] = phase(Bx[k1, k2]) where phase extracts the phase of a complex 

number (and returns 0 if that number is 0), we have

B∼x[k1, k2] = y∼[k1]y∼[k2]y∼[k2 − k1] . (II.9)

In matrix notation, the normalized bispectrum takes the form B̃
x = ỹ ỹ* ∘ T(ỹ).
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Contrary to the power spectrum, the bispectrum is usually invertible. Indeed, in the absence 

of noise, the bispectrum determines the sought signal uniquely under moderate conditions:

Proposition II.1—For N ≥ 5, let x ∈ ℂN be a signal whose DFT y obeys y[k] ≠ 0 for k = 1, 
…, K, possibly also for k = 0, and zero otherwise. Up to integer time shifts, x is determined 

exactly by its bispectrum provided K ≥ N + 1
2 .

For N ≥ 5, let x ∈ ℝN be a real signal whose DFT y obeys y[k] ≠ 0 for k = 1, …, K and k = 

N −1, …, N − K, possibly also for k = 0, and zero otherwise. Up to integer time shifts, x is 

determined exactly by its bispectrum provided N
3 ≤ K ≤ N − 1

2 .

Proof: This is a direct corollary of Lemmas V.1 and B.1.

We stress that the bispectrum estimator in (II.8) is not a bispectrum itself, since the set of 

bispectra is not a linear space: B̂
x−μx is not invertible as such [42]. Algorithms we propose 

aim to find a stable inverse, in the sense that the recovered signal will have a bispectrum 

which is close to the estimated bispectrum in ℂN×N. The following propositions combined 

argue formally that this can be done in the MRA model. The proofs in Appendix A are 

constructive.

Proposition II.2 (Stable bispectrum inversion)—There exists an estimator x̂ with the 
following property. For any signal x in ℝN or ℂN whose DFT is non-vanishing, there exist a 
precision δ = δ(x) > 0 and a sensitivity L = L(x) < ∞ such that if an estimator B̂x of Bx 

satisfies ||B̂
x−Bx||F ≤ δ, then x̂ = x̂ (B̂

x) satisfies minr=0…N−1 ||x − Rr x̂||2 ≤ L||B̂
x − Bx||F.

Proposition II.3 (Bispectrum estimation)—For any signal x in ℝN or ℂN whose DFT 
is non-vanishing, for any required precision δ > 0 and for any probability p < 1, there exists 
a constant C = C(x, p, δ) < ∞ such that, for any noise level σ > 0, if the number of 
observations M exceeds C·(σ2+σ6), the estimator

Bx = 1
M ∑

j = 1

M
Bξ j

− σ2N2μxA

satisfies ||B̂
x − Bx||F ≤ δ with probability at least p.

We mention that uniqueness in the continuous setup was considered in [56]. The more 

general setting of bispectrum over compact groups was considered in [57], [58], [59], [60].

The MRA model here assumes i.i.d. Gaussian noise. However, the estimation is performed 

by averaging in the bispectrum domain, where noise affecting individual entries is 

correlated. Consequently, one may want to use a more robust estimator, such as the median. 

Yet, computing the median of complex matrices is computationally expensive, while 

computing the average can be performed efficiently and on-the-fly, that is, without requiring 

to store all observations. For Gaussian noise, we have noticed numerically that using the 
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mean or the median for bispectrum estimation leads to comparable estimation errors 

(experiments not shown). In other noise models, e.g., with outliers, it might be useful to 

consider the median or the median of means method, see for instance [61].

Algorithm 1

Outline of the invariant approach for MRA

Input: Set of observations ξj, j = 1, …, M according to (I.1) and noise level σ

Output: x̂: estimation of x

Estimate invariant features:

1 Compute μ̂x according to (II.2)

2 Compute P̂x according to (II.4)

3 Compute B̂x−μx according to (II.8)

Estimate the signal’s DFT:

1 Estimate y[0] from μ̂x. For other frequencies:

2 Estimate the magnitudes of y from P̂x

3 Estimate the phases of y from B̂x−μx (e.g., Algorithm 2)

Return: x̂: inverse DFT of the estimated y

Figure II.1 presents the relative estimation error of the power spectrum and bispectrum as a 

function of the number of observations M. For the bispectrum, the relative error is computed 

as

relative error: =
‖Bx − μx

− 1
M ∑ j = 1

M Bξ j − μx
‖

F
‖Bx − μx

‖
F

,

and similarly for the power spectrum. As expected, the slope of all curves is approximately 

1/2 in logarithmic scale, implying that the estimation error decreases as O(1/ M). The 

invariant features approach for MRA is summarized in Algorithm 1.

Consider the case in which the number of samples M may be very large whereas the size of 

the object is fixed, namely N ≪ M. This case is of interest in many applications, such as 

cryo-EM [14], [15]. In this regime, the invariant features approach has two important 

advantages over methods that rely on estimating the translations. First, in the invariant 

features approach, we average over the M observations (which is computationally cheap), 

and then apply a more complex algorithm (say, to recover a signal from its bispectrum) 

whose input size is a function of N but is independent of M. Hence, the overall complexity 

of this approach can be relatively low. Second, the alignment-based method requires storing 

all M observations, namely, MN samples, which is unnecessary in the invariant features 

approach. There, for each observation, we just need to compute its invariants, to be averaged 

over all observations: this can be done online (in streaming mode) and in parallel.
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III. Non-convex Algorithms for bispectrum inversion

After estimating the first Fourier coefficient y[0] as Nμ̂x, our approach for MRA by invariant 

features consists of two parts. We use the power spectrum to estimate the signal’s Fourier 

magnitudes and the bispectrum for the phases. The first part is straightforward: |y[k]| can be 

estimated as Px[k] if P̂
x[k] ≥ 0, and as 0 otherwise. Hereafter, we focus on estimation of the 

phases of the DFT, ỹ.

In the literature, two main approaches were suggested to invert the discrete bispectrum. The 

first is based on estimating the frequencies one after the other by exploiting simple algebraic 

relations [45], [46]. The second approach suggests to estimate the signal by least-squares 

solution and phase unwrapping [46], [34]. We improve these methods and suggest a few new 

algorithms. The algorithms are split into two sections. This section is devoted to two new 

non-convex algorithms based on optimization on the manifold of phases. Both of these 

algorithms require initialization. While experimentally it appears that random initialization 

works well, for completeness, in the next section we propose three additional algorithms 

which do not need initialization and hence could be used to initialize the non-convex 

algorithms.

A. Local non-convex algorithm over the manifold of phases

In this section, similarly to (II.9), we let B̃ denote our estimate of the phases of Bx. Since B̃ 

≈ ỹ ỹ* ∘ T(ỹ), one way to model recovery of the Fourier phases ỹ is by means of the non-

convex least-squares optimization problem

min
z ∈ ℂN

W ∘ B∼ − zz∗ ∘ T(z) F
2 subject to ∣ z[k] ∣ = 1, ∀k . (III.1)

The matrix W ∈ ℝN×N is a weight matrix with nonnegative entries. These weights can be 

used to indicate our confidence in each entry of B̃. Expanding the squared Frobenius norm 

yields

W ∘ B∼ − zz∗ ∘ T(z) F
2 = ‖W ∘ B∼‖F

2 + ‖W ∘ zz∗ ∘ T(z)‖F
2 − 2 W ∘ B∼, W ∘ zz∗ ∘ T(z) ,

where

〈U, V〉 = ℜ{Tr(U∗V)}, (III.2)

is the real inner product associated to the Frobenius norm. Under the constraints on z, the 

first two terms are constant and the inner product term is equivalent to
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W ∘ B∼, W ∘ zz∗ ∘ T(z) = 〈z, M(z)z〉,

with

M(z): = W(2) ∘ B∼ ∘ T(z), (III.3)

where we use the notation W(2):= W ∘ W. One possibility is to choose W = ∣ Bx − μx
∣, 

where the absolute value and the square root are taken entry-wise, so that 

M(z) = Bx − μx
∘ T(z). Hence, optimization problem (III.1) is equivalent to

max
z ∈ ℂN

f (z) = 〈z, M(z)z〉 subject to ∣ z[k] ∣ = 1, ∀k . (III.4)

We can also impose z[0] = phase(μ̂x). If x is real, we have the additional symmetry 

constraints z[k] = z[ − k].

Algorithm 2

Non-convex optimization on phase manifold

Input: The normalized bispectrum B̃[k1, k2] and a weight matrix W ∈ ℝN×N

Output: ŷ: an estimation of ỹ

Compute: Using RTR [62], [63], approximately solve:

y = arg max
z ∈ ℂN

ℜ {z∗M(z)z} subject to ∣ z[k] ∣ = 1, ∀k, (if x is real) z[k] = z[ − k], ∀k,

where M(z): = (W ∘ W) ∘ B∼ ∘ T(z).

Since the cost function f is continuous and the search space is compact, a solution exists. Of 

course, the solution is not unique, in accordance with the invariance of the bispectrum under 

integer time-shifts of the underlying discrete signal. This is apparent through the fact that the 

cost function f is invariant under the corresponding (discrete) transformations of z. This is 

true independently of the data B̃ and W. The proof is in Appendix C.

Lemma III.1—The cost function f is invariant under transformations of z that correspond to 

integer time-shifts of the underlying signal.

To solve this non-convex program, we use the Riemannian trust-region method (RTR) [62], 

whose usage is simplified by the toolbox Manopt [63]. RTR enjoys global convergence to 

second-order critical points, that is, points which satisfy first- and second-order necessary 
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optimality conditions [64] and a quadratic local convergence rate. Empirically, in the 

noiseless case it appears that the algorithm recovers the target signal with random 
initialization, all local minima are global (with minor technicality for even N in the real 

case) and all second-order critical points have an escape direction, that is, saddles are 

“strict”. Numerical experiments demonstrate reasonable robustness in the face of noise. This 

algorithm is summarized in Algorithm 2 and studied in detail in Section V.

B. Iterative phase synchronization algorithm

In this section we present an alternative heuristic to the non-convex algorithm on the 

manifold of phases. This algorithm is based on iteratively solving the phase synchronization 

problem. Suppose we get an estimation of ỹ, say ŷk−1. If ŷk−1 ≈ ỹ is non-vanishing, then 

this estimation should approximately satisfy the bispectrum relation:

B∼ ∘ T(yk − 1) ≈ yk − 1yk − 1
∗ .

The underlying idea is now to push the current estimation towards ỹ by finding a rank-one 

approximation of B ∘ T(yk − 1) with unit modulus entries. This problem can be formulated as:

arg max
z ∈ ℂN

ℜ z∗ B∼ ∘ T(yk − 1) z subject to ∣ z[ℓ] ∣ = 1, ∀ℓ, (III.5)

where we treat the matrix B∼ ∘ T(yk − 1) as a constant. This problem is called phase 

synchronization. Many algorithms have been suggested to solve the phase synchronization 

problem. Among them are the eigenvector method, SDP relaxation, projected power method, 

Riemannian optimization and approximate message passing [16], [20], [17], [18], [19]. 

Notice that the solution of (III.5) is only defined up to a global phase, namely, if z is optimal, 

then so is zeiϕ for any angle ϕ. To resolve this ambiguity, we require knowledge of the phase 

of the mean, ỹ[0] (which is easy to estimate from the data) and we pick the global phase of 

ŷk such that ŷk[0] = ỹ[0].

The kth iteration of our algorithm thus (tries to) solve the phase synchronization problem 

with respect to the matrix Mk − 1: = B∼ ∘ T(yk − 1), where ŷk−1 is the solution of the previous 

estimation. Assuming the signal is real, we also impose at each iteration the conjugate-

reflection property of yk[ℓ] = yk[ − ℓ] for all ℓ so that Mk is Hermitian. In the numerical 

experiments in Section VII, we solve (III.5) by the Riemannian trust-region method 

described in [17]. Empirically, the performance of this algorithm and Algorithm 2 is 

indistinguishable. The algorithm is summarized in Algorithm 3.

Algorithm 3

Iterative phase synchronization algorithm

Input: The normalized bispectrum B̃, initial estimation ŷ0, phase of the mean ỹ[0]
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Output: ŷ: estimation of ỹ

Set k = 0

while stopping criterion does not trigger do:

• k ← k + 1

• Compute ŷk as a solution of (III.5)

•
Fix the global phase: yk yk · y∼[0]

yk[0]

• If x is real, symmetrize: ŷk ← phase ((ŷk)↓↑), see (B.1)

end while

Return: ŷ ← ŷk

IV. Initialization-free Algorithms

The previous section was devoted to non-convex algorithms to invert the bispectrum. In this 

section we present three additional algorithms based on frequency marching (FM), SDP 

relaxation and phase unwrapping. These algorithms do not require initialization and 

therefore could be used to initialize the non-convex algorithms.

We prove that FM and the SDP recover the Fourier phases exactly in the absence of noise 

under the assumption that we can fix ỹ[1]. If the signal has non-vanishing DFT, ỹ[1] can be 

estimated from the bispectrum using the fact that ỹ[1]N equals

phase (Bx[N − 1, 1]Bx[1, 2] · Bx[1, 2]⋯Bx[1, N − 1]) .

(Any Nth root can be used for ỹ[1], corresponding to the N possible shifts of x.) In all cases, 

we argue that forcing ỹ[1] = 1 is acceptable if N is large. Indeed, recall that a shift by ℓ 
entries in the space domain is equivalent to modulating the kth Fourier coefficient by e
−2πiℓk/N. In particular, it means that the phase ỹ[1] can be shifted by e−2πiℓ/N for an arbitrary ℓ 
∈ ℤ. Thus, for signals of length N ≫ 1, the phase ỹ[1] can be set arbitrarily with only small 

error. In the numerical experiments of Section VII, we give the correct value of ỹ[1] to the 

algorithms in order to assess their best possible behavior.

We begin by discussing the FM algorithm, which is a simple propagation method: it is exact 

in the absence of noise. Notwithstanding, its estimation for the low-frequency coefficients is 

sensitive to noise. Because of its recursive nature, error in the low frequencies propagates to 

the high frequencies, resulting in unreliable estimation. The other two algorithms are more 

computationally demanding but appear more robust.

A. Frequency marching algorithm

The FM algorithm is a simple propagation algorithm in the spirit of [45], [46] that aims to 

estimate ỹ one frequency at a time. This algorithm has computational complexity O(N2) and 

it recovers ỹ exactly for both real and complex signals in the absence of noise, assuming 

ỹ[1] is known.
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Let us denote B̃[k1, k2] = eiΨ[k1,k2] and ỹ[k] = eiψ[k]. Accordingly, we can reformulate (II.5) 

as

Ψ[k1, k2] = ψ[k1] − ψ[k2] + ψ[k2 − k1] mod 2π,

where the modulo is taken over the sum of all three terms. Using this relation, we can start to 

estimate the missing phases. The first unknown phase, ψ[2], can be estimated by:

Ψ[1, 2] = ψ[1] − ψ[2] + ψ[1] mod 2π
ψ[2] = 2ψ[1] − Ψ[1, 2] mod 2π,

where ψ̂[2] refers to the estimator of ψ[2] (defined modulo 2π). We can estimate the next 

phase in the same manner:

Ψ[1, 3] = ψ[1] − ψ[3] + ψ[2] mod 2π
ψ[3] = ψ[1] + ψ[2] − Ψ[1, 3] mod 2π .

For higher frequencies, we have more measurements to rely on. For the fourth entry, we now 

can derive two estimators as follows:

Ψ[1, 4] = ψ[1] − ψ[4] + ψ[3] mod 2π
ψ(1)[4] = ψ[1] + ψ[3] − Ψ[1, 4] mod 2π,

and

Ψ[2, 4] = ψ[2] − ψ[4] + ψ[2] mod 2π
ψ(2)[4] = 2ψ[2] − Ψ[2, 4] mod 2π .

In the noiseless case, it is clear that ψ[4] = ψ̂(1)[4] = ψ̂(2)[4]. In a noisy environment, we can 

reduce the noise by averaging the two estimators, where averaging is done over the set of 

phases (namely, over the rotation group SO(2)) as explained in Appendix D. Specifically,

eiψ[4] = phase eiψ(1)[4] + eiψ(2)[4] .

We can iterate this procedure. To estimate phase q, we want to consider all entries of 

B∼[k, ℓ] = y∼[k]y∼[ℓ]y∼[ℓ − k] such that exactly one of the indices k, ℓ, or ℓ − k is equal to q and 

all other indices are in 1, …, q − 1, so that all other phases involved have already been 

estimated. A simple verification shows that only entries B̃[p, q], p = 1, …, q − 1, have that 

property. Furthermore, because of symmetry in the bispectrum (V.4), half of these entries are 

redundant so that only entries B̃[p, q], p = 1, …, q
2  remain. As a result, estimation of the kth 
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phase relies on averaging over k
2  equations, as summarized in Algorithm 4, with the 

following simple guarantee. The above construction yields the following proposition.

Proposition IV.1—Let B̃ = B̃
x be the normalized bispectrum as defined in (II.9) and 

assume that ỹ[1] is known. If y[k] ≠ 0 for k = 1, …, K, then Algorithm 4 recovers the 
Fourier phases ỹ[k], k = 1, …, K exactly.

We note in closing that, if the signal x is real, symmetries in the phases ỹ and B̃ can be 

exploited easily in FM.

B. Semidefinite programming relaxation

In this section we assume that the DFT y is non-vanishing so that the bispectrum relation can 

be manipulated as

B∼ = y∼y∼∗ ∘ T(y∼) ≡ B∼ ∘ T(y∼) = y∼y∼∗,

where T(y∼) is its entry-wise conjugate. The developments are easily adapted if the signal has 

zero mean. Similarly to the FM algorithm, we assume that ỹ[0] and ỹ[1] are available. We 

aim to estimate ỹ by a convex program. As a first step, we decouple the bispectrum equation 

and write the problem of estimating ỹ as the following non-convex optimization problem:

min
Z ∈ ℋN, z ∈ ℂN

W ∘ B∼ ∘ T(z) − Z F
2

subject to Z = zz∗,

diag (Z) = 1,

z[0] = y∼[0], z[1] = y∼[1],

(if x is real) z[k] = z[ − k], ∀k,

(IV.1)

where ℋN is the set of Hermitian matrices of size N and W ∈ ℝN×N is a real weight matrix 

with positive entries. In particular, in the numerical experiments we set W = |B|.

Algorithm 4

Frequency marching algorithm

Input: Normalized bispectrum B̃[k1, k2] = eiΨ[k1,k2], ỹ[0] and ỹ[1] ≠ 0

Output: ŷ: estimation of ỹ

1 Set ŷ[0] = ỹ[0] and eiψ̂[1] = ỹ[1]

2 For k = 2, …, N do:

a. Average the phase measurements:
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u = phase ∑
ℓ = 1

k
2

ei ψ[ℓ] + ψ[k − ℓ] − Ψ[ℓ, k]

b. Estimate ψ̂[k] through:

eiψ[k] = u, u ≠ 0,
1, u = 0,

Return: ŷ ← eiψ̂

In the absence of noise, the minimizers of (IV.1) satisfy the bispectrum equation. However, 

in general these cannot be computed in polynomial time. In order to make the problem 

tractable, we relax the non-convex coupling constraint Z = zz* to the convex constraint Z ⪰ 
zz* (that is, Z − zz* is positive semidefinite). The convex relaxation is then given by

min
Z ∈ ℋN, z ∈ ℂN

W ∘ B∼ ∘ T(z) − Z F
2

subject to Z ≽ zz∗,

diag (Z) = 1,

z[0] = y∼[0], z[1] = y∼[1],

(if x is real) z[k] = z[ − k], ∀k,

(IV.2)

Upon solving (IV.2), which can be done in polynomial time with interior point methods, the 

phases ỹ are estimated from phase(z). In practice, we use CVX to solve this problem [65]. 

The algorithm is summarized in Algorithm 5. We note that problem (IV.2) is not a standard 

SDP, in that its cost function is nonlinear.

In the noiseless case, the SDP relaxation (IV.2) recovers the missing phases exactly. 

Interestingly, the proof is not so much based on optimality conditions as it is on an algebraic 

property of circulant matrices. The proof of the following property is given in Appendix E.

Algorithm 5

Semidefinite relaxation algorithm

Input: The normalized bispectrum B̃, ỹ[0] and ỹ[1]

Output: ŷ: estimation of ỹ

Solve the SDP with nonlinear cost function (IV.2), for example using CVX [65]

Return: ŷ ← phase(z)
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Lemma IV.2—Let û be the DFT of a vector u ∈ ℂN obeying u[k] = u[ − k], so that û is real. 
If u[0] = u[1] = 1 and û is non-negative, then u[k] = 1 for all k.

The following theorem is a direct corollary of Lemma IV.2. The main proof idea is as 

follows. Consider u = y ∘ z where (Z, z) is optimal for the SDP; then, the constraints ensure 

u[0] = u[1] = 1. Furthermore, one can see via the Schur complement that the constraints 

force T(u) to be positive semidefinite. Since the eigenvalues of T(u) are the DFT of u, it 

follows that û is non-negative, so that the lemma above applies and u ≡ 1, or, equivalently, z 
= ỹ. Details of the proof are in Appendix F.

Theorem IV.3—For a real signal with non-vanishing DFT y, if all weights in W are 
positive, ỹ[0] and ỹ[1] are known and the objective value of (IV.2) attains 0 (which is the 
case in the absence of noise), then the SDP has a unique solution given by z = ỹ and Z = 

zz*.

We close with an important remark about the symmetry breaking purpose of constraint z[1] 

= ỹ[1] in the SDP. Because the signal x can be recovered only up to integer time shifts, even 

in the noiseless case, without this constraint there are at least N distinct solutions (z, Z) to 

the SDP. Because SDP is a convex program, any point in the convex hull of these N points is 

also a solution. Thus, if the symmetry is not broken, the set of solutions contains many 

irrelevant points. Furthermore, interior point methods tend to converge to a center of the set 

of solutions, which in this case is never one of the desired solutions.

C. Phase unwrapping by integer programming algorithm

The next algorithm is based on solving an over-determined system of equations involving 

integers. Let us denote ỹ[k] = eiψ[k] and B̃[k1, k2] = eiΨ[k1,k2] so the normalized bispectrum 

model is given by

e
iΨ[k1, k2]

= e
i(ψ[k1] − ψ[k2] + ψ[k2 − k1])

.

By taking the logarithm, we get the algebraic relation

Ψ[k1, k2] + 2π χ[k1, k2] = ψ[k1] − ψ[k2] + ψ[k2 − k1], (IV.3)

where, as a result of phase wrapping, χ takes on integer values. Let Ψvec and χvec be the 

column-stacked versions of Ψ and χ, respectively. Then, the model reads

Ψvec + 2π χvec = Aψ , (IV.4)

where the sparse matrix A ∈ ℝN2×N encodes the right hand side of (IV.3). It can be verified 

that A is of rank N − 1 (see for instance [66]), with null space corresponding to the time-
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shift-induced ambiguity on the phases (II.3). Note that both the integer vector χvec and the 

phases ψ are unknown. Given χvec, the phases ψ can be obtained easily by solving

min
ψ ∈ ℝN

‖Ψvec + 2π χvec − Aψ‖
p
, (IV.5)

for some ℓp norm. Observe that any error in estimating χ may cause a big estimation error of 

ψ in (IV.5). These errors can be thought of as outliers. Hence, we choose to use least 

unsquared deviations (LUD), p = 1, which is more robust to outliers. The more challenging 

task is to estimate the integer vector χvec ∈ ℤN2
. To this end, we first eliminate ψ from (IV.

4) as follows. Let C ∈ ℝ(N2 − (N−1))×N2
 be a full rank matrix such that CA = 0, that is, the 

columns of CT are in the null space of AT. Matrix C can be designed by at least two 

methods. One, suggested in [67], exploits the special structure of A to design a sparse matrix 

composed of integer values. Another, which we use here, is to take C to have orthonormal 

rows which form a basis of the kernel of AT. Numerical experiments (not shown) indicate 

that the latter approach is more stable. Next, we multiply both sides of (IV.4) from the left by 

C to get

C{Ψvec + 2π χvec} = CAψ = 0.

Therefore, the integer recovery problem can be formulated as

min
χvec ∈ ℤN2

1
2π CΨvec + C χvec 2

, (IV.6)

where we minimize over all integers. Note that CΨvec is a known vector. The problem is 

then equivalent to finding a lattice vector with the basis C which is as close as possible to the 

vector −CΨvec/(2π). While the problem is known to be NP-hard, we approximate the 

solution of (IV.6) with the LLL (Lenstra–Lenstra–Lovasz) algorithm, which can be run in 

polynomial time [68]. The LLL algorithm computes a lattice basis, called a reduced basis, 

which is approximately orthogonal. It uses the Gram–Schmidt process to determine the 

quality of the basis. For more details, see [69, Ch. 17].

We note that (IV.6) is under-determined as the matrix C is of rank N2 − rank(A) = N2 − (N 
− 1). While the LLL algorithm works with under-determined systems, in our case we can 

solve it for a determined system since we can fix the first N − 1 entries of χvec to be zero.2 

Once we have estimated χvec, we solve (IV.5) with p = 1. This approach is summarized in 

Algorithm 6.

2We omit the proof of this property here and only mention that it is based on the derivation in [67].
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Algorithm 6

Phase unwrapping by integer programming

Input: The normalized bispectrum B̃[k1, k2] = eiΨ[k1,k2]

Output: ŷ: estimation of ỹ

1 (integer programming) Apply the LLL algorithm to estimate the integer vector χvec from

min
χvec ∈ ℤN2 ‖CΨvec/(2π) + C χvec‖2,

where A is given in (IV.4), CA = 0 and Ψvec ∈ ℝN2
 is a column-stacked version of Ψ, e.g., using code 

from [70].

2 (least-unsquared minimization) Let χ̂vec be the solution of stage 1. Then, solve

ψ = arg min
ψ ∈ ℝN

‖Ψvec + 2π χvec − Aψ‖1 .

Return: ŷ ← eiψ̂

V. Analysis of optimization over phases

In this section, we study the non-convex optimization problem (III.4) and give more 

implementation details to solve it, since numerical experiments identify this as the method of 

choice for MRA from invariant features among all methods compared. We start by 

considering the general case of a complex signal x ∈ ℂN and consider the real case in 

Appendix B. Recall that we aim to maximize

f (z) = 〈z, M(z)z〉, M〈z〉: = W(2) ∘ B∼ ∘ T(z),

where the inner product is defined by (III.2), W is a real weighting matrix and W(2):= W ∘ 
W. The optimization problem lives on a manifold, that is, a smooth nonlinear space. Indeed, 

the smooth cost function f(z) is to be maximized over the set

ℳ = z ∈ ℂN : ∣ z[0] ∣ = ⋯ = ∣ z[N − 1] ∣ = 1 ,

which is a Cartesian product of N unit circles in the complex plane (a torus). Theory and 

algorithms for optimization on manifolds can be found in the monograph [71]. We follow 

this formalism here. Details can also be found in [17], which deals with the similar problem 

of phase synchronization, using similar techniques. For the numerical experiments below, 

we use the toolbox Manopt which provides implementations of various optimization 

algorithms on manifolds [63].
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Under mild conditions, the global optima of (III.4) correspond exactly to ỹ up to integer 

time shifts. This fact is proven in Appendix G.

Lemma V.1—For N ≥ 3, let x ∈ ℂN be a signal whose DFT y is nonzero for frequencies k 
in {1, …, K}, possibly also for k = 0, and zero otherwise. Up to integer time shifts, x is 

determined exactly by its bispectrum B provided K ≥ N + 1
2 . Furthermore, the global optima 

of (III.4) correspond exactly to the relevant phases of y—up to the effects of integer time 
shifts—provided W[k, ℓ] is positive when B[k, ℓ] ≠ 0.

The problem at hand is

max
z ∈ ℳ

f (z) . (V.1)

This is smooth but non-convex, so that in general it is hard to compute the global optimum. 

We derive first- and second-order necessary optimality conditions. Points which satisfy these 

conditions are called critical and second-order critical points, respectively. Known 

algorithms converge to critical points (e.g., Riemannian gradient descent) and even to 

second-order critical points (e.g., Riemannian trust-regions) regardless of initialization [71], 

[62], [64]. Empirically, despite non-convexity, the global optimum appears to be computable 

reliably in favorable noise regimes.

As we proceed to consider optimization algorithms for (III.4), the gradient of f will come 

into play:

∇ f (z) = M(z)z + M(z)∗z + Madj(zz∗),

where Madj: ℂN×N → ℂN is the adjoint of M with respect to the inner product 〈·, ·〉. 
Formally, the adjoint is defined such that, for any z ∈ ℂN, X ∈ ℂN×N,

〈z, Madj(X)〉 = 〈M(z), X〉 .

Specifically, in Appendix H we show that

Madj(X)[k] = Tr Tk
⊤ W(2) ∘ B∼ ∘ X , (V.2)

where Tk is a circulant matrix with ones in its kth (circular) diagonal and zero otherwise, 

namely,
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(Tk)[ℓ′, ℓ] = 1 if ℓ′ = ℓ − k,
0 otherwise. (V.3)

As it turns out, under the symmetries of the problem at hand, there is no need to evaluate 

Madj explicitly. Indeed, B̃ obeys

B∼[k2 − k1, k2] = y∼[k2 − k1]y∼[k2]y∼[k1] = B∼[k1, k2] . (V.4)

This property is preserved when B̃ is obtained by averaging bispectra of multiple 

observations, as in (II.8). Assuming the same symmetry for the real weights W, we find 

below that Madj(zz*) = M(z)z. See Appendix I.

Lemma V.2—If B̃[k2 − k1, k2] = B̃[k1, k2] and W[k2 − k1, k2] = W[k1, k2] for all k1, k2, 
then Madj(zz*) = M(z)z for all z ∈ ℂN.

Thus, under the symmetries assumed in Lemma V.2, the gradient of f simplifies and we get a 

simple expression for the Hessian as well:

∇ f (z) = 2M(z)z + M(z)∗z,
∇2 f (z)[z.] = 2M(z.)z + 2M(z)z. + M(z.)∗z + M(z)∗z. .

(V.5)

For unconstrained optimization, the first-order necessary optimality conditions are ∇f(z) = 0. 

In the presence of the constraint z ∈ ℳ, the conditions are different. Namely, following [71, 

eq. (3.37)], since ℳ is a submanifold of ℂN, first-order necessary optimality conditions state 

that the orthogonal projection of the gradient ∇f(z) to the tangent space to ℳ at z must 

vanish. The result of this projection is called the Riemannian gradient. Formally, the tangent 

space is obtained by linearizing (differentiating) the constraints |z[k]|2 = 〈z[k], z[k]〉 = 1 for 

all k, yielding

Tzℳ = {z. ∈ ℂN : 〈z[k], z.[k]〉 = 0, ∀k} .

Orthogonal projection of u ∈ ℂN to the tangent space Tzℳ can be computed entry-wise by 

subtracting from each u[k] its component aligned with z[k]. Let Projz: ℂN → Tzℳ denote 

this projection. This operation admits a compact matrix notation as

u Projz(u) = u − ℜ{u ∘ z} ∘ z

= u − ℜ{ddiag(uz∗)}z,

Bendory et al. Page 21

IEEE Trans Signal Process. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ddiag: ℂN×N → ℂN×N sets all non-diagonal entries of a matrix to zero. Equipped with 

this notion and the expression for ∇f(z) (V.5), it follows that the Riemannian gradient of f at 

z on ℳ is

grad f (z): = Projz(∇ f (z)) = ∇ f (z) − D(z)z,

with

D(z): = ℜ{ddiag(∇ f (z)z∗)} = ℜ{diag(∇ f (z) ∘ z)} .

Lemma V.3—If z ∈ ℳ is optimal for (V.1), then grad f(z) = 0; equivalently, diag(∇f(z)z*) = 

∇f(z) ∘ z̄ is real.

Proof: See [72, Rem. 4.2 and Cor. 4.2]. For the equivalence, notice that Projz(u) = 0 if and 

only if u[k] = ℜ{u[k]z[k]}z[k] for all k, and multiply by z[k] on both sides using |z[k]| = 1.

A point z which satisfies these conditions is called a critical point. Likewise, we can define a 

notion of Riemannian Hessian as the linear, self-adjoint operator on Tzℳ which captures 

infinitesimal changes in the Riemannian gradient around z. Without getting into technical 

details, we follow [71, eq. (5.15)] and define (with D the directional derivative operator):

Hess f (z)[z.]: = Projz (D(z grad f (z)) (z)[z.])

= Projz (∇2 f (z)[z.] − D(z)z. − (DD(z)[z.])z),

where DD(z)[ż] is a real, diagonal matrix. Its contribution to the Hessian is zero, since 

(DD(z)[ż])z vanishes under the projection Projz. Hence,

Hess f (z)[z.] = Projz (∇2 f (z)[z.] − D(z)z.) .

The Riemannian Hessian intervenes in the second-order necessary optimality conditions as 

follows.

Lemma V.4—If z ∈ ℳ is optimal for (V.1), then grad f(z) = 0 and Hess f(z) ⪯ 0, that is, for 
all ż ∈ Tzℳ we have

〈z., Hess f (z)[z.]〉 = 〈z., ∇2 f (z)[z.]〉 − 〈z., D(z)z.〉 ≤ 0.

Proof: See [72, Rem. 4.2 and Cor. 4.2]. In the equality, we used the fact that Projz is self-

adjoint and ż ∈ Tzℳ.
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A point z which satisfies these conditions is called a second-order critical point. With unit 

weights, the following lemma shows that second-order critical points z, in the noiseless case, 

cannot have an arbitrarily bad objective value f(z). This result is weak, however, since 

empirically it is observed that in the noiseless case local optimization methods consistently 

converge to global optima whose value are N2, suggesting that all second-order critical 

points are global optima in this simplified scenario. While we do not have a proof for this 

stronger conjecture, we provide the lemma below because it is analogous to [17, Lemma 14] 

which, in that reference, is a key step toward proving global optimality of second-order 

critical points.

Lemma V.5—In the absence of noise and with unit weights, a second-order critical point z 
of (V.1) satisfies

∇ f (z) ∘ z ≥ 2( 3 − 1) > 0.

In particular, this implies

f (z) = 1
3〈z, ∇ f (z)〉 ≥ 2( 3 − 1)

3 N .

Proof: See Appendix J for the proof of the inequality. It follows from two key 

considerations. First, because z is a critical point, Lemma V.3 indicates that ∇f(z) ∘ z̄ is real. 

Second, because z is second-order critical, the Riemannian Hessian at z must be negative 

semidefinite by Lemma V.4. Applied to all tangent directions at z which perturb only one 

phase at a time implies the desired inequality. The fact that 3f(z) = 〈z,∇f(z)〉 follows from (V.

5).

One final ingredient that is necessary to optimize f overℳ is a means of moving away from a 

current iterate z ∈ ℳ to the next by following a tangent vector ż. A simple means of 

achieving this is through a retraction [71, Def. 4.1.1]. For ℳ, an obvious retraction is the 

following:

Retrz(z
.) = phase(z + z.) ∈ ℳ . (V.6)

With the formalism of (V.1) and the above derivations, we can now run a local Riemannian 

optimization algorithm. As an example, the Riemannian gradient ascent algorithm would 

iterate the following:

z(t + 1) = Retr
z(t) η(t)grad f (z(t))

= phase z(t) + η(t)grad f (z(t)) ,
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where η(t) > 0 is an appropriately chosen step size and z(0) ∈ ℳ is an initial guess. It is 

relatively easy to choose the step sizes such that the sequence z(t) converges to critical points 

regardless of z(0), with a linear local convergence rate [71, §4]. In practice, we prefer to use 

the Riemannian trust-region method (RTR) [62], whose usage is simplified by the toolbox 

Manopt [63]. RTR enjoys global convergence to second-order critical points [64] and a 

quadratic local convergence rate.

In this section, the analysis focused on complex signals. For real signals, we can follow the 

same methodology while taking the symmetry in the Fourier domain into account. This 

analysis is given in Appendix B.

VI. Expectation maximization

In this section, we detail the expectation maximization algorithm (EM) [73] applied to 

MRA. As the numerical experiments in Section VII demonstrate, EM achieves excellent 

accuracy in estimating the signal. However, compared to the invariant features approach 

proposed in this paper, it is significantly slower and requires many passes over the data (thus 

excluding online processing).

Let X = [ξ1, …, ξM] be the data matrix of size N × M, following the MRA model (I.1). The 

maximum marginalized likelihood estimator (MMLE) for the signal x given X is the 

maximizer of the likelihood function L(x; X) = p(X|x) (the probability density of X given x). 

This density could in principle be evaluated by marginalizing the joint distribution p(X, r|x) 

over the unknown shifts r ∈ {0, …, N−1}M. This, however, is intractable as it involves 

summing over NM terms.

Alternatively, EM tries to estimate the MMLE as follows. Given a current estimate for the 

signal xk, consider the expected value of the log-likelihood function, with respect to the 

conditional distribution of r given X and xk:

Q(x ∣ xk) = 𝔼r ∣ X, xk
{ log p(X, r ∣ xk)} . (VI.1)

This step is called the E-step. Then, iterate by computing the M-step:

xk + 1 = arg max
x

Q(x ∣ xk) . (VI.2)

For the MRA model, this can be done in closed form. Indeed, the log-likelihood function 

follows from the i.i.d. Gaussian noise model:

log p(X, r ∣ x) = − 1
2σ2 ∑

j = 1

M
‖Rr j

x − ξ j‖2
2 + constant . (VI.3)
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To take the expectation with respect to r, we need to compute wk
ℓ, j: for each observation j, 

this is the probability that the shift rj is equal to ℓ, given X and assuming x = xk. This also 

follows easily from the i.i.d. Gaussian noise model:

wk
ℓ, j ∝ exp − 1

2σ2‖Rℓxk − ξ j‖2
2 , (VI.4)

(with appropriate scale so that ∑ℓ = 0
N − 1wk

ℓ, j = 1). This allows to write Q down explicitly:

Q(x ∣ xk) = − 1
2σ2 ∑

j = 1

M
∑

ℓ = 0

N − 1
wk

ℓ, j‖Rℓx − ξ j‖2
2 + constant .

This is a convex quadratic expression in x with maximizer

xk + 1 = 1
M ∑

j = 1

M
∑

ℓ = 0

N − 1
wk

ℓ, jRℓ
−1ξ j . (VI.5)

In words: given an estimator xk, the next estimator is obtained by averaging all shifted 

versions of all observations, weighted by the empirical probabilities of the shifts. 

Considering all shifts of all observations would, in principle, induce an iteration complexity 

of O(MN2), but fortunately, for each observation, the matrix of its shifted versions is 

circulant, which makes it possible to use FFT to reduce the overall computational cost to 

O(MN logN). See the available code for details. We note that Matlab naturally parallelizes 

the computations over M.

In practice, we set x0 ~ (0, IN) to be a random guess. Furthermore, for M ≥ 3000, we first 

execute 3000 batch iterations, where the EM update is computed based on a random sample 

of 1000 observations (fresh sample at each iteration). This inexpensively transforms the 

random initialization into a ballpark estimate of the signal. The algorithm then proceeds with 

full-data iterations until the relative change between two consecutive estimates drops below 

10−5 (in ℓ2-norm, up to shifts).

VII. Numerical Experiments

This section is devoted to numerical experiments, examining all proposed algorithms. Code 

for all algorithms and to reproduce the experiments is available online.3 The experiments 

were conducted as follows. The true signal x of length N = 41 is a fixed window of height 1 

and width 21. With this signal, the signal-to-noise ratio is ‖x‖2

‖ε‖2 ≈ 1
2σ2 . We generated a set of 

M shifted noisy versions of x as

3https://github.com/NicolasBoumal/MRA
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ξ j = Rr j
x + ε j,

where each shift was randomly drawn from a uniform distribution over {0, …, N − 1} and εj 

~ (0, σ2I) for all j. The relative recovery error for a single experiment is defined as

relative error(x, x) = min
s ∈ {0, …, N − 1}

‖Rsx − x‖2
‖x‖2

,

where x̂ is the estimation of the signal. All results are averaged over 20 repetitions. While 

we present here results for a specific signal, alternative signal models (e.g., random signals) 

showed similar numerical behavior.

The following figures compare the recovery errors for all proposed algorithms, with random 

initialization for those that need initialization. The non-convex algorithm on the manifold of 

phases, Algorithm 2, runs the Riemannian trust-region method (RTR) [62] using the toolbox 

Manopt [63]. Algorithm 3 runs 15 iterations with warm-start using the same toolbox. For the 

phase unwrapping algorithm, Algorithm 6, we use an implementation of LLL available in 

the MILES package [70]. The SDP is solved with CVX [65]. The EM algorithm is 

implemented as explained in Section VI. We compared the algorithms with an oracle who 

knowns the random shifts rj and therefore simply averages out the Gaussian noise. 

Experiments are run on a computer with 30 CPUs available. These CPUs are used to 

compute the invariants in parallel (with Matlab’s parfor), while the EM algorithm benefits 

from parallelism to run the many thousands of FFTs it requires efficiently (built-in Matlab). 

The algorithms that need ỹ[0] and ỹ[1] are given the correct values.

Figures VII.1 and VII.2 present the recovery error and computation time of all algorithms as 

a function of the number of observations M for fixed noise level σ = 1. Of course, the oracle 

who knows the shifts of the observations is unbeatable. Algorithms 2 and 3 outperform all 

invariant approach methods. The inferior performance of the SDP might be explained by the 

fact that we are minimizing a smooth non-linear objective. This is in contrast to SDPs with 

linear or piecewise linear objectives which tend to promote “simple” (i.e., low rank) 

solutions [74], [75, Remark 6.2]. Additionally, while this is not depicted on the figure, we 

note that for σ = 0 all methods get exact recovery up to machine precision. EM outperforms 

the best invariant features approaches by a factor of 3, at the cost of being significantly 

slower. For large M, the best invariant features approaches are faster than EM by a factor of 

25. Note, however, that for M up to about 300, EM is faster than the other algorithms. For 

invariant features approaches (aside from the SDP), almost all of the time is spent computing 

the bispectrum estimator, while inverting the bispectrum is relatively cheap.

Figures VII.3 and VII.4 show the recovery error and computation time as a function of the 

noise level σ with M = 10,000 observations. Surprisingly, for high noise level σ ≳ 3, the 

invariant features algorithms outperform EM.
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VIII. Conclusions and perspective

The goal of this paper is twofold. First, we have suggested a new approach for the MRA 

problem based on features that are invariant under translations. This technique enables us to 

deal with any noise level as long as we have access to enough measurements and particularly 

it achieves the sample complexity of MRA. The invariant features approach has low 

computational complexity and it requires less memory with respect to alternative methods, 

such as EM. If one wants to have a highly accurate solution, it can therefore be used to 

initialize EM.

A main ingredient of the invariant features approach is estimating the signal’s Fourier phases 

by inverting the bispectrum. Hence, the second goal of this paper was to study algorithms for 

bispectrum inversion. We have proposed a few algorithms for this task. In the presence of 

noise, the non-convex algorithms on the manifold of phases, namely, Algorithms 2 and 3, 

perform the best. Empirically, these algorithms have a remarkable property: despite their 

non-convex landscape, they appear to converge to the target signal from random 

initialization. We provide some analysis for Algorithm 2 but this phenomenon is not well 

understood.

Our chief motivation for this work comes from the more involved problem of cryo-EM. In 

cryo-EM, a 3D object is estimated from its 2D projections at unknown rotations in a low 

SNR environment. One line of research for the object recovery is based on first estimating 

the unknown rotations [76], [77], [78]. However, the rotation estimation is performed in a 

very noisy environment and therefore might be inaccurate. An interesting question is to 

examine whether the 3D object can be estimated directly from the acquired data using 

features that are invariant under the unknown viewing directions [79].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure I.1. 
Alignment of two translated versions of the same signal in the presence of i.i.d. Gaussian 

noise with various standard deviations σ. The true signal in ℝ100 is a window of length 22 

and height 1. Each row presents two observations and their cross-correlation. Importantly, 

beyond a certain threshold, noise makes pairwise alignment impossible.
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Figure II.1. 
Relative error of estimating the power spectrum and bispectrum for different noise levels as 

a function of the number of observations M. Results are averaged over 10 repetitions for 

each value of M on a fixed real signal of length N = 41 with i.i.d. normal random entries. 

The signal-to-noise ratio is then 1/σ2. Importantly, the relative error decreases as 1/ M
regardless of noise level.
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Figure VII.1. 
Relative recovery error for the signal x as a function of the number of observations M for 

fixed noise level σ = 1. The curves corresponding to the optim. phase manifold (Algorithm 

2) and the iter. phase synch. (Algorithm 3) overlap.
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Figure VII.2. 
Average computation times corresponding to Figure VII.1.
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Figure VII.3. 
Relative recovery error for the signal x as a function of the noise level σ with M = 10,000 

observations. The curves corresponding to the optim. phase manifold (Algorithm 2) and the 

iter. phase synch. (Algorithm 3) overlap.
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Figure VII.4. 
Average computation times corresponding to Figure VII.3.
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Table I

Comparison of main MRA approaches. F(N) denotes the complexity of inverting the bispectrum. For instance, 

for the FM algorithm, F(N) = O(N2). Storage requirements include the possibility of streaming computations 

where possible.

Method Computational complexity Storage requirement Comments

Template alignment O(MN log N) O(N) Fails at moderate SNR (see Figure I.1)

Angular synchronization O(M2N log N) O(M2) Fails at low SNR

Expectation maximization O(TMN log N) O(MN) Empirically accurate; #iterations T grows with noise 
level

Invariant features (this paper) O(MN2 + F(N)) O(N2) Under mild conditions, accurate estimation if M 
grows as σ6
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(V.6)With the formalism of (V.1) and the above derivations, we can now run a local Riemannian optimization algorithm. As an example, the Riemannian gradient ascent algorithm would iterate the following: 
 where η(t)
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