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Abstract

This paper provides a new way of developing the “Fast Iterative Shrinkage/Thresholding 

Algorithm (FISTA)” [3] that is widely used for minimizing composite convex functions with a 

nonsmooth term such as the ℓ1 regularizer. In particular, this paper shows that FISTA corresponds 

to an optimized approach to accelerating the proximal gradient method with respect to a worst-

case bound of the cost function. This paper then proposes a new algorithm that is derived by 

instead optimizing the step coefficients of the proximal gradient method with respect to a worst-

case bound of the composite gradient mapping. The proof is based on the worst-case analysis 

called Performance Estimation Problem in [11].

1. Introduction

The “Fast Iterative Shrinkage/Thresholding Algorithm” (FISTA) [3], also known as a fast 

proximal gradient method (FPGM) in general, is a very widely used fast first-order method. 

FISTA’s speed arises from Nesterov’s accelerating technique in [23, 24] that improves the 

O(1/N) cost function worst-case bound of a proximal gradient method (PGM) to the optimal 

O(1/N2) rate where N denotes the number of iterations [3].

This paper first provides a new way to develop Nesterov’s acceleration approach, i.e., FISTA 

(FPGM). In particular, we show that FPGM corresponds to an optimized approach to 

accelerating PGM with respect to a worst-case bound of the cost function. We then propose 

a new fast algorithm that is derived from PGM by instead optimizing a worst-case bound of 

the composite gradient mapping. We call this new method FPGM-OCG (OCG for optimized 

over composite gradient mapping). This new method provides the best known analytical 

worst-case bound for decreasing the composite gradient mapping with rate O(1/N
3
2) among 

fixed-step first-order methods. The proof is based on the worst-case bound analysis called 

Performance Estimation Problem (PEP) in [11], which we briefly review next.

Drori and Teboulle’s PEP [11] casts a worst-case analysis for a given optimization method 

and a given class of optimization problems into a meta-optimization problem. The original 

PEP has been intractable to solve exactly, so [11] introduced a series of tractable relaxations, 
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focusing on first-order methods and smooth convex minimization problems; this PEP and its 

relaxations were studied for various algorithms and minimization problem classes in [12, 16, 

17, 18, 19, 29, 30]. Drori and Teboulle [11] further proposed to optimize the step 

coefficients of a given class of optimization methods using a PEP. This approach was studied 

for first-order methods on unconstrained smooth convex minimization problems in [11], and 

the authors [17] derived a new first-order method, called an optimized gradient method 

(OGM) that has an analytic worst-case bound on the cost function that is twice smaller than 

the previously best known bounds of [23, 24]. Recently, Drori [10] showed that the OGM 

exactly achieves the optimal cost function worst-case bound among first-order methods for 

smooth convex minimization (in high-dimensional problems).

Building upon [11] and its successors, Taylor et al. [29] expanded the use of PEP to first-

order (proximal gradient) methods for minimizing nonsmooth composite convex functions. 

They used a tight relaxation1 for PEP and studied the tight (exact) numerical worst-case 

bounds of FPGM, a proximal gradient version of OGM, and some variants versus number of 

iterations N. Their numerical results suggest that there exists an OGM-type acceleration of 

PGM that has a worst-case cost function bound that is about twice smaller than that of 

FPGM, showing room for improvement in accelerating PGM. However, it is difficult to 

derive an analytical worst-case bound for the tightly relaxed PEP in [29], so optimizing the 

step coefficients of PGM remains an open problem, unlike [11, 17] for smooth convex 

minimization.

Different from the tightly relaxed PEP in [29], this paper suggests a new (looser) relaxation 

of a cost function form of PEP for nonsmooth composite convex minimization that 

simplifies analysis and optimization of step coefficients of PGM, although yields loose 

worst-case bounds. Interestingly, the resulting optimized PGM numerically appears to be the 

FPGM. Then, we further provide a new generalized version of FPGM using our relaxed PEP 

that extends our understanding of the FPGM variants.

This paper next extends the PEP analysis of the gradient norm in [29, 30]. For unconstrained 

smooth convex minimization, the authors [16] used such PEP to optimize the step 

coefficients with respect to the gradient norm. The corresponding optimized algorithm can 

be useful particularly when dealing with dual problems where the gradient norm decrease is 

important in addition to the cost function minimization (see e.g., [9, 22, 26]). By extending 

[16], this paper optimizes the step coefficients of the PGM for the composite gradient 

mapping form of PEP for nonsmooth composite convex minimization. The resulting 

optimized algorithm differs somewhat from Nesterov’s acceleration and turns out to belong 

to the proposed generalized FPGM class.

Sec. 2 describes a nonsmooth composite convex minimization problem and first-order 

(proximal gradient) methods. Sec. 3 proposes a new relaxation of PEP for nonsmooth 

composite convex minimization problems and the proximal gradient methods, and suggests 

that the FPGM (FISTA) [3] is the optimized method of the cost function form of this relaxed 

1Tight relaxation here denotes transforming (relaxing) an optimization problem into a solvable problem while their solutions remain 
the same. [29] tightly relaxes the PEP into a solvable equivalent problem under a large-dimensional condition.
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PEP. Sec. 3 further proposes a generalized version of FPGM using the relaxed PEP. Sec. 4 

studies the composite gradient mapping form of the relaxed PEP and describes a new 

optimized method for decreasing the norm of composite gradient mapping. Sec. 5 compares 

the various algorithms considered, and Sec. 6 concludes.

2. Problem, methods, and contribution

We consider first-order algorithms for solving the nonsmooth composite convex 

minimization problem:

min
x ∈ ℝd

{F(x) ≔ f (x) + ϕ(x)}, (M)

under the following assumptions:

• f : ℝd → ℝ is is a convex function of the type 𝒞L
1, 1(ℝd), i.e., continuously 

differentiable with Lipschitz continuous gradient:

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖, ∀x, y ∈ ℝd, (1)

where L > 0 is the Lipschitz constant.

• ϕ : ℝd → ℝ is proper, closed, convex and “proximal-friendly” [6].

• The optimal set X*(F) = arg minx∈ℝd F(x) is nonempty, i.e., the problem (M) is 

solvable.

We use ℱL(ℝd) to denote the class of functions F that satisfy the above conditions. We 

additionally assume that the distance between the initial point x0 and an optimal solution x* 

∈ X(F) is bounded by R > 0, i.e., ‖x0 − x*‖ ≤ R.

PGM is a standard first-order method for solving the problem (M) [3, 6], particularly when 

the following proximal gradient update (that consists of a gradient descent step and a 

proximal operation [6]) is relatively simple:

pL(y) ≔ arg min
x

f (y) + 〈x − y, ∇ f (y)〉 + L
2 ‖x − y‖2 + ϕ(x) = arg min

x
L
2 x − y − 1

L ∇ f (y)
2

+ ϕ(x) .

(2)

For ϕ(x) = ‖x‖1, the update (2) becomes a simple shrinkage/thresholding update, and PGM 

reduces to an iterative shrinkage/thresholding algorithm (ISTA) [8]. (See [6, Table 10.2] for 

more functions ϕ(x) that lead to simple proximal operations.) PGM has the following bound 

on the cost function [3, Thm. 3.1] for any N ≥ 1:
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F(xN) − F(x∗) ≤ LR2

2N . (3)

Algorithm PGM

Input: f ∈ ℱL(ℝd), x0 ∈ ℝd.

For i = 0, …, N − 1

xi + 1 = pL(xi)

For simplicity in later derivations, we use the following definition of the composite gradient 

mapping [27]:

∇∼ LF(x) ≔ − L(pL(x) − x) . (4)

The composite gradient mapping reduces to the usual function gradient ∇f(x) when ϕ(x) = 0. 

We can then rewrite the PGM update in the following form reminiscent of a gradient 

method:

xi + 1 = pL(xi) = xi − 1
L ∇∼ LF(xi), (5)

where each update guarantees the following monotonic cost function descent [27, Thm. 1]:

F(xi) − F(xi + 1) ≥ 1
2L‖∇∼ LF(xi)‖

2 . (6)

For any x ∈ ℝd, there exists a subgradient ϕ′(pL(x)) ∈ ∂ϕ(pL(x)) that satisfies the following 

equality [3, Lemma 2.2]:

∇∼ LF(x) = ∇ f (x) + ϕ′(pL(x)) . (7)

This equality implies that any point x̄ with a zero composite gradient mapping (∇̃
LF(x̄) = 0, 

i.e., x̄ = pL(x̄)) satisfies 0 ∈ ∂F(x̄) and is a minimizer of (M). As discussed, minimizing the 

composite gradient mapping is noteworthy in addition to decreasing the cost function. This 

property becomes particularly important when dealing with dual problems. In particular, it is 

known that the norm of the dual (sub)gradient is related to the primal feasibility (see e.g., [9, 

22, 26]). Furthermore, the norm of the subgradient is upper bounded by the norm of the 

Kim and Fessler Page 4

SIAM J Optim. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



composite gradient mapping, i.e., for any given subgradients ϕ′(pL(x)) in (7) and F′(pL(x)) 

≔ ∇f(pL(x)) + ϕ′(pL(x)) ∈ ∂F(pL(x)), we have

‖F′(pL(x))‖ ≤ ‖∇ f (x) − ∇ f (pL(x))‖ + ‖∇ f (x) + ϕ′(pL(x))‖ ≤ 2L‖x − pL(x)‖ = 2‖∇∼ LF
(pL(x))‖,

(8)

where the first inequality uses the triangle inequality and the second inequality uses (1) and 

(7). This inequality provides a close relationship between the primal feasibility and the dual 

composite gradient mapping. Therefore, we next analyze the worst-case bound of the 

composite gradient mapping of PGM; Sec. 4 below discusses a first-order algorithm that is 

optimized with respect to the composite gradient mapping.2

The following lemma shows that PGM monotonically decreases the norm of the composite 

gradient mapping.

Lemma 1

The PGM monotonically decreases the norm of composite gradient mapping, i.e., for all x:

‖∇∼ LF(pL(x))‖ ≤ ‖∇∼ LF(x)‖ . (9)

Proof—The proof in [22, Lemma 2.4] can be easily extended to prove (9) using the 

nonexpansiveness of the proximal mapping (proximity operator) [6].

The following theorem provides a O(1/N) bound on the norm of composite gradient 

mapping for the PGM, using the idea in [26] and Lemma 1.

Theorem 2

Let F : ℝd → ℝ be in ℱL(ℝd) and let x0, ⋯, xN ∈ ℝd be generated by PGM. Then for N ≥ 

2,

min
i ∈ {0, …, N}

‖∇∼ LF(xi)‖ = ‖∇∼ LF(xN)‖ ≤ 2LR
(N − 1)(N + 2) . (10)

Proof—Let m = ⌊ N
2 ⌋, and we have

2One could develop a first-order algorithm that is optimized with respect to the norm of the subgradient (rather than its upper bound in 
Sec. 4), which we leave as future work.

Kim and Fessler Page 5

SIAM J Optim. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LR2
2m ≥

(3)
F(xm) − F(x∗) ≥

(6)
F(xN + 1) − F(x∗) + 1

2L ∑
i = m

N
‖∇∼LF(xi)‖

2 ≥
(9) N − m + 1

2L ‖∇∼LF(xN)‖2,

which is equivalent to (10) using m ≥ N − 1
2  and N − m ≥ N

2 .

Despite its inexpensive per-iteration computational cost, PGM suffers from the slow rate 

O(1/N) for decreasing both the cost function and the norm of composite gradient mapping.3 

Therefore for acceleration, this paper considers the following class of fixed-step first-order 

methods (FSFOM), where the (i + 1)th iteration consists of one proximal gradient 

evaluation, just like PGM, and a weighted summation of previous and current proximal 

gradient updates {xk + 1 − yk}
k = 0
i  with step coefficients {hi + 1, k}

k = 0
i .

Algorithm Class FSFOM

Input: f ∈ ℱL(ℝd), x0 ∈ ℝd, y0 = x0.

For i = 0, …, N − 1

xi + 1 = pL(yi) = yi − 1
L ∇∼LF(yi)

yi + 1 = yi + ∑
k = 0

i
hi + 1, k(xk + 1 − yk) = yi − 1

L ∑
k = 0

i
hi + 1, k ∇∼LF(yk) .

Although the weighted summation in FSFOM seems at first to be inefficient both 

computationally and memory-wise, the optimized FSFOM presented in this paper have 

equivalent recursive forms that have memory and computation requirements that are similar 

to PGM. Note that this class FSFOM includes PGM but excludes accelerated algorithms in 

[13, 25, 27] that combine the proximal operations and the gradient steps in other ways.

Among FSFOM4, FISTA [3], also known as FPGM, is widely used since it has computation 

and memory requirements that are similar to PGM yet it achieves the optimal O(1/N2) 

3[11, Thm. 2] and [16, Thm. 2] imply that the O(1/N) rates of both the cost function bound (3) and the composite gradient mapping 
norm bound (10) of PGM are tight up to a constant respectively.
4The step coefficients of FSFOM for FPGM are [11, 17]

hi + 1, k =

1
ti + 1

tk − ∑ j = k + 1
i h j, k , k = 0, …, i − 1,

1 +
ti − 1
ti + 1

, k = i .
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worst-case rate for decreasing the cost function, using Nesterov’s acceleration technique [23, 

24].

Algorithm FPGM (FISTA)

Input: f ∈ ℱL(ℝd), x0 ∈ ℝd, y0 = x0, t0 = 1.

For i = 0, …, N − 1

xi + 1 = pL(yi)

ti + 1 =
1 + 1 + 4ti

2

2 (11)

yi + 1 = xi + 1 +
ti − 1
ti + 1

(xi + 1 − xi)

FPGM has the following bound for the cost function [3, Thm. 4.4] for any N ≥ 1:

F(xN) − F(x∗) ≤ LR2

2tN − 1
2 ≤ 2LR2

(N + 1)2 , (12)

where the parameters ti (11) satisfy

ti
2 = ∑

l = 0

i
tl  and  ti ≥ i + 2

2 . (13)

Sec. 3 provides a new proof of the cost function bound (12) of FPGM using a new relaxation 

of PEP, and illustrates that this particular acceleration of PGM results from optimizing a 

relaxed version of the cost function form of PEP. In addition, it is shown in [3, 5] that FPGM 

and its bound (12) generalize to any ti such that t0 = 1 and ti
2 ≤ ti − 1

2 + ti for all i ≥ 1 with 

corresponding bound for any N ≥ 1:

F(xN) − F(x∗) ≤ LR2

2tN − 1
2 , (14)
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which includes the choice ti = i + a
a  for any a ≥ 2. Using our relaxed PEP, Sec. 3 further 

describes similar but different generalizations of FPGM that complement our understanding 

of FPGM.

We are often interested in the worst-case analysis of the norm of the (composite) gradient 

(mapping) in addition to that of the cost function, particularly when dealing with dual 

problems. To improve the rate O(1/N) of the gradient norm bound of a gradient method, 

Nesterov [26] suggested performing his fast gradient method (FGM) [23, 24], a non-

proximal version of FPGM, for the first m iterations and a gradient method for remaining N 
− m iterations for smooth convex problems (when ϕ(x) = 0). Here we extend this idea to the 

nonsmooth composite convex problem (M) and use FPGM-m to denote the resulting 

algorithm. The following theorem provides a O(1/N
3
2) worst-case bound for the norm of 

composite gradient mapping of FPGM-m, using the idea in [26] and Lemma 1.

Algorithm FPGM-m

Input: f ∈ ℱL(ℝd), x0 ∈ ℝd, y0 = x0, t0 = 1.

For i = 0, …, N − 1

xi + 1 = pL(yi)

ti + 1 =
1 + 1 + 4ti

2

2 , i ≤ m − 1

yi + 1 =
xi + 1 +

ti − 1
ti + 1(xi + 1 − xi), i ≤ m − 1,

xi + 1, otherwise.

Theorem 3

Let F : ℝd → ℝ be in ℱL(ℝd) and let x0, ⋯, xN ∈ ℝd be generated by FPGM-m for 1 ≤ m ≤ 

N. Then for N ≥ 1,

min
i ∈ {0, …, N}

‖∇∼ LF(xi)‖ ≤ ‖∇∼ LF(xN)‖ ≤ 2LR
(m + 1) N − m + 1 . (15)

Proof—We have
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2LR2

(m + 1)2
≥

(12)
F(xm) − F(x∗) ≥

(6)
F(xN + 1) − F(x∗) + 1

2L ∑
i = m

N
‖∇∼LF(xi)‖

2 ≥
(9) N − m + 1

2L ‖∇∼LF(xN)‖2,

which is equivalent to (15).

As noticed by a reviewer, when m = ⌊2N
3 ⌋, the worst-case bound (15) of the composite 

gradient mapping roughly has its smallest constant 3 3 for the rate O(1/N
3
2), which is better 

than the choice m = ⌊ N
2 ⌋ in [26].

Monteiro and Svaiter [21] considered a variant of FPGM that replaces pL(·) of FPGM by 

pL/σ2(·) for 0 < σ < 1; that variant, which we denote FPGM-σ, satisfies the O(1/N
3
2) rate for 

the composite gradient mapping. This FPGM-σ algorithm satisfies the following cost 

function and composite gradient mapping worst-case bounds5 [21, Prop. 5.2] for N ≥ 1:

F(xN) − F(x∗) ≤ 2LR2

σ2N2 , (16)

min
i ∈ {0, …, N}

‖∇∼
L/σ2F(yi)‖ ≤ 2 3

σ
1 + σ
1 − σ

LR

N
3
2

. (17)

The worst-case bound (17) of the composite gradient mapping has its smallest constant 
2 3
σ2

1 + σ
1 − σ ≈ 16.2 when σ = 17 − 1

4 ≈ 0.78, which makes the bound (17) about 16
3 3  ≈ 3-times 

larger than the bound (15) of FPGM−(m = ⌊2N
3 ⌋) at best. However, since FPGM-σ does not 

require one to select the number of total iterations N in advance unlike FPGM-m, the 

FPGM-σ algorithm could be useful in practice, as discussed further in Sec. 4.4. Ghadimi and 

Lan [13] also showed the O(1/N
3
2) rate for a composite gradient mapping worst-case bound 

of another variant of FPGM, but the corresponding algorithm in [13] requires two proximal 

gradient updates per iteration, combining the proximal operations and the gradient steps in a 

way that differs from the class FSFOM and could be less attractive in terms of the per-

iteration computational complexity.

5The bound for mini∈{0, …, N} ‖∇̃L/σ2F(yi)‖ of FPGM-σ is described in a big-O sense in [21, Prop. 5.2(c)], and we further 
computed the constant in (17) by following the derivation of [21, Prop. 5.2(c)].
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FPGM has been used in dual problems [1, 2, 4, 14]; using FPGM-m and the algorithms in 

[13, 21] that guarantee O(1/N
3
2) rate for minimizing the norm of the composite gradient 

mapping could be potentially useful for solving dual problems. (Using F(P)GM-m for (dual) 

smooth convex problems was discussed in [9, 22, 26].) However, FPGM-m and the 

algorithms in [13, 21] are not necessarily the best possible methods with respect to the 

worst-case bound of the norm of the composite gradient mapping. Therefore, Sec. 4 seeks to 

optimize the step coefficients of FSFOM for minimizing the norm of the composite gradient 

mapping using a relaxed PEP.

The next section first provides a new proof of FPGM using our new relaxation on PEP, and 

proposes the new generalized FPGM.

3. Relaxation and optimization of the cost function form of PEP

3.1. Relaxation for the cost function form of PEP

For FSFOM with given step-size coefficients h ≔ {hi+1,k}, in principle the worst-case bound 

on the cost function after N iterations corresponds to the solution of the following PEP 

problem [11]:

ℬP(h, N, d, L, R) ≔ max
F ∈ ℱL(ℝd),

x0, ⋯, xN ∈ ℝd, x∗ ∈ X∗(F)

y0, ⋯, yN − 1 ∈ ℝd

F(xN) − F(x∗)

s . t . xi + 1 = pL(yi), i = 0, …, N − 1, ‖x0 − x∗‖ ≤ R,

yi + 1 = yi + ∑
k = 0

i
hi + 1, k(xk + 1 − yk), i = 0, …, N − 2 .

(P)

Since (non-relaxed) PEP problems like (P) are difficult to solve due to the (infinite-

dimensional) functional constraint on F, Drori and Teboulle [11] suggested (for smooth 

convex problems) replacing the functional constraint by a property of F related to the update 

such as pL(·) in (P). Taylor et al. [29, 30] discussed properties of F that can replace the 

functional constraint of PEP without strictly relaxing (P), and provided tight numerical 

worst-case analysis for any given N. However, analytical solutions remain unknown for (P) 

and most PEP problems.

Instead, this paper proposes an alternate relaxation that is looser than that in [29, 30] but 

provides tractable and useful analytical results. We consider the following property of F 
involving the proximal gradient update pL(·) [3, Lemma 2.3]:

F(x) − F(pL(y)) ≤ L
2 ‖pL(y) − y‖2 + L〈y − x, pL(y) − y〉 ∀x, y ∈ ℝd (18)

Kim and Fessler Page 10

SIAM J Optim. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to replace the functional constraint on F. In particular, we use the following property:

L
2 ‖pL(y) − y‖2 − L〈pL(x) − x, pL(y) − y〉 ≤ F(pL(x)) − F(pL(y)) + L〈pL(y) − y, x − y〉,

∀x, y ∈ ℝd

(19)

that results from replacing x in (18) by pL(x). When ϕ(x) = 0, the property (19) reduces to

1
2L‖∇ f (y)‖2 − 1

L〈∇ f (x), ∇ f (y)〉 ≤ f x − 1
L ∇ f (x) − f y − 1

L ∇ f (y) − 〈∇ f (y), x − y〉,

∀x, y ∈ ℝd .

(20)

Note that the relaxation of PEP in [11, 16, 17, 18, 30] for unconstrained smooth convex 

minimization (ϕ(x) = 0) uses a well-known property of f in [24, Thm. 2.1.5] that differs from 

(20) and does not strictly relax the PEP as discussed in [30], whereas our relaxation using 

(19) and (20) does not guarantee a tight relaxation of (P). Finding a tight relaxation that 

leads to useful (or even optimal) algorithms remains an open problem for nonsmooth 

composite convex problems.

Similar to [11, Problem (Q′)], we (strictly) relax problem (P) as follows using a set of 

constraint inequalities (19) at the points (x, y) = (yi−1, yi) for i = 1, …, N − 1 and (x, y) = (x*, 

yi) for i = 0, …, N − 1:

ℬP1(h, N, d, L, R) ≔ max
G ∈ ℝN × d,

δ ∈ ℝN

LR2δN − 1

s . t . 𝚃𝚛{G⊤Ai − 1, i(h)G} ≤ δi − 1 − δi, i = 1, …, N − 1,

𝚃𝚛{G⊤Di(h)G + νui
⊤G} ≤ − δi, i = 0, …, N − 1,

(P1)

for any given unit vector ν ∈ ℝd, by defining the (i + 1)th standard basis vector ui = ei+1 ∈ 
ℝN, the matrix G = [g0, ⋯, gN − 1]⊤ ∈ ℝN × d and the vector δ = [δ0, ⋯, δN − 1]⊤ ∈ ℝN, 

where
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gi ≔ − 1
‖y0 − x∗‖(pL(yi) − yi) = 1

L‖y0 − x∗‖ ∇∼ LF(yi),

δi ≔ 1
L‖y0 − x∗‖2 (F(pL(yi)) − F(x∗)),

(21)

for i = 0, …, N − 1, *. Note that g* = [0, ⋯, 0]⊤, δ* = 0 and 𝚃𝚛{G⊤uiu j
⊤G} = 〈gi, g j〉 by 

definition. The matrices Ăi−1,i(h) and Ďi(h) are defined as

Ai − 1, i(h) ≔ 1
2uiui

⊤ − 1
2ui − 1ui

⊤ − 1
2uiui − 1

⊤ + 1
2 ∑k = 0

i − 1 hi, k(uiuk
⊤ + ukui

⊤),

Di(h) ≔ 1
2uiui

⊤ + 1
2 ∑ j = 1

i ∑k = 0
j − 1 h j, k(uiuk

⊤ + ukui
⊤),

(22)

which results from the inequalities (19) at the points (x, y) = (yi−1, yi) and (x, y) = (x*, yi) 

respectively.

As in [11, Problem (DQ′)], problem (P1) has a dual formulation that one can solve 

numerically for any given N using a semidefinite program (SDP) to determine an upper 

bound on the cost function worst-case bound for any FSFOM:6

F(xN) − F(x∗) ≤ ℬP(h, N, d, L, R) ≤ ℬD(h, N, L, R) ≔ max
(λ, τ) ∈ Λ,

γ ∈ ℝ

1
2LR2γ :

S(h, λ, τ) 1
2τ

1
2τ⊤ 1

2γ

⪰ 0 ,

(D)

where λ = [λ1, ⋯, λN − 1]⊤ ∈ ℝ+
N − 1, τ = [τ0, ⋯, τN − 1]⊤ ∈ ℝ+

N, and

Λ = (λ, τ) ∈ ℝ+
2N − 1:

τ0 = λ1, λN − 1 + τN − 1 = 1,
λi − λi + 1 + τi = 0, i = 1, …, N − 2, , (23)

S(h, λ, τ) = ∑
i = 1

N − 1
λiAi − 1, i(h) + ∑

i = 0

N − 1
τiDi(h) . (24)

6See Appendix A for the derivation of the dual formulation (D) of (P1).
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This means that one can compute a valid upper bound (D) of (P) for given step coefficients h 
using a SDP. The next two sections provide an analytical solution to (D) for FPGM and 

similarly for our new generalized FPGM, superseding the use of numerical SDP solvers.

3.2. Generalized FPGM

We specify a feasible point of (D) that leads to our new generalized form of FPGM.

Lemma 4—For the following step coefficients:

hi + 1, k =

ti + 1
T i + 1

tk − ∑ j = k + 1
i h j, k , k = 0, …, i − 1,

1 +
(ti − 1)ti + 1

T i + 1
, k = i,

(25)

the choice of variables:

λi =
T i − 1
TN − 1

, i = 1, …, N − 1, τi =
ti

TN − 1
, i = 0, …, N − 1, γ = 1

TN − 1
, (26)

is a feasible point of (D) for any choice of ti such that

t0 = 1, ti > 0,    and   ti
2 ≤ T i ≔ ∑

l = 0

i
tl . (27)

Proof: It is obvious that (λ, τ) in (26) with (27) is in Λ (23). Using (22), the (i, k)th entry of 

the symmetric matrix S(h, λ, τ) in (24) can be written as

Si, k(h, λ, τ) =

1
2((λi + τi)hi, k + τi∑ j = k + 1

i − 1 h j, k), i = 2, …, N − 1, k = 0, …, i − 2,

1
2((λi + τi)hi, i − 1 − λi), i = 1, …, N − 1, k = i − 1,

1
2λi + 1, i = 0, …, N − 2, k = i,

1
2 , i = N − 1, k = i,

where each element Si,k(h, λ, τ) corresponds to the coefficient of the term uiuk
⊤ of S(h, λ, τ) 

in (24). Then, inserting (25) and (26) to the above yields
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Si, k(h, λ, τ) =

1
2

Ti
TN − 1

ti
Ti

tk − ∑ j = k + 1
i − 1 h j, k +

ti
TN − 1

∑ j = k + 1
i − 1 h j, k , i = 2, …, N − 1, k = 0, …, i − 2,

1
2

Ti
TN − 1

1 +
(ti − 1 − 1)ti

Ti
−

Ti − 1
TN − 1

, i = 1, …, N − 1, k = i − 1,

Ti
2TN − 1

, i = 0, …, N − 1, k = i .

=

titk
2TN − 1

, i = 1, …, N − 1, k = 0, …, i − 1,

Ti
2TN − 1

, i = 0, …, N − 1, k = i .

Then, using (26) and (27), we finally show the feasibility condition of (D):

S(h, λ, τ) 1
2τ

1
2τ⊤ 1

2γ
= 1

2TN − 1
(𝚍𝚒𝚊𝚐{T − t2} + tt⊤) ⪰ 0,

where t = (t0, ⋯, tN−1, 1)⊤ and T = (T0, ⋯, TN−1, 1)⊤.

FSFOM with the step coefficients (25) would be both computationally and memory-wise 

inefficient, so we next present an equivalent recursive form of FSFOM with (25), named 

Generalized FPGM (GFPGM).

Algorithm GFPGM

Input: f ∈ ℱL(ℝd), x0 ∈ ℝd, y0 = x0, t0 = T0 = 1.

For i = 0, …, N − 1

xi + 1 = pL(yi)

Choose ti + 1s . t . ti + 1 > 0 and ti + 1
2 ≤ Ti + 1 ≔ ∑

l = 0

i + 1
tl
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yi + 1 = xi + 1 +
(Ti − ti)ti + 1

tiTi + 1
(xi + 1 − xi) +

(ti
2 − Ti)ti + 1

tiTi + 1
(xi + 1 − yi)

Proposition 5—The sequence {x0, ⋯, xN} generated by FSFOM with step sizes (25) is 

identical to the corresponding sequence generated by GFPGM.

Proof: See Appendix B.

Using Lemma 4, the following theorem bounds the cost function for the GFPGM iterates.

Theorem 6—Let F : ℝd → ℝ be in ℱL(ℝd) and let x0, ⋯, xN ∈ ℝd be generated by 

GFPGM. Then for N ≥ 1,

F(xN) − F(x∗) ≤ LR2

2TN − 1
. (28)

Proof: Using (D), Lemma 4 and Prop. 5, we have

F(xN) − F(x∗) ≤ ℬD(h, N, L, R) = 1
2LR2γ = LR2

2TN − 1
. (29)

The GFPGM and Thm. 6 reduce to FPGM and (12) when ti
2 = T i for all i, and Sec. 3.4 

describes that FPGM results from optimizing the step coefficients of FSFOM with respect to 

the cost function form of the relaxed PEP (D). This GFPGM also includes the choice 

ti = i + a
a  for any a ≥ 2 as used in [5], which we denote as FPGM-a that differs from the 

algorithm in [5]. The following corollary provides a cost function worst-case bound for 

FPGM-a.

Corollary 7—Let F : ℝd → ℝ be in ℱL(ℝd) and let x0, ⋯, xN ∈ ℝd be generated by 

GFPGM with ti = i + a
a  (FPGM-a) for any a ≥ 2. Then for N ≥ 1,

F(xN) − F(x∗) ≤ aLR2

N(N + 2a − 1) . (30)

Proof: Thm. 6 implies (30), since ti = i + a
a  satisfies (27), i.e.,
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T i − ti
2 = (i + 1)(i + 2a)

2a − (i + a)2

a2 = (a − 2)i2 + a(2a − 3)i
2a2 ≥ 0 (31)

for any a ≥ 2 and all i ≥ 0.

3.3. Related work of GFPGM

This section shows that the GFPGM has a close connection to the accelerated algorithm in 

[25] that was developed specifically for a constrained smooth convex problem with a closed 

convex set Q, i.e.,

ϕ(x) = IQ(x) ≔ 0, x ∈ Q,
∞, otherwise. (32)

The projection operator PQ(x) ≔ arg miny∈Q ‖x − y‖ is used for the proximal gradient update 

(2).

We show that the GFPGM can be written in the following equivalent form, named GFPGM′, 

which is similar to that of the accelerated algorithm in [25] shown below. Note that the 

accelerated algorithm in [25] satisfies the bound (28) of the GFPGM in [25, Thm. 2] when 

ϕ(x) = IQ(x).

Algorithm GFPGM′

Input: f ∈ ℱL(ℝd), x0 ∈ ℝd, y0 = x0, t0 = T0 = 1.

For i = 0, …, N − 1

xi + 1 = pL(yi) = yi − 1
L ∇∼LF(yi)

zi + 1 = y0 − 1
L ∑

k = 0

i
tk ∇∼LF(yk)

Choose ti + 1s . t . ti + 1 > 0 and ti + 1
2 ≤ Ti + 1 = ∑

l = 0

i + 1
tl

yi + 1 = 1 −
ti + 1
Ti + 1

xi + 1 +
ti + 1
Ti + 1

zi + 1
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Algorithm [25] for ϕ(x) = IQ(x)

Input: f ∈ ℱL(ℝd), x0 ∈ ℝd, y0 = x0, t0 = T0 = 1.

For i = 0, …, N − 1

xi + 1 = pL(yi) = PQ yi − 1
L ∇ f (yi)

zi + 1 = PQ y0 − 1
L ∑

k = 0

i
tk ∇ f (yk)

Choose ti + 1s . t . ti + 1 > 0 and ti + 1
2 ≤ Ti + 1 = ∑

l = 0

i + 1
tl

yi + 1 = 1 −
ti + 1
Ti + 1

xi + 1 +
ti + 1
Ti + 1

zi + 1

Proposition 8—The sequence {x0, ⋯, xN} generated by GFPGM is identical to the 

corresponding sequence generated by GFPGM′.

Proof: See Appendix C.

Clearly GFPGM′ and the accelerated algorithm in [25] are equivalent for the unconstrained 

smooth convex problem (Q = ℝd). However, when the operation PQ(x) is relatively 

expensive, our GFPGM and GFPGM′ that use one projection per iteration could be 

preferred over the accelerated algorithm in [25] that uses two projections per iteration.

3.4. Optimizing step coefficients of FSFOM using the cost function form of PEP

To find the step coefficients in the class FSFOM that are optimal in terms of the cost 

function form of PEP, we would like to solve the following problem:

hP ≔ arg min
h ∈ ℝN(N + 1)/2

ℬP(h, N, d, L, R) . (HP)

Because (HP) seems intractable, we instead optimize the step coefficients using the relaxed 

bound in (D):

hD ≔ arg min
h ∈ ℝN(N + 1)/2

ℬD(h, N, L, R) . (HD)
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The problem (HD) is bilinear, and a convex relaxation technique in [11, Thm. 3] makes it 

solvable using numerical methods. We optimized (HD) numerically for many choices of N 
using a SDP solver [7, 15] and based on our numerical results (not shown) we conjecture 

that the feasible point in Lemma 4 with ti
2 = T i that corresponds to FPGM (FISTA) is a 

global minimizer of (HD). It is straightforward to show that the step coefficients in Lemma 4 

with ti
2 = T i give the smallest bound of (D) and (28) among all feasible points in Lemma 4, 

but showing optimality among all possible feasible points of (HD) may require further 

derivations as in [17, Lemma 3] using KKT conditions, which we leave as future work.

This section has provided a new worst-case bound proof of FPGM using the relaxed PEP, 

and suggested that FPGM corresponds to FSFOM with optimized step coefficients using the 

cost function form of the relaxed PEP. The next section provides a different optimization of 

the step coefficients of FSFOM that targets the norm of the composite gradient mapping, 

because minimizing the norm of the composite gradient mapping is important in dual 

problems (see [9, 22, 26] and (8)).

4. Relaxation and optimization of the composite gradient mapping form of 

PEP

4.1. Relaxation for the composite gradient mapping form of PEP

To form a worst-case bound on the norm of the composite gradient mapping for a given h of 

FSFOM, we use the following PEP that replaces F(xN)−F(x*) in (P) by the norm squared of 

the composite gradient mapping. Here, we consider the smallest composite gradient 

mapping norm squared among all iterates7 (minx∈ΩN ‖L(pL(x) − x)‖2 = minx∈ΩN ‖∇̃
LF(x)‖2 

where ΩN ≔ {y0, ⋯, yN−1, xN}) as follows:

ℬP′(h, N, d, L, R)≔ max
F ∈ ℱL(ℝd),

x0, ⋯, xN ∈ ℝd, x∗ ∈ X∗(F),

y0, ⋯, yN − 1 ∈ ℝd

min
x ∈ ΩN

‖L(pL(x) − x)‖2

s . t . xi + 1 = pL(yi), i = 0, …, N − 1, ‖x0 − x∗‖ ≤ R,

yi + 1 = yi + ∑
k = 0

i
hi + 1, k(xk + 1 − yk), i = 0, …, N − 2 .

(P′)

Because this infinite-dimensional max-min problem appears intractable, similar to the 

relaxation from (P) to (P1), we relax (P′) to a finite-dimensional problem with an additional 

constraint resulting from (6) that is equivalent to

7See Appendix D for the discussion on the choice of ΩN.
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L
2 ‖pL(xN) − xN‖2 ≤ F(xN) − F(x∗) (33)

and conditions that are equivalent to α ≤ ‖L(pL(x) − x)‖2 for all x ∈ ΩN after replacing 

minx∈ΩN ‖L(pL(x) − x)‖2 by α as in [30].8 This relaxation leads to

ℬP1′(h, N, d, L, R) ≔ max
G ∈ ℝ(N + 1) × d,

δ ∈ ℝN, α ∈ ℝ

L2R2α

s . t .  𝚃𝚛{G⊤Ai − 1, i(h)G} ≤ δi − 1 − δi, i = 1, …, N − 1,

𝚃𝚛{G⊤Di(h)G + νui
⊤G} ≤ − δi, i = 0, …, N − 1,

𝚃𝚛 1
2G⊤uNuN

⊤G ≤ δN − 1,

𝚃𝚛{ − G⊤uiui
⊤G} ≤ − α, i = 0, …, N,

(P1′)

for any given unit vector ν ∈ ℝd, by defining the (i + 1)th standard basis vector ūi = ei+1 ∈ 
ℝN+1, the matrices

Ai − 1, i(h) =
Ai − 1, i(h) 0

0⊤ 0
, Di(h) =

Di(h) 0

0⊤ 0
(34)

where 0 = [0, …, 0]⊤ ∈ ℝN, and the matrix Ḡ = [G⊤, ḡN]⊤ ∈ ℝ(N+1)×d where

gN ≔ − 1
‖y0 − x∗‖(pL(xN) − xN) = 1

L‖y0 − x∗‖ ∇∼ LF(xN) . (35)

Similar to (D) and [16, Problem (D″)], we have the following dual formulation of (P1′) that 

could be solved using SDP:

ℬD′(h, N, L, R) ≔ min
(λ, τ, η, β) ∈ Λ′,

γ ∈ ℝ

1
2L2R2γ :

S′(h, λ, τ, η, β) 1
2[τ⊤, 0]⊤

1
2[τ⊤, 0] 1

2γ
⪰ 0 (D′)

where η ∈ ℝ+, β = [β0, ⋯, βN]⊤ ∈ ℝ+
N + 1, and

8Here, we simply relaxed (P′) into (P1′) in a way that is similar to the relaxation from (P) to (P1). This relaxation resulted in a 
constructive analytical worst-case analysis on the composite gradient mapping in this section that is somewhat similar to that on the 
cost function in Section 3. However, this relaxation on (P1′) turned out to be relatively loose compared to the relaxation on (P1) (see 
Sec. 5), suggesting there is room for improvement in the future with a tighter relaxation.
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Λ′ = (λ, τ, η, β) ∈ ℝ+
3N + 1:

τ0 = λ1, λN − 1 + τN − 1 = η, ∑i = 0
N βi = 1,

λi − λi + 1 + τi = 0, i = 1, …, N − 2
, (36)

S′(h, λ, τ, η, β) = ∑
i = 1

N − 1
λiAi − 1, i(h) + ∑

i = 0

N − 1
τiDi(h) + 1

2ηuNuN
⊤ − ∑

i = 0

N
βiuiui

⊤ . (37)

The next section specifies a feasible point of interest that is in the class of GFPGM and 

analyzes the worst-case bound of the norm of the composite gradient mapping. Then we 

optimize the step coefficients of FSFOM with respect to the composite gradient mapping 

form of PEP leading to a new algorithm that differs from Nesterov’s acceleration for 

decreasing the cost function.

4.2. Worst-case analysis of the composite gradient mapping of GF-PGM

The following lemma provides feasible point of (D′) for the step coefficients (25) of 

GFPGM.

Lemma 9—For the step coefficients {hi+1,k} in (25), the choice of variables

λi = T i − 1τ0, i = 1, …, N − 1, τi =
1
2 ∑k = 0

N − 1 (Tk − tk
2) + TN − 1

−1
, i = 0,

tiτ0, i = 1, …, N − 1,

(38)

η = TN − 1τ0, βi =

1
2(T i − ti

2)τ0, i = 0, …, N − 1,

1
2TN − 1τ0, i = N,

γ = τ0 . (39)

is a feasible point of (D′) for any choice of ti and Ti satisfying (27).

Proof: It is obvious that (λ, τ, η, β) in (38) and (39) with (27) is in Λ′ (36). Using (22) and 

(34), the (i, k)th entry of the symmetric matrix S′(h, λ, τ, η, β) in (37) can be written as
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Si, k′ (h, λ, τ, η, β) =

1
2 (λi + τi)hi, k + τi∑ j = k + 1

i − 1 h j, k , i = 2, …, N − 1, k = 0, …, i − 2,

1
2((λi + τi)hi, i − 1 − λi), i = 1, …, N − 1, k = i − 1,

1
2λi + 1 − βi, i = 0, …, N − 2, k = i,

1
2η − βi, i = N − 1, N, k = i,

0, i = N, k = 0, …, i − 1,

and inserting (25), (38), and (39) yields

Si, k′ (h, λ, τ, η, β) =

1
2 Tiτ0

ti
Ti

tk − ∑ j = k + 1
i − 1 h j, k + tiτ0∑ j = k + 1

i − 1 h j, k , i = 2, …, N − 1, k = 0, …, i − 2,

1
2 Tiτ0 1 +

(ti − 1 − 1)ti
Ti

− Ti − 1τ0 , i = 1, …, N − 1, k = i − 1,

1
2Tiτ0 − 1

2(Ti − ti
2)τ0, i = 0, …, N − 1, k = i,

0, i = N, k = 0, …, i,

=
1
2 titkτ0, i = 0, …, N − 1, k = 0, …, i,

0, i = N, k = 0, …, i .

Finally, by defining t̄ = (t0, ⋯, tN−1, 0, 1)⊤ we have the feasibility condition of (D′):

S′(h, λ, τ, η, β) 1
2[τ⊤, 0]⊤

1
2[τ⊤, 0] 1

2γ
= 1

2 t t τ0 ⪰ 0 .

Using Lemma 9, the following theorem bounds the (smallest) norm of the composite 

gradient mapping for the GFPGM iterates.

Theorem 10—Let f : ℝd → ℝ be in ℱL(ℝd) and let x0, ⋯, xN, y0, ⋯, yN−1 ∈ ℝd be 

generated by GFPGM. Then for N ≥ 1,

min
i ∈ {0, …, N}

‖∇∼ LF(xi)‖ ≤ min
x ∈ ΩN

‖∇∼ LF(x)‖ ≤ LR
∑k = 0

N − 1 (Tk − tk
2) + TN − 1

. (40)

Proof: Lemma 1 implies the first inequality of (40). Using (D′), Lemma 9 and Prop. 5, we 

have

Kim and Fessler Page 21

SIAM J Optim. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



min
x ∈ ΩN

‖∇∼LF(x)‖2 ≤ ℬD′(h, N, L, R) = 1
2L2R2γ = L2R2

∑k = 0
N − 1(Tk − tk

2) + TN − 1
,

which is equivalent to (40).

Although the bound (40) is not tight due to the relaxation on PEP, next two sections show 

that there exists choices of ti that provide a rate O(1/N
3
2) for decreasing the composite 

gradient mapping, including the choice that optimizes the composite gradient mapping form 

of PEP.

FGM for smooth convex minimization was shown to achieve the rate O(1/N
3
2) for the 

decrease of the usual gradient in [16]. In contrast, Thm. 10 provides only a O(1/N) bound for 

FPGM (or GFPGM with ti (11)) on the decrease of the composite gradient mapping since 

T i = ti
2 for all i and the value of TN−1 is O(N2) for ti (11). Sec. 5 below numerically studies a 

tight bound on the composite gradient mapping of FPGM and illustrates that it has a rate that 

is faster than the rate O(1/N) of Thm. 10, indicating there is a room for improvement in the 

composite gradient mapping form of the relaxed PEP

4.3. Optimizing step coefficients of FSFOM using the composite gradient mapping form of 
PEP

To optimize the step coefficients in the class FSFOM in terms of the composite gradient 

mapping form of the relaxed PEP (D′), we would like to solve the following problem:

hD′ ≔ arg min
h ∈ ℝN(N + 1)/2

ℬD′(h, N, L, R) . (HD′)

Similar to (HD), we use a convex relaxation [11, Thm. 3] to make the bilinear problem (HD

′) solvable using numerical methods. We then numerically optimized (HD′) for many 

choices of N using a SDP solver [7, 15] and found that the following choice of ti:

ti =

1, i = 0,
1 + 1 + 4ti − 1

2

2 , i = 1, …, ⌊ N
2 ⌋ − 1,

N − i + 1
2 , i = ⌊ N

2 ⌋, …, N − 1,

(41)

makes the feasible point in Lemma 9 optimal empirically with respect to the relaxed bound 

(HD′). Interestingly, whereas the usual ti factors (such as (11) and ti = i + a
a  for any a ≥ 2) 

increase with i indefinitely, here, the factors begin decreasing after i = ⌊ N
2 ⌋ − 1.
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We also noticed numerically that finding the ti that minimizes the bound (40), i.e., solving 

the following constrained quadratic problem:

max
{ti}

∑
k = 0

N − 1
∑
l = 0

k
tl − tk

2 + ∑
l = 0

N − 1
tl s . t . ti satisfies (27) for all i, (42)

is equivalent to optimizing (HD′). This means that the solution of (42) numerically appears 

equivalent to (41), the (conjectured) solution of (HD′). Interestingly, the unconstrained 

maximizer of (42) without the constraint (27) is ti = N − i + 1
2 , and this partially appears in 

the constrained maximizer (41) of the problem (42).

Based on this numerical evidence, we conjecture that the solution ĥD′ of problem (HD′) 

corresponds to (25) with (41). Using Prop. 5, the following GFPGM form with (41) is 

equivalent to FSFOM with the step coefficients (25) for (41) that are optimized step 

coefficients of FSFOM with respect to the norm of the composite gradient mapping, which 

we name FPGM-OCG (OCG for optimized over composite gradient mapping).

Algorithm FPGM-OCG (GFPGM with ti in (41))

Input: f ∈ CL
1, 1(ℝd) convex, x0 ∈ ℝd, y0 = x0, t0 = T0 = 1.

For i = 0, …, N − 1

xi + 1 = pL(yi)

ti + 1 =
1 + 1 + 4ti

2

2 , i = 1, …, ⌊ N
2 ⌋ − 2,

N − i
2 , i = ⌊ N

2 ⌋ − 1, …, N − 2,

yi + 1 = xi + 1 +
(Ti − ti)ti + 1

tiTi + 1
(xi + 1 − xi) +

(ti
2 − Ti)ti + 1

tiTi + 1
(xi + 1 − yi), i < N = 1

The following theorem bounds the cost function and the (smallest) norm of the composite 

gradient mapping for the FPGM-OCG iterates.

Theorem 11—Let F : ℝd → ℝ be in ℱL(ℝd) and let x0, ⋯, xN, y0, ⋯, yN−1 ∈ ℝd be 

generated by FPGM-OCG. Then for N ≥ 1,
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F(xN) − F(x∗) ≤
4L‖x0 − x∗‖2

N(N + 4) , (43)

and for N ≥ 3,

min
i ∈ {0, …, N}

‖∇∼ LF(xi)‖ ≤ min
x ∈ ΩN

‖∇∼ LF(x)‖ ≤ 2 6LR
N N − 2 . (44)

Proof: FPGM-OCG is an instance of the GFPGM, and thus Thm. 6 implies (43) using

TN − 1 = Tm − 1 + ∑
k = m

N − 1
tk = tm − 1

2 + ∑
k = m

N − 1 N − k + 1
2 = tm − 1

2

+ ∑
k′ = 2

N − m + 1 k′
2 ≥ (m + 1)2

4 + (N − m + 1)(N − m + 2)
4 − 1

2 ≥ 2N2 + 8N + 1
16 ,

where m = ⌊ N
2 ⌋ ≥ N − 1

2 , N − m ≥ N
2 , and Tm − 1 = tm − 1

2 ≥ (m + 1)2
4  (13).

In addition, Thm. 10 implies (44), using

∑
k = 0

N − 1
(Tk − tk

2) + TN − 1 ≥ 1
24(N − 2)N2, (45)

which we prove in the Appendix E.

The composite gradient mapping bound (44) of FPGM-OCG is asymptotically 2 2
3 -times 

smaller than the bound (15) of FPGM−(m = ⌊2N
3 ⌋). In addition, the cost function bound (43) 

of FPGM-OCG satisfies the optimal rate O(1/N2), although the bound (43) is two-times 

larger than the analogous bound (12) of FPGM.

4.4. Decreasing the composite gradient mapping with a rate O(1/N
3
2) without selecting N in 

advance

FPGM-OCG and FPGM-m satisfy a fast rate O(1/N
3
2) for decreasing the norm of the 

composite gradient mapping but require one to select the total number of iterations N in 

advance, which could be undesirable in practice. One could use FPGM-σ in [21] that does 

not require selecting N in advance, but instead we suggest a new choice of ti in GFPGM that 

satisfies a composite gradient mapping bound that is lower than the bound (17) of FPGM-σ.
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Based on Thm. 10, the following corollary shows that GFPGM with ti = i + a
a  (FPGM-a) for 

any a > 2 satisfies the rate O(1/N
3
2) of the norm of the composite gradient mapping without 

selecting N in advance. (Cor. 7 showed that FPGM-a for any a ≥ 2 satisfies the optimal rate 

O(1/N2) of the cost function.)

Corollary 12—Let f : ℝd → ℝ be in ℱL(ℝd) and let x0, ⋯, xN, y0, ⋯, yN−1 ∈ ℝd be 

generated by GFPGM with ti = i + a
a  (FPGM-a) for any a ≥ 2. Then for N ≥ 1, we have the 

following bound on the (smallest) composite gradient mapping:

min
i ∈ {0, …, N}

‖∇∼ LF(xi)‖ ≤ min
x ∈ ΩN

‖∇∼ LF(x)‖

≤ a 6LR
N((a − 2)N2 + 3(a2 − a + 1)N + (3a2 + 2a − 1))

.

(46)

Proof: With T i = (i + 1)(i + 2a)
2a  and (31), Thm. 10 implies (46) using

∑
k = 0

N − 1
(Tk − tk

2) + TN − 1 = ∑
k = 0

N − 1 (k + 1)(k + 2a)
2a − (k + a)2

a2 + N(N + 2a − 1)
2a = ∑

k = 0

N − 1 (a − 2)k2 + a(2a − 3)k
2a2

+ N(N + 2a − 1)
2a = N

2a2
(a − 2)(N − 1)(2N − 1)

6 + a(2a − 3)(N − 1)
2 + a(N + 2a − 1)

= N((a − 2)N2 + 3(a2 − a + 1)N + (3a2 + 2a − 1))
6a2 .

FPGM-a for any a > 2 has a composite gradient mapping bound (46) that is asymptotically 
a

2 a − 2 -times larger than the bound (44) of FPGM-OCG. This gap reduces to 2 at best 

when a = 4, which is clearly better than that of FPGM-σ. Therefore, this FPGM-a algorithm 

will be useful for minimizing the composite gradient mapping with a rate O(1/N
3
2) without 

selecting N in advance.

5. Discussion

5.1. Summary of analytical worst-case bounds on the cost function and the composite 
gradient mapping

Table 1 summarizes the asymptotic worst-case bounds of all algorithms discussed in this 

paper. (Note that the bounds are not guaranteed to be tight.) In Table 1, FPGM and FPGM-

OCG provide the best known analytical worst-case bounds for decreasing the cost function 

and the composite gradient mapping respectively. When one does not want to select N in 

advance for decreasing the composite gradient mapping, FPGM-a will be a useful alternative 

to FPGM-OCG.
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5.2. Tight worst-case bounds on the cost function and the smallest composite gradient 
mapping norm

Since none of the bounds presented in Table 1 are guaranteed to be tight, we modified the 

code9 (using SDP solvers [20, 28]) in Taylor et al. [29] to compare tight (numerical) bounds 

for the cost function and the composite gradient mapping in Tables 2 and 3 respectively for 

N = 1, 2, 4, 10, 20, 30, 40, 47, 50. This numerical bound is guaranteed to be tight when the 

large-scale condition is satisfied [29]. Taylor et al. [29, Fig. 1] already studied a tight worst-

case bound on the cost function decrease of FPGM numerically, and found that the 

analytical bound (12) is asymptotically tight. Table 2 additionally provides numerical tight 

bounds on the cost function of all algorithms presented in this paper, also suggesting that our 

relaxation of the cost function form of the PEP from (P) to (D) is asymptotically tight (for 

some algorithms). In addition, the trend of the tight bounds of the composite gradient 

mapping in Table 3 follows that of the bounds in Table 1. However, there is gap between 

them that is not asymptotically tight, unlike the gap between the bounds of the cost function 

in Tables 1 and 2. In particular, the numerical tight bound for the composite gradient 

mapping of FPGM in Table 3 has a rate faster than the known rate O(1/N) in Thm. 10. We 

leave reducing this gap for the bounds on the norm of the composite gradient mapping as 

future work, possibly with a tighter relaxation of PEP. In addition, FPGM−(m = ⌊2N
3 ⌋) has a 

numerical tight bound in Table 3 that is even slightly better than that of FPGM-OCG, unlike 

our expectation from the analytical bounds in Table 1 and Sec. 4.3. This shows room for 

improvement in optimizing the step coefficients of FSFOM with respect to the composite 

gradient mapping, again possibly with a tighter relaxation of PEP.

5.3. Tight worst-case bounds on the final compo site gradient mapping

This paper focused on analyzing the worst-case bound of the smallest composite gradient 

mapping among all iterates (minx∈ΩN ‖∇̃LF(x)‖) in addition to the cost function, whereas the 

composite gradient mapping at the final iterate (‖∇̃
LF(xN)‖) could be also considered (see 

Appendix D). For example, the composite gradient mapping bounds (10) and (15) for PGM 

and FPGM-m also apply to the final composite gradient mapping, and using (6) we can 

easily derive a (loose) worst-case bound on the final composite gradient mapping for other 

algorithms, e.g., such a final composite gradient mapping bound for GFPGM is as follows:

‖∇∼ LF(xN)‖ ≤
(6)

2L(F(xN) − F(pL(xN))) ≤ 2L(F(xN) − F(x∗)) ≤
(28) LR

TN − 1
. (47)

Since the optimal rate for decreasing the cost function is O(1/N2), the composite gradient 

mapping worst-case bound (47) can provide only a rate O(1/N) at best. For completeness of 

the discussion, Table 4 reports tight numerical bounds for the final composite gradient 

mapping. Here, FPGM, FPGM-(σ = 0.78), and FPGM-(a = 4) have empirical rates of the 

9The code in Taylor et al. [29] currently does not provide a tight bound of the norm of the composite gradient mapping (and the 
subgradient), so we simply added a few lines to compute a tight bound.
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worst-case bounds in Table 4 that are slower than those in Table 3, unlike the other three 

including FPGM-OCG.

To best of our knowledge, FPGM-m (or algorithms that similarly perform accelerated 

algorithms in the beginning and run a proximal gradient method for the remaining iterations) 

is known only to have a rate O(1/N
3
2) in (15) for decreasing the final composite gradient 

mapping, while FPGM-OCG was also found to inherit such fast rate in Table 4. Therefore, 

searching for first-order methods that have a worst-case bound on the final composite 

gradient mapping that is lower than that of FPGM-m (and FPGM-OCG), and that possibly 

do not require knowing N in advance is an interesting open problem. Note that a 

regularization technique in [26] that provides a faster rate O(1/N2) (up to a logarithmic 

factor) for decreasing the final gradient norm for smooth convex minimization can be easily 

extended for rapidly minimizing the final composite gradient mapping with such rate for the 

composite problem (M); however, that approach requires knowing R in advance.

5.4. Tight worst-case bounds on the final subgradient

This paper has mainly focused on the norm of the composite gradient mapping based on (8), 

instead of the subgradient norm that is of primary interest in the dual problem (see e.g., [9, 

22, 26]). Therefore to have a better sense of subgradient norm bounds, we computed tight 

numerical bounds on the final10 subgradient norm ‖F′(xN)‖ in Table 5 and compared them 

with Table 4.

For all six algorithms, empirical rates in Table 5 are similar to those for the final composite 

gradient mapping in Table 4. In particular, the subgradient norm bounds for the three 

algorithms PGM, FPGM−(m = ⌊2N
3 ⌋), and FPGM-OCG are almost identical to those in Table 

4 except for the first few iterations, eliminating the concern of using (8) for such cases. On 

the other hand, the other three algorithms FPGM, FPGM-(σ = 0.78), and FPGM-(a = 4) 

almost tightly satisfy the inequality (8) for most N, and thus have bounds on the final 

subgradient that are about twice larger than those on the final composite gradient mapping. 

Therefore, regardless of (8), Table 5 further supports the use of FPGM−(m = ⌊2N
3 ⌋) and 

FPGM-OCG over FPGM and other algorithms in dual problems.

6. Conclusion

This paper analyzed and developed fixed-step first-order methods (FSFOM) for nonsmooth 

composite convex cost functions. We showed an alternate proof of FPGM (FISTA) using 

PEP, and suggested that FPGM (FISTA) results from optimizing the step coefficients of 

FSFOM with respect to the cost function form of the (relaxed) PEP. We then described a 

new generalized version of FPGM and analyzed its worst-case bound using the (relaxed) 

10Using modifications of the code in [29] to compute tight bounds on the final subgradient norm was easier than for the smallest 
subgradient norm among all iterates. Even without the smallest subgradient norm bounds, the bounds on the final subgradient norm in 
Table 5 (compared to Table 4) provide some insights (beyond (8)) on the relationship between the bounds on the subgradient norm and 
the composite gradient mapping norm as discussed in Sec. 5.4. We leave further modifying the code in [29] for computing tight 
bounds on the smallest subgradient norm or other criteria as future work.

Kim and Fessler Page 27

SIAM J Optim. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PEP over both the cost function and the norm of the composite gradient mapping. 

Furthermore, we optimized the step coefficients of FSFOM with respect to the composite 

gradient mapping form of the (relaxed) PEP, yielding FPGM-OCG, which could be useful 

particularly when tackling dual problems.

Our relaxed PEP provided tractable analysis of the optimized step coefficients of FSFOM 

with respect to the cost function and the norm of the composite gradient mapping, but the 

relaxation is not guaranteed to be tight and the corresponding accelerations of PGM (FPGM 

and FPGM-OCG) are thus unlikely to be optimal. Therefore, finding optimal step 

coefficients of FSFOM over the cost function and the norm of the composite gradient 

mapping remain as future work. Nevertheless, the proposed FPGM-OCG that optimizes the 

composite gradient mapping form of the relaxed PEP and the FPGM-a (for any a > 2) may 

be useful in dual problems.

Software

Matlab codes for the SDP approaches in Sec. 3.4, Sec. 4.3 and Sec. 5 are available at https://

gitlab.eecs.umich.edu/michigan-fast-optimization.
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Appendix A

Derivation of the dual formulation (D) of (P1)

The derivation below is similar to [11, Lemma 2].

We replace maxG,δ LR2δN−1 of (P1) by minG,δ{−δN−1} for convenience in this section. The 

corresponding dual function of such (P1) is then defined as

H(λ, τ; h) = min
G ∈ ℝN × d,

δ ∈ ℝN

{ℒ(G, δ, λ, τ; h) ≔ ℒ1(δ, λ, τ) + ℒ2(G, λ, τ; h)}

for dual variables λ = [λ1, ⋯, λN − 1]⊤ ∈ ℝ+
N − 1 and τ = [τ0, ⋯, τN − 1]⊤ ∈ ℝ+

N, where ℒ(G, δ, 

λ, τ; h) is a Lagrangian function, and

ℒ1(δ, λ, τ) ≔ − δN − 1 + ∑
i = 1

N − 1
λi(δi − δi − 1) + ∑

i = 0

N1
τiδi,
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ℒ2(G, λ, τ; h) ≔ ∑
i = 1

N − 1
λi 𝚃𝚛{G⊤Ai − 1, i(h)G} + ∑

i = 0

N − 1
τi 𝚃𝚛{G⊤Di(h)G + νui

⊤G} .

Here, minδ ℒ1(δ, λ, τ) = 0 for any (λ, τ) ∈ Λ where Λ is defined in (23), and minδ ℒ1(δ, 
λ, τ) = −∞ otherwise.

For any given unit vector ν, [11, Lemma 1] implies

min
G ∈ ℝN × d

ℒ2(G, λ, τ) = min
w ∈ ℝN

ℒ2(wν⊤, λ, τ),

and thus for any (λ, τ) ∈ Λ, we can rewrite the dual function as

H(λ, τ; h) = min
w ∈ ℝN

{w⊤S(h, λ, τ)w + τ⊤w} = max
γ ∈ ℝ

− 1
2γ :w⊤S(h, λ, τ)w + τ⊤w ≥ − 1

2γ, ∀w ∈ ℝN = max
γ ∈ ℝ

− 1
2γ :

S(h, λ, τ) 1
2τ

1
2τ⊤ 1

2γ
⪰ 0 ,

where S(h, λ, τ) is defined in (24). Therefore the dual problem of (P1) becomes (D), 

recalling that we previously replaced maxG,δ LR2δN−1 of (P1) by minG,δ{−δN−1}.

Appendix B

Proof of Prop. 5

The proof is similar to [17, Prop. 2, 3 and 4].

We first show that {hi+1,k} in (25) is equivalent to

hi + 1, k =

(T i − ti)ti + 1
tiT i + 1

hi, k i = 0, …, N − 1, k = 0, …, i − 2,

(T i − ti)ti + 1
tiT i + 1

(hi, i − 1 − 1), i = 0, …, N − 1, k = i − 1,

1 +
(ti − 1)ti + 1

T i + 1
, i = 0, …, N − 1, k = i,

(48)

We use the notation hi, k′  for the coefficients (25) to distinguish from (48). It is obvious that 

hi + 1, i′ = hi + 1, i, i = 0, …, N − 1, and we clearly have
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hi + 1, i − 1′ =
ti + 1
Ti + 1

(ti − 1 − hi, i − 1′ ) =
ti + 1
Ti + 1

ti − 1 − 1 +
(ti − 1 − 1)ti

Ti
=

(ti − 1 − 1)(Ti − ti)ti + 1
TiTi + 1

=
(Ti − ti)ti + 1

tiTi + 1
(hi, i − 1 − 1) = hi + 1, i − 1

We next use induction by assuming hi + 1, k′ = hi + 1, k for i = 0, …, n − 1, k = 0, …, i. We then 

have

hn + 1, k′ =
tn + 1
Tn + 1

tk − ∑
j = k + 1

n
h j, k′ =

tn + 1
Tn + 1

tk − ∑
j = k + 1

n − 1
h j, k′ − hn, k′ =

tn + 1
Tn + 1

Tn
tn

hn, k′ − hn, k′

=
(Tn − tn)tn + 1

tnTn + 1
hn, k = hn + 1, k

Next, using (48), we show that FSFOM with (25) is equivalent to the GFPGM. We use 

induction, and for clarity, we use the notation y0′ , ⋯, yN′  for FSFOM with (48). It is obvious 

that y0′ = y0, and we have

y1′ = y0′ − 1
Lh1, 0∇∼LF(y0′ ) = y0 − 1

L 1 +
(t0 − 1)t1

T1
∇∼LF(y0) = x1 +

(T0 − t0)t1
t0T1

(x1 − x0) +
(t0

2 − T0)t1
t0T1

(x1

− y0) = y1,

since T0 = t0. Assuming yi′ = yi for i = 0, …, n, we then have

yn + 1′ = yn′ − 1
Lhn + 1, n∇∼LF(yn′ ) − 1

Lhn + 1, n − 1∇∼LF(yn − 1′ ) − 1
L ∑

k = 0

n − 2
hn + 1, k ∇∼LF(yk′ ) = yn − 1

L 1

+
(tn − 1)tn + 1

Tn + 1
∇∼LF(yn) − 1

L

(Tn − tn)tn + 1
tnTn + 1

(hn, n − 1 − 1)∇∼LF(yn − 1) − 1
L ∑

k = 0

n − 2 (Tn − tn)tn + 1
tnTn + 1

hn, k ∇∼LF(yk

) = xn + 1 − 1
L

(tn
2 − Tn)tn + 1

tnTn + 1
∇∼LF(yn) − 1

L

(Tn − tn)tn + 1
tnTn + 1

∇∼LF(yn) − ∇∼LF(yn − 1) + ∑
k = 0

n − 1
hn, k ∇∼LF(yk)

= xn + 1 +
(tn

2 − Tn)tn + 1
tnTn + 1

(xn + 1 − yn) +
(Tn − tn)tn + 1

tnTn + 1
− 1

L ∇∼LF(yn) + 1
L ∇∼LF(yn − 1) + yn − yn − 1

= xn + 1 +
(Tn − tn)tn + 1

tnTn + 1
(xn + 1 − xn) +

(tn
2 − Tn)tn + 1

tnTn + 1
(xn + 1 − yn) = yn + 1 .

Appendix C

Proof of Prop. 8

The proof is similar to [17, Prop. 1 and 5].
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We use induction, and for clarity, we use the notation y0′ , ⋯, yN′  for FSFOM with (25) that is 

equivalent to GFPGM by Prop. 5. It is obvious that y0′ = y0, and we have

y1′ = y0′ − 1
Lh1, 0∇∼LF(y0′ ) = y0 − 1

L 1 +
(t0 − 1)t1

T1
∇∼LF(y0) = 1 −

t1
T1

y0 − 1
L ∇∼LF(y0) +

t1
T1

y0

− 1
Lt0∇∼LF(y0) = 1 −

t1
T1

x1 +
t1
T1

z1 = y1 .

Assuming y0′ = yi for i = 0, …, n, we then have

yn + 1′ = yn′ − 1
Lhn + 1, n∇∼LF(yn′ ) − 1

L ∑
k = 0

n − 1
hn + 1, k ∇∼LF(yk′ ) = yn − 1

L 1 +
(tn − 1)tn + 1

Tn + 1
∇∼LF(yn)

− 1
L ∑

k = 0

n − 1 tn + 1
Tn + 1

tk − ∑
j = k + 1

n
h j, k ∇∼LF(yk) = 1 −

tn + 1
Tn + 1

yn − 1
L ∇∼LF(yn) +

tn + 1
Tn + 1

yn − 1
L ∑

k = 0

n
tk ∇∼LF

(yk) + 1
L ∑

k = 0

n − 1
∑

j = k + 1

n
h j, k ∇∼LF(yk) = 1 −

tn + 1
Tn + 1

yn − 1
L ∇∼LF(yn) +

tn + 1
Tn + 1

y0 − 1
L ∑

k = 0

n
tk ∇∼LF(yk) =

1 −
tn + 1
Tn + 1

xn + 1 +
tn + 1
Tn + 1

zn + 1 .

Appendix D

Discussion on the choice of ΩN in Sec. 4.1

Our formulation (P′) examines the set ΩN = {y0, ⋯, yN−1, xN} and eventually leads to the 

best known analytical bound on the norm of the composite gradient mapping in Thm. 11 

among fixed-step first-order methods.

An alternative formulation would be to use the set {y0, ⋯, yN−1} (i.e., excluding the point 

xN). For this alternative, we could simply replace the inequality (33) with the condition 0 ≤ 

F(yN−1) − F(x*) to derive a slightly different relaxation. (One could use other conditions at 

the point yN−1 as in [29] for a tight relaxation, but this is beyond the scope of this paper.) We 

found that the corresponding (loose) relaxation (P1′) using {y0, ⋯, yN−1} leads to a larger 

upper bound than (40) in Thm. 10 for the set ΩN.

Another alternative would be to use the set {x0, ⋯, xN}, which we leave as future work. 

Nevertheless, the inequality in Lemma 1 provides a bound for that set {x0, ⋯, xN} as seen in 

Thm. 10 and 11.

We could also consider the final point xN (or yN) in (P′) instead of the minimum over a set 

of points. However, the corresponding (loose) relaxation (P1′) yielded only an O(1/N) 

bound at best (even for the corresponding optimized step coefficients of (HD′)) on the final 

composite gradient mapping norm. So we leave finding its tighter relaxation as future work. 

Note that Table 4 reports tight numerical bounds on the composite gradient mapping norm at 

the final point xN of algorithms considered.
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Appendix E

Proof of Equation (45) in Thm. 11

∑
k = 0

N − 1
(Tk − tk

2) + TN − 1 = ∑
k = m

N − 1
tm − 1
2 + ∑

l = m

k
tl − tk

2 + tm − 1
2 + ∑

l = m

N − 1
tl = (N − m + 1)tm − 1

2 + ∑
k = m

N − 1

∑
l = m

k N − l + 1
2 − N − k + 1

2
2

+ ∑
l = m

N − 1 N − l + 1
2 = (N − m + 1)tm − 1

2 + ∑
k′ = 0

N − m − 1
∑

l′ = 0

k′ N − l′ − m + 1
2

− N − k′ − m + 1
2

2
+ ∑

l′ = 0

N − m − 1 N − l′ − m + 1
2 = (N − m + 1)tm − 1

2 + ∑
k = 0

N − m − 1 (N − m + 1)(k + 1)
2

− k(k + 1)
4 − (N − m + 1)2 − 2(N − m + 1)k + k2

4 + (N − m + 1)(N − m)
2 − (N − m − 1)(N − m)

4 = (N − m + 1

)tm − 1
2 + ∑

k = 0

N − m − 1
− k2

2 + (N − m + 3/4)k − (N − m − 1)(N − m + 1)
4 + (N − m)(N − m + 3)

4 = (N − m + 1

)tm − 1
2 − (N − m − 1)(N − m − 1/2)(N − m)

6 + (N − m − 1)(N − m)(N − m + 3/4)
2

− (N − m − 1)(N − m)(N − m + 1)
4 + (N − m)(N − m + 3)

4 ≥ (N − m + 1)(m + 1)2
4 + (N − m − 1)(N − m)2

3

− (N − m)2(N − m + 1)
4 ≥ (N − m − 1)(N − m)2

3 ≥ 1
24(N − 2)N2,

where m = ⌊ N
2 ⌋ ≥ N − 1

2 , N − m ≥ N
2 , and tm − 1 ≥ m + 1

2  (13).
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Table 1

Asymptotic worst-case bounds on the cost function F(xN) − F(x*) and the norm of the composite gradient 

mapping minx∈ΩN ‖∇̃
LF(x)‖ of PGM, FPGM, FPGM-σ, FPGM-m, FPGM-OCG, and FPGM-a. (The cost 

function bound for FPGM-m in the table corresponds to the bound for FPGM after m iterations because a tight 

bound for the final N th iteration is unknown. The bound on mini∈{0, …, N} ‖∇̃
L/σ2F(yi)‖ is used for FPGM-σ.)

Algorithm

Asymptotic worst-case bound
Require selecting

N in advance
Cost function (×LR2) Proximal gradient (×LR)

PGM 1
2 N−1 2N−1 No

FPGM 2N−2 2N−1 No

FPGM-σ (0 < σ < 1)
2

σ2 N−2 2 3
σ2

1 + σ
1 − σ N

− 3
2

No

FPGM-(σ = 0.78) 3.3N−2

16.2N
− 3

2

FPGM− m = ⌊2N
3 ⌋

4.5N−2

5.2N
− 3

2
Yes

FPGM-OCG 4N−2

4.9N
− 3

2
Yes

FPGM-a (a > 2)

aN−2 a 6
a − 2 N

− 3
2

No

FPGM-(a = 4) 4N−2

6.9N
− 3

2
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