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Abstract

This paper provides a new way of developing the “Fast Iterative Shrinkage/Thresholding
Algorithm (FISTA)” [3] that is widely used for minimizing composite convex functions with a
nonsmooth term such as the § regularizer. In particular, this paper shows that FISTA corresponds
to an optimized approach to accelerating the proximal gradient method with respect to a worst-
case bound of the cost function. This paper then proposes a new algorithm that is derived by
instead optimizing the step coefficients of the proximal gradient method with respect to a worst-
case bound of the composite gradient mapping. The proof is based on the worst-case analysis
called Performance Estimation Problem in [11].

1. Introduction

The “Fast Iterative Shrinkage/Thresholding Algorithm” (FISTA) [3], also known as a fast
proximal gradient method (FPGM) in general, is a very widely used fast first-order method.
FISTA’s speed arises from Nesterov’s accelerating technique in [23, 24] that improves the
O(1/N) cost function worst-case bound of a proximal gradient method (PGM) to the optimal
O(1/\?) rate where N denotes the number of iterations [3].

This paper first provides a new way to develop Nesterov’s acceleration approach, .e., FISTA
(FPGM). In particular, we show that FPGM corresponds to an optimized approach to
accelerating PGM with respect to a worst-case bound of the cost function. We then propose
a new fast algorithm that is derived from PGM by instead optimizing a worst-case bound of
the composite gradient mapping. We call this new method FPGM-OCG (OCG for optimized

over composite gradient mapping). This new method provides the best known analytical
3

worst-case bound for decreasing the composite gradient mapping with rate o(1 /NE) among
fixed-step first-order methods. The proof is based on the worst-case bound analysis called
Performance Estimation Problem (PEP) in [11], which we briefly review next.

Drori and Teboulle’s PEP [11] casts a worst-case analysis for a given optimization method
and a given class of optimization problems into a meta-optimization problem. The original
PEP has been intractable to solve exactly, so [11] introduced a series of tractable relaxations,
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focusing on first-order methods and smooth convex minimization problems; this PEP and its
relaxations were studied for various algorithms and minimization problem classes in [12, 16,
17, 18, 19, 29, 30]. Drori and Teboulle [11] further proposed to optimize the step
coefficients of a given class of optimization methods using a PEP. This approach was studied
for first-order methods on unconstrained smooth convex minimization problems in [11], and
the authors [17] derived a new first-order method, called an optimized gradient method
(OGM) that has an analytic worst-case bound on the cost function that is twice smaller than
the previously best known bounds of [23, 24]. Recently, Drori [10] showed that the OGM
exactly achieves the optimal cost function worst-case bound among first-order methods for
smooth convex minimization (in high-dimensional problems).

Building upon [11] and its successors, Taylor ef al. [29] expanded the use of PEP to first-
order (proximal gradient) methods for minimizing nonsmooth compasite convex functions.
They used a tight relaxation? for PEP and studied the tight (exact) numerical worst-case
bounds of FPGM, a proximal gradient version of OGM, and some variants versus humber of
iterations AV. Their numerical results suggest that there exists an OGM-type acceleration of
PGM that has a worst-case cost function bound that is about twice smaller than that of
FPGM, showing room for improvement in accelerating PGM. However, it is difficult to
derive an analytical worst-case bound for the tightly relaxed PEP in [29], so optimizing the
step coefficients of PGM remains an open problem, unlike [11, 17] for smooth convex
minimization.

Different from the tightly relaxed PEP in [29], this paper suggests a new (looser) relaxation
of a cost function form of PEP for nonsmooth composite convex minimization that
simplifies analysis and optimization of step coefficients of PGM, although yields loose
worst-case bounds. Interestingly, the resulting optimized PGM numerically appears to be the
FPGM. Then, we further provide a new generalized version of FPGM using our relaxed PEP
that extends our understanding of the FPGM variants.

This paper next extends the PEP analysis of the gradient norm in [29, 30]. For unconstrained
smooth convex minimization, the authors [16] used such PEP to optimize the step
coefficients with respect to the gradient norm. The corresponding optimized algorithm can
be useful particularly when dealing with dual problems where the gradient norm decrease is
important in addition to the cost function minimization (see e.g., [9, 22, 26]). By extending
[16], this paper optimizes the step coefficients of the PGM for the composite gradient
mapping form of PEP for nonsmooth composite convex minimization. The resulting
optimized algorithm differs somewhat from Nesterov’s acceleration and turns out to belong
to the proposed generalized FPGM class.

Sec. 2 describes a nonsmooth composite convex minimization problem and first-order
(proximal gradient) methods. Sec. 3 proposes a new relaxation of PEP for nonsmooth
composite convex minimization problems and the proximal gradient methods, and suggests
that the FPGM (FISTA) [3] is the optimized method of the cost function form of this relaxed

lTight relaxation here denotes transforming (relaxing) an optimization problem into a solvable problem while their solutions remain
the same. [29] tightly relaxes the PEP into a solvable equivalent problem under a large-dimensional condition.
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PEP. Sec. 3 further proposes a generalized version of FPGM using the relaxed PEP. Sec. 4
studies the composite gradient mapping form of the relaxed PEP and describes a new
optimized method for decreasing the norm of composite gradient mapping. Sec. 5 compares
the various algorithms considered, and Sec. 6 concludes.

2. Problem, methods, and contribution

We consider first-order algorithms for solving the nonsmooth composite convex
minimization problem:

min {F(x) == f(x) + ¢px)}, (M)

xeR

under the following assumptions:

. f:RY— R is is a convex function of the type %} 'R, i.e., continuously

differentiable with Lipschitz continuous gradient:

IVf@) = VIOl <Lix=yl, Vx,yeR’ ()

where L > 0 is the Lipschitz constant.
. $: R7— R is proper, closed, convex and “proximal-friendly” [6].

. The optimal set Xx(F) = arg minyerd AX) is nonempty, /.e., the problem (M) is
solvable.

We use #;(R9 to denote the class of functions Fthat satisfy the above conditions. We
additionally assume that the distance between the initial point Xy and an optimal solution x=
€ X(F) isbounded by >0, i.e., lIXg — x«ll < R.

PGM is a standard first-order method for solving the problem (M) [3, 6], particularly when
the following proximal gradient update (that consists of a gradient descent step and a
proximal operation [6]) is relatively simple:

p,(y) = arg min[f(y) =y, V) + Slx =3I + g | = arg min (2)

B

x=(r- %Vf(y))”2 ¥ ¢<x>] .

For ¢(x) = lixlly, the update (2) becomes a simple shrinkage/thresholding update, and PGM
reduces to an iterative shrinkage/thresholding algorithm (ISTA) [8]. (See [6, Table 10.2] for
more functions ¢(x) that lead to simple proximal operations.) PGM has the following bound
on the cost function [3, Thm. 3.1] for any V> 1.
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2
Floy) —Fr) < 55 (3)

Algorithm PGM
Input: FE #,(RY, xq € RY.
For /=0, ..., N-1

Xy =P

For simplicity in later derivations, we use the following definition of the composite gradient
mapping [27]:

V F(x) = —L(p,(x)—x). (4)

The composite gradient mapping reduces to the usual function gradient V fx) when ¢(x) = 0.
We can then rewrite the PGM update in the following form reminiscent of a gradient
method:

1 ~
X1 =Px) =x,— 7V, Fx), Q)

where each update guarantees the following monotonic cost function descent [27, Thm. 1]:

Flx) - Fx,, ) > =19, FelP. (6)

— 2L

For any x € R, there exists a subgradient ¢’ (p, (X)) € d¢(p,(x)) that satisfies the following
equality [3, Lemma 2.2]:

VL FG) = VI + ¢/, (0. (7)

This equality implies that any point X with a zero composite gradient mapping (V; AX) = 0,
e, X=p;(X)) satisfies 0 € 0 AX) and is a minimizer of (M). As discussed, minimizing the
composite gradient mapping is noteworthy in addition to decreasing the cost function. This
property becomes particularly important when dealing with dual problems. In particular, it is
known that the norm of the dual (sub)gradient is related to the primal feasibility (see e.g., [9,
22, 26]). Furthermore, the norm of the subgradient is upper bounded by the norm of the
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composite gradient mapping, /e., for any given subgradients ¢"(p,(x)) in (7) and F (p(X))
= Vp(x)) + ¢'(PL(X)) € IAPL(X)), we have

IF (Il < V() = V@) + |V £(x) + ¢/ (p ()| < 2LIx = p (o)l = 21|V, F
P ),

®)

where the first inequality uses the triangle inequality and the second inequality uses (1) and
(7). This inequality provides a close relationship between the primal feasibility and the dual
composite gradient mapping. Therefore, we next analyze the worst-case bound of the
composite gradient mapping of PGM; Sec. 4 below discusses a first-order algorithm that is
optimized with respect to the composite gradient mapping.2

The following lemma shows that PGM monotonically decreases the norm of the composite
gradient mapping.

The PGM monotonically decreases the norm of composite gradient mapping, /.¢., for all x:

IV, F, Nl < IV, F@Il.  (9)

Proof—The proof in [22, Lemma 2.4] can be easily extended to prove (9) using the
nonexpansiveness of the proximal mapping (proximity operator) [6].

The following theorem provides a O(1//N) bound on the norm of composite gradient
mapping for the PGM, using the idea in [26] and Lemma 1.

Let £: RY— R bein &;(R% and let xg, -+, Xy € R?be generated by PGM. Then for N>
27

2LR

Jw-nwry 1O

min ||V, Fe)ll = |V, Fxpll <
o0, N} L i L N

Proof—Letm = L%J, and we have

20ne could develop a first-order algorithm that is optimized with respect to the norm of the subgradient (rather than its upper bound in
Sec. 4), which we leave as future work.
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2 (3) © N O N- -
S R~ 2 Fuy , p=Fep+5p 30 19 Fel” > X225 019 Foepl,
r=m

%andN—mz

=

which is equivalent to (10) using m >

Despite its inexpensive per-iteration computational cost, PGM suffers from the slow rate
O(1/N) for decreasing both the cost function and the norm of composite gradient mapping.3
Therefore for acceleration, this paper considers the following class of fixed-step first-order
methods (FSFOM), where the (7 + 1)th iteration consists of one proximal gradient
evaluation, just like PGM, and a weighted summation of previous and current proximal

gradient updates {x, , ; -y} 0 with step coefficients {x

i }i
k= i+ 1,k k:()'

Algorithm Class FSFOM
Input: FE 7, (R, Xg € R, yo = Xg.
For/=0,...,N-1

1 ~
X1 =P =y - TV LEYY

i i
1 ~
Vit =yi+k20hi+ L1790 =yi_fk20hi+ LEVLFOp-

Although the weighted summation in FSFOM seems at first to be inefficient both
computationally and memory-wise, the optimized FSFOM presented in this paper have
equivalent recursive forms that have memory and computation requirements that are similar
to PGM. Note that this class FSFOM includes PGM but excludes accelerated algorithms in
[13, 25, 27] that combine the proximal operations and the gradient steps in other ways.

Among FSFOM# FISTA [3], also known as FPGM, is widely used since it has computation
and memory requirements that are similar to PGM yet it achieves the optimal O(1/A?)

3[11, Thm. 2] and [16, Thm. 2] imply that the O(1/N) rates of both the cost function bound (3) and the composite gradient mapping
norm bound (10) of PGM are tight up to a constant respectively.
4The step coefficients of FSFOM for FPGM are [11, 17]

1 i .
e =S h | k=01,
Gk Zj_k+1 ok
hi 1k = -1
1+t s k=1i.
i+1
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worst-case rate for decreasing the cost function, using Nesterov’s acceleration technique [23,
24].

Algorithm FPGM (FISTA)
Input: FE€ #, (R, xg € RY, yo=Xo, = 1.
For/=0, ..., N-1

Xip1 =PLYY

1+,/1+4t2
t =Y ! (11)

i+17 2

t.—1

1
yi+1_xi+1+tl.+l(xi+l_xi)

FPGM has the following bound for the cost function [3, Thm. 4.4] for any N> 1:

LR? 2LR?

Flxy) - F(x,) < < ,
N TTon T N+ 1)

(12)

where the parameters #;(11) satisfy

i

2 2 13)

[\

Sec. 3 provides a new proof of the cost function bound (12) of FPGM using a new relaxation
of PEP, and illustrates that this particular acceleration of PGM results from optimizing a
relaxed version of the cost function form of PEP. In addition, it is shown in [3, 5] that FPGM

and its bound (12) generalize to any f;such that y=1and 7 <2 |+, for all /= 1 with
corresponding bound for any V= 1:

2
F(xN>—F(x*)szL2R . (9)

IN—1
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i+a

which includes the choice t=—

for any a= 2. Using our relaxed PEP, Sec. 3 further

describes similar but different generalizations of FPGM that complement our understanding
of FPGM.

We are often interested in the worst-case analysis of the norm of the (composite) gradient
(mapping) in addition to that of the cost function, particularly when dealing with dual
problems. To improve the rate O(1/N) of the gradient norm bound of a gradient method,
Nesterov [26] suggested performing his fast gradient method (FGM) [23, 24], a non-
proximal version of FPGM, for the first m iterations and a gradient method for remaining N/
- miterations for smooth convex problems (when ¢(x) = 0). Here we extend this idea to the

nonsmooth composite convex problem (M) and use FPGM-mto denote the resulting
3

algorithm. The following theorem provides a 0(1/N§) worst-case bound for the norm of
composite gradient mapping of FPGM-/m, using the idea in [26] and Lemma 1.

Algorithm FPGM-m
Input: 7€ F,(RY, X0 € RY, yo=Xo, = 1.
For/=0, .., N-1

Xip1 =P

1+,/1+4zi2
— i<m-1

Liy1=

t.—1

1 .
TS e s b AR
Yiv1= !

x otherwise.

i+1

Let /: R?— R bein #;(R% and let xg, -, x5y € R be generated by FPGM-mfor 1 < m<
N. Then for N2 1,

. ~ ~ 2LR
min N}“VLF(xi)” | VLF(xN)” < (15)

ielo,..., T m+1IWN-m+1"

Proof—We have

SIAM J Optim. Author manuscript; available in PMC 2018 May 23.



1duosnue Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Kim and Fessler

Page 9

2 (12 © N O N <
RS R, — P 2 Ry - Fa+or 3 I8 FepIt s S0 G pogi?
r=m

(m+1)

which is equivalent to (15).

As noticed by a reviewer, when m = L%J, the worst-case bound (15) of the composite

3
gradient mapping roughly has its smallest constant 3./3 for the rate 0(1/N?), which is better

than the choice m = L%J in [26].

Monteiro and Svaiter [21] considered a variant of FPGM that replaces p; () of FPGM by
3

p./2(-) for 0 < o< 1; that variant, which we denote FPGM- g, satisfies the O(I/NE) rate for
the composite gradient mapping. This FPGM-¢ algorithm satisfies the following cost
function and composite gradient mapping worst-case bounds® [21, Prop. 5.2] for N> 1:

2LR?
Flxy) - F(x,) < . (16)
o°N

. S 2\/5 1+0 LR
min \Y% Fy)|l < 2= [T == 17
ief0,..., N}” L/(;2 (yl)”_ c \l-0 % ( )
N

The worst-case bound (17) of the composite gradient mapping has its smallest constant

@ iJ_“—Z ~ 16.2 when ¢ = @ ~ 0.78, which makes the bound (17) about % ~ 3-times
o

larger than the bound (15) of FPGM—(m = L%J) at best. However, since FPGM- o does not

require one to select the number of total iterations AVin advance unlike FPGM-m, the

FPGM-¢ algorithm could be useful in practice, as discussed further in Sec. 4.4. Ghadimi and
3

Lan [13] also showed the O(1/N 2) rate for a composite gradient mapping worst-case bound
of another variant of FPGM, but the corresponding algorithm in [13] requires two proximal
gradient updates per iteration, combining the proximal operations and the gradient steps in a
way that differs from the class FSFOM and could be less attractive in terms of the per-
iteration computational complexity.

5The bound for min{o, ...,
computed the constant in (17) by following the derivation of [21, Prop. 5.2(c)].
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FPGM has been used in dual problems [1, 2, 4, 14]; using FPGM-m and the algorithms in
3

[13, 21] that guarantee O(1/N?2) rate for minimizing the norm of the composite gradient
mapping could be potentially useful for solving dual problems. (Using F(P)GM-m for (dual)
smooth convex problems was discussed in [9, 22, 26].) However, FPGM-m and the
algorithms in [13, 21] are not necessarily the best possible methods with respect to the
worst-case bound of the norm of the composite gradient mapping. Therefore, Sec. 4 seeks to
optimize the step coefficients of FSFOM for minimizing the norm of the composite gradient
mapping using a relaxed PEP.

The next section first provides a new proof of FPGM using our new relaxation on PEP, and
proposes the new generalized FPGM.

3. Relaxation and optimization of the cost function form of PEP

3.1. Relaxation for the cost function form of PEP

For FSFOM with given step-size coefficients h == {/1;1 4}, in principle the worst-case bound
on the cost function after N iterations corresponds to the solution of the following PEP
problem [11]:

Bp(h,N,d,L,R) := max F(xy) - F(x,)
d
Fe 97L(R ),

d
XXy eR X, € X*(F)

d
yo’...’yN_leR

(P)

s.tox;  =p (), i=0,...N—-1, |lxg—x| <R,

l
Yit1 =yi+kzohi+1,k(xk+l =y, i=0,.. N=-2.

Since (non-relaxed) PEP problems like (P) are difficult to solve due to the (infinite-
dimensional) functional constraint on ~ Drori and Teboulle [11] suggested (for smooth
convex problems) replacing the functional constraint by a property of Frelated to the update
such as p;(-) in (P). Taylor et al. [29, 30] discussed properties of ~that can replace the
functional constraint of PEP without strictly relaxing (P), and provided tight numerical
worst-case analysis for any given A. However, analytical solutions remain unknown for (P)
and most PEP problems.

Instead, this paper proposes an alternate relaxation that is looser than that in [29, 30] but
provides tractable and useful analytical results. We consider the following property of ~
involving the proximal gradient update p,(-) [3, Lemma 2.3]:

Fx) = Fp,00) < Slp,00 = 1P+ Ly = x. 0,00 =) ¥, €R? (18)

SIAM J Optim. Author manuscript; available in PMC 2018 May 23.
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to replace the functional constraint on £ In particular, we use the following property:

%IIpL(y) — yII* = L{p,(x) — x,p,(y) — ¥) < F(p,(x)) = F(p,(»)) + L{p,(y) — y, x — ¥),

d
V., ER

(19)

that results from replacing x in (18) by p/(x). When ¢(x) = 0, the property (19) reduces to

SEIVIOIR = VS0 V1) < flx = V) = fy = VD) = (Tfx = )

d
V., R’

(20)

Note that the relaxation of PEP in [11, 16, 17, 18, 30] for unconstrained smooth convex
minimization (g(x) = 0) uses a well-known property of fin [24, Thm. 2.1.5] that differs from
(20) and does not strictly relax the PEP as discussed in [30], whereas our relaxation using
(19) and (20) does not guarantee a tight relaxation of (P). Finding a tight relaxation that
leads to useful (or even optimal) algorithms remains an open problem for nonsmooth
composite convex problems.

Similar to [11, Problem (Q”)], we (strictly) relax problem (P) as follows using a set of
constraint inequalities (19) at the points (X, y) = (y~1, y) for /=1, ..., N=1and (X, y) = (X,
y) fori=0, ..., N- 1

Bpy(h,N,d,L,R) = max LR, _,
Ge RNX d’

N

s..Tr{G'A,_ | (WG} <6,_ -6, i=1,..N-1,

1

Tr{G'D (WG +wu]G}) < -5, i=0,...,N—1,

for any given unit vector v € RY, by defining the (i + 1)th standard basis vector u;= ez €
R/, the matrix G = [gg, -, gv— 1] T € RV* ?and the vector 6= [&, -, Sy-1] T € RV,
where

SIAM J Optim. Author manuscript; available in PMC 2018 May 23.
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1 ~
8= - P, O)—y)= vaF(yi),

N S
v — x,I
1
8, = ————(F(p,(y) — F(x,)),
Liy,—x,> ©

for /=0, ..., N= 1, * Note that g« = [0, -+, O] T, &= 0 and Tr{G 'w} G} = (g,.g,) by
definition. The matrices A3 {(h) and D (h) are defined as

1 ul 1 T 1 7T 1 i—1 T T
A1, z(h) FUM; — U U _Q”i”i—l"‘izk:ohi,k(”i”k tuu;),
(22)
T
i

Dl.(h):z u +221_12k Ojk(uuk+uku)

which results from the inequalities (19) at the points (X, y) = (Y1, ¥, and (X, y) = (X, y,)
respectively.

As in [11, Problem (DQ")], problem (P1) has a dual formulation that one can solve
numerically for any given N using a semidefinite program (SDP) to determine an upper
bound on the cost function worst-case bound for any FSFOM:8

S(h,A,7) %‘t
F(xy) = F(x,) < Bp(h,N,d,L,R) < Bp(h,N,L,R) = max |5LR%: (D)
o en|2 lTT ly
yER 2 2
>0t,
where 2 = [, 2y _ )T € RY "L o=[z5, 7y _ 1T €RY, and
=A.,4 +7 =1
PAN-1 -1=5
=lanerWN N N . (@3

= Ay 41 =0i= 1., N =2,

N-1 N-1
St dt)= Y AA;_y (W+ Y wD(h). (24)
i=1 i=0

6see Appendix A for the derivation of the dual formulation (D) of (P1).
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This means that one can compute a valid upper bound (D) of (P) for given step coefficients h
using a SDP. The next two sections provide an analytical solution to (D) for FPGM and
similarly for our new generalized FPGM, superseding the use of numerical SDP solvers.

3.2. Generalized FPGM

We specify a feasible point of (D) that leads to our new generalized form of FPGM.
Lemma 4—TFor the following step coefficients:

t

i+1 i ~ '
Ti+1(tk_ Zj=k+1hj,k)’ k=0,...,i—1,

h. = 25
i+ 1,k (ti_ l)t[_,’_l ( )
+T—’ k=1,
i+1
the choice of variables:
hm T NSl e im0 g==l 0
l TN_l’ b b b l TN_l’ b b b T _17

is a feasible point of (D) for any choice of ¢ such that

i
tp=1, >0, and ?<T,:= zzotl' (27)

Proof: It is obvious that (A, 7) in (26) with (27) is in A (23). Using (22), the (/, A)th entry of
the symmetric matrix S(h, A, 7) in (24) can be written as

1 i . _
5((/1i+ri)hi’k+rizj=k+lhj,k), i=2,...N—-1,k=0,...,i-2
1 . .
5((/1i+ri)hi’i_1—ii), i=1L,..,N-1k=i-1,

S; A =17 ' '
E}“i+1’ i=0,...N=2,k=1,
1 . .
> i=N-1lLk=1i

where each element S; «(h, A, 7) corresponds to the coefficient of the term ul.u,I of S(h, A, 7
in (24). Then, inserting (25) and (26) to the above yields

SIAM J Optim. Author manuscript; available in PMC 2018 May 23.
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S; g h) =
i th_zi—l P il |is
2 TN—lTi k j=k+1"jk TN—l j=k+1"jk
i T f e D) Ty
2Ty -1l T; L
T,
l
Ty,
t.t
S = LN = Lk=0, i L,
N-1
T
=0, N k=i
Ty,

2,..,.,N-1,k=0,...,i-2,

i i=1,..N—lLk=i-1,

Then, using (26) and (27), we finally show the feasibility condition of (D):

1

Sth,A,7) 5
( i 2 S (diay {T—t2}+ttT)>O
LT 1| Ty ="

i 1

2 2

where t = (&, -, -1, 1)T and T = (7, -, Tar1s 1)T.

Page 14

FSFOM with the step coefficients (25) would be both computationally and memory-wise
inefficient, so we next present an equivalent recursive form of FSFOM with (25), named

Generalized FPGM (GFPGM).

Algorithm GFPGM
Input: F€ #,(RY, Xg € RY, yo =g, b= Ty =1.
For/=0,...,N-1

Xip1 =PLOY

2 —
Chooseti+ls.t. ti+1 >0andzi+1 STi+1 .—lzotl
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y. =x. +—
i+1 i+1 tiTi+1

Proposition 5—The sequence {Xg, -**, Xp} generated by FSFOM with step sizes (25) is
identical to the corresponding sequence generated by GFPGM.

Proof: See Appendix B.
Using Lemma 4, the following theorem bounds the cost function for the GFPGM iterates.

Theorem 6—Let £: R?— R be in &;(R9 and let xg, -, Xy € R be generated by
GFPGM. Then for N> 1,

LR?
F(xy) - F(x,) < Ty (28)
Proof: Using (D), Lemma 4 and Prop. 5, we have
Flre) — FOe) < (b N.L.R) = L1R% = LR (0
N » = HpUt, IV, L, > 2Ty,

The GFPGM and Thm. 6 reduce to FPGM and (12) when tf =T, forall / and Sec. 3.4

describes that FPGM results from optimizing the step coefficients of FSFOM with respect to

the cost function form of the relaxed PEP (D). This GFPGM also includes the choice

t;= ’:” for any a= 2 as used in [5], which we denote as FPGM-a that differs from the

algorithm in [5]. The following corollary provides a cost function worst-case bound for
FPGM-a.

Corollary 7—Let £: R?— R be in &;(R% and let X, -+, Xy € R?be generated by
GFPGM with 1, = “;“ (FPGM-4) for any a= 2. Then for N> 1,

2
Flxy) - F(x,) < —~ LR (30)

SNN+2a-1)°

i+a
a

Proof: Thm. 6 implies (30), since ¢; = satisfies (27), i.e,
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r_p_(+Di+20) (+a’ _(a=2)+aa=3)i

>0 (31
L 2a e 242 (31)

forany a=2and all 7= 0.

3.3. Related work of GFPGM

This section shows that the GFPGM has a close connection to the accelerated algorithm in
[25] that was developed specifically for a constrained smooth convex problem with a closed
convex set Q, f.e,

0, xeo,
pw =1 =" Y€ (3

o0, otherwise.

The projection operator P (x) = arg minye o lIx =yl is used for the proximal gradient update

Q).

We show that the GFPGM can be written in the following equivalent form, named GFPGM’,
which is similar to that of the accelerated algorithm in [25] shown below. Note that the
accelerated algorithm in [25] satisfies the bound (28) of the GFPGM in [25, Thm. 2] when

#(x) = 1o(X).

Algorithm GFPGM’
Input: 7€ F,(RY, X0 ERY, yo=Xo, b= Tp = 1.
For/i=0, ..., N-1

x'+1=PL(yl-)=)"

1~
i i~z VLFo)

i
1 ~
Gie17%07 ZkzotkvLF(yk)

i+ 1
2 _
Chooseti_'_ls.t. tl.+1>0andti+15Tl.+l— Zotl
y (ot fien
i+1 Ti+1 i+1 Tl.+1t+1
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Algorithm [25] for ¢(x) = 15(x)
Input: F€ #,(RY, Xo € RY, yo=Xo, 5= Ty = 1.
For/=0,...,N-1

Xi41= PL(yl-) =PQ(y,-—%Vf(y,-))

l.
I

Gt :PQ(yO_L 2z thf(yk))
k=0

i+1
2 _
Choosetl.+ls.t. ti+1>0andti+1§Ti+l—lZOtl

t.

i+1
X . + =
i+1 Ti+1

_(,_fivn
Yiv1~= T,

it

Proposition 8—The sequence {Xxg, ‘", Xp} generated by GFPGM is identical to the
corresponding sequence generated by GFPGM’.

Proof: See Appendix C.

Clearly GFPGM’ and the accelerated algorithm in [25] are equivalent for the unconstrained
smooth convex problem (Q = R%. However, when the operation P(x) is relatively
expensive, our GFPGM and GFPGM’ that use one projection per iteration could be
preferred over the accelerated algorithm in [25] that uses two projections per iteration.

3.4. Optimizing step coefficients of FSFOM using the cost function form of PEP

To find the step coefficients in the class FSFOM that are optimal in terms of the cost
function form of PEP, we would like to solve the following problem:

hp:= argmin  Byh,N,d,L,R). (HP)
e RNV + D2

Because (HP) seems intractable, we instead optimize the step coefficients using the relaxed
bound in (D):

hp:= argmin Bph,N,L,R). (HD)
he RN(N + 1)/2
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The problem (HD) is bilinear, and a convex relaxation technique in [11, Thm. 3] makes it
solvable using numerical methods. We optimized (HD) numerically for many choices of /
using a SDP solver [7, 15] and based on our numerical results (not shown) we conjecture

that the feasible point in Lemma 4 with tl.z = T, that corresponds to FPGM (FISTA) is a

global minimizer of (HD). It is straightforward to show that the step coefficients in Lemma 4
with t? = T, give the smallest bound of (D) and (28) among all feasible points in Lemma 4,

but showing optimality among all possible feasible points of (HD) may require further
derivations as in [17, Lemma 3] using KKT conditions, which we leave as future work.

This section has provided a new worst-case bound proof of FPGM using the relaxed PEP,
and suggested that FPGM corresponds to FSFOM with optimized step coefficients using the
cost function form of the relaxed PEP. The next section provides a different optimization of
the step coefficients of FSFOM that targets the norm of the composite gradient mapping,
because minimizing the norm of the composite gradient mapping is important in dual
problems (see [9, 22, 26] and (8)).

4. Relaxation and optimization of the composite gradient mapping form of

PEP

4.1. Relaxation for the composite gradient mapping form of PEP

To form a worst-case bound on the norm of the composite gradient mapping for a given h of
FSFOM, we use the following PEP that replaces Axp)—Axx) in (P) by the norm squared of
the composite gradient mapping. Here, we consider the smallest composite gradient
mapping norm squared among all iterates’ (minyeqp I1L(pL(X) = X2 = minxegl\,IIVNLHx)ll2
where Qp = {yo, ", YA~1, Xa}) as follows:

Bp(h,N,d, L, R)= max min ||L(p,(x) — %)||*
FeF,®), xEQy
Xgp Xy € [Rd,x>‘< € X*(F),
Yoy g €R ")
s.t.x;  =p 0y, i=0,...N—-1, [xjg—x]| <R,

1
Yig1=t kzohi+ Xy =Y =0, N =2,
Because this infinite-dimensional max-min problem appears intractable, similar to the

relaxation from (P) to (P1), we relax (P") to a finite-dimensional problem with an additional
constraint resulting from (6) that is equivalent to

TSee Appendix D for the discussion on the choice of Q.
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L 2 33
Flp () = xplI” < Flxy) = Flx,)  (33)

and conditions that are equivalent to a < IIL(p,(x) — x)IIZ for all x € Q after replacing
minkeq IL(P£(X) = X)I2 by a as in [30].8 This relaxation leads to

Bpy(h,N,d,L,R) = max  L’R%a
GerW+ 1) x d’

6eRN,aeR

s, Tr{G'A,_ | (WG} <5,_ =6, i=1...N-1,
T | (P1)

Tr(G DG +vit] G} < -5, i=0,...N-1,

1
2

Tr{ -G i@ G}y < —a, i=0,...,N,

Tr[ éTﬁNa,TVG] <dy_

for any given unit vector v € R by defining the (7+ 1)th standard basis vector 0,= e €
RM1 the matrices

_ A_, o] _ D(h) 0
A _ . (h)= : . Dfh)= (34)
i—1,i T i T
0 0 0" 0

where 0= [0, ..., 0]T € RV, and the matrix G =[G, ga]T € RV D*dwhere

_ 1 1 =
- _ —xy)=———V F(xy). (35
gN ”y() _ x*” (pL(xN) xN) L”y() _ x*” L (xN) ( )

Similar to (D) and [16, Problem (D”)], we have the following dual formulation of (P1") that
could be solved using SDP:

1 T
S'(h, Az.n. ) lz".0]

B (h,N,L,R) =  min %Lszy: >0l (D)
At B EN, l[TT 0] ly
/R 2% 2

where n€ Ry, f = [By. . fyl' € RY *1 and

8Here, we simply relaxed (P") into (P1") in a way that is similar to the relaxation from (P) to (P1). This relaxation resulted in a
constructive analytical worst-case analysis on the composite gradient mapping in this section that is somewhat similar to that on the
cost function in Section 3. However, this relaxation on (P1) turned out to be relatively loose compared to the relaxation on (P1) (see
Sec. 5), suggesting there is room for improvement in the future with a tighter relaxation.
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N

to=Ap Ay Ty =1 Y B=1,
N =1z perINtl 07T IN=LT N 2i-ofi . (36)

A=Ay T =0i=1,.,N=-2

]

N-—1 N-1 N
, - = 1 __
S'hatn )= Y AA,_ W+ Y D)+ niyiiy — Y fag; . (37)
i=1 i=0 [

1=

The next section specifies a feasible point of interest that is in the class of GFPGM and
analyzes the worst-case bound of the norm of the composite gradient mapping. Then we
optimize the step coefficients of FSFOM with respect to the composite gradient mapping
form of PEP leading to a new algorithm that differs from Nesterov’s acceleration for
decreasing the cost function.

4.2. Worst-case analysis of the composite gradient mapping of GF-PGM

The following lemma provides feasible point of (D”) for the step coefficients (25) of
GFPGM.

Lemma 9—For the step coefficients {/141 4} in (25), the choice of variables

1 N-1 2 -1 .
N-1, r,= (f(Zk:O(Tk_tk)"‘TN—l)) ,i=0,

1o i=1,...N—-1,

/11-= Ti—ITO’ i=1,...,

(38)

1 .
5(T; = 1)7g i =0,..,N = 1,

n=Ty_ 17 ;= r=1y- (39

1 .
ETN—ITO’ l=N,

is a feasible point of (D”) for any choice of ¢;and 7;satisfying (27).

Proof: It is obvious that (A, z, 5, B) in (38) and (39) with (27) is in A" (36). Using (22) and
(34), the (4, K)th entry of the symmetric matrix S(h, A, z, , B) in (37) can be written as
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((/1 +7)hlk+121_k+1 Jk) =2,..,N—1,k=0,...,i—2,
z((ll.+fl.)hl.i_1—/1i), i=1,.,N—lk=i—-1,

S kA, B) = éiz+1 s, i=0... N-2.k=i
5'7—/)’,-, i=N-LN.k=i
0, i=N,k=0,..i-1,

and inserting (25), (38), and (39) yields

1 i i1 i—1 . _ .
Tl.ToTi D) ST +tirozj:k+1hj,k), i=2. . N-1k=0,..i-2,
1 G =Dy . .
S;,’k(h’,l’f’mﬁ)z fTiTOI-'-# Tz—ITO’ i=1,..,N-1,k=i-1,
1 o .
2TlTO 2(T —t )‘r i=0,..,.N=-1,k=1i,
0, i=N,k=0,...,i,

Finally, by defining t = (&, -, tA1, 0, 1) T we have the feasibility condition of (D"):

, 17,7
S'(h, A, 7,1, B) 5le ,0]
==ttt > 0.
l[rT ol 1 2770

2% 27

Using Lemma 9, the following theorem bounds the (smallest) norm of the composite
gradient mapping for the GFPGM iterates.

Theorem 10—Let 7: R — R be in &;(R9 and let xg, -, Xps Yo, = Ya-1 € R7be
generated by GFPGM. Then for N> 1,

min ||V F(x)|l £ min ||V Fx)| < LR > .
ielo,..., reQy \/ SN T =D+ Ty,

(40)

Proof: Lemma 1 implies the first inequality of (40). Using (D”), Lemma 9 and Prop. 5, we
have
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2,2
S 2 1 L°R

min |9, Fol* < By (N, L R) = 317Ky = ———— :
xreQy Zi=o T —10+Ty_

which is equivalent to (40).

Although the bound (40) is not tight due to the relaxation on PEP, next two sections show
3

that there exists choices of #;that provide a rate O(I/NE) for decreasing the composite
gradient mapping, including the choice that optimizes the composite gradient mapping form
of PEP.

3
FGM for smooth convex minimization was shown to achieve the rate 0(1/N2) for the
decrease of the usual gradient in [16]. In contrast, Thm. 10 provides only a O(1/N) bound for
FPGM (or GFPGM with #;(11)) on the decrease of the composite gradient mapping since

T, = t? for all 7and the value of 7.1 is O(A) for #;(11). Sec. 5 below numerically studies a

tight bound on the composite gradient mapping of FPGM and illustrates that it has a rate that
is faster than the rate O(1/AN) of Thm. 10, indicating there is a room for improvement in the
composite gradient mapping form of the relaxed PEP

4.3. Optimizing step coefficients of FSFOM using the composite gradient mapping form of
PEP

To optimize the step coefficients in the class FSFOM in terms of the composite gradient
mapping form of the relaxed PEP (D”), we would like to solve the following problem:

hy = argmin  B(h,N,LR). (HD")
he RN(N+ 1)/2

Similar to (HD), we use a convex relaxation [11, Thm. 3] to make the bilinear problem (HD
") solvable using numerical methods. We then numerically optimized (HD") for many
choices of Ausing a SDP solver [7, 15] and found that the following choice of ¢;

1, i=0,
L4yl +40_ N
A R R R E Rt
N—-i+1 N
Nl o -,

makes the feasible point in Lemma 9 optimal empirically with respect to the relaxed bound
i+a

(HD"). Interestingly, whereas the usual ¢ factors (such as (11) and ==

for any a= 2)

increase with 7indefinitely, here, the factors begin decreasing after i = L%J - 1.
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We also noticed numerically that finding the #;that minimizes the bound (40), /.e., solving
the following constrained quadratic problem:

N-1{( k N-1
max Z ZIl—t,% + Ztl s.t. ¢ satisfies (27) for all i, (42)
(CH N =Y V=] =0

is equivalent to optimizing (HD"). This means that the solution of (42) numerically appears

equivalent to (41), the (conjectured) solution of (HD"). Interestingly, the unconstrained
N—i+1
2

maximizer of (42) without the constraint (27) is ¢, = , and this partially appears in

the constrained maximizer (41) of the problem (42).

Based on this numerical evidence, we conjecture that the solution Ap’ of problem (HD”)
corresponds to (25) with (41). Using Prop. 5, the following GFPGM form with (41) is
equivalent to FSFOM with the step coefficients (25) for (41) that are optimized step
coefficients of FSFOM with respect to the norm of the composite gradient mapping, which
we name FPGM-OCG (OCG for optimized over composite gradient mapping).

Algorithm FPGM-OCG (GFPGM with #in (41))

Input: f € Cll; 1([Rd) convex, Xg € R% yg =Xg, h= To = 1.

For /=0, ..., N-1

Xip1 =P

11+ N
e LT}

> =1

= 2
fit1 N .
_i _
2 l—I‘?J—l,.‘.,N—Z,
T~ 111 =Ty .
Yiv1 =1t T ST T KTy i<N =]
i+l iTi+1

The following theorem bounds the cost function and the (smallest) norm of the composite
gradient mapping for the FPGM-OCG iterates.

Theorem 11—Let £: R?— R bein &;(RY and let xg, -, Xps Yo, *** Yae1 € R7be
generated by FPGM-OCG. Then for N> 1,
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2
4L|xy - x|

Fay) = Fx) £ —govsa)

(43)

and for V=3,

. ~ . ~ 24/6LR
min ||V, F(x)|| < min ||V, F(x)| < \/_— (44)
0,...,N} xXeQ

l‘e{ N NVN_Z

Proof: FPGM-OCG is an instance of the GFPGM, and thus Thm. 6 implies (43) using

NSt 2 NolN—k+1 2
TN—lsz—1+kZ tk:tm—l"'kz L S|
=m

=m
+N_§+lg> m+ 1) N=m+ DN =-m+2) 1 2N 48N +1
, 227 4 4 227 16
=2
N _N-1 N 2 (m+ 1)%
where m = 5] 2 ——N-m2, and7, =1 _, ZT(B)'

In addition, Thm. 10 implies (44), using

N-1
2 1 2
/;o (T =) +Ty_; 2 57N =2)N°, (45)

which we prove in the Appendix E.

The composite gradient mapping bound (44) of FPGM-OCG is asymptotically %ﬁ-times

smaller than the bound (15) of FPGM—(m = LzTNJ). In addition, the cost function bound (43)

of FPGM-OCG satisfies the optimal rate O(1/A#), although the bound (43) is two-times
larger than the analogous bound (12) of FPGM.

3
4.4. Decreasing the composite gradient mapping with a rate 0(1/N?) without selecting N in
advance
3

FPGM-OCG and FPGM-m satisfy a fast rate 0(1/N2) for decreasing the norm of the

composite gradient mapping but require one to select the total number of iterations AVin

advance, which could be undesirable in practice. One could use FPGM-¢in [21] that does

not require selecting AVin advance, but instead we suggest a new choice of #;in GFPGM that

satisfies a composite gradient mapping bound that is lower than the bound (17) of FPGM-o.
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Based on Thm. 10, the following corollary shows that GFPGM with 7, = ”T“ (FPGM-g) for
3

any a> 2 satisfies the rate 0(1/N§) of the norm of the composite gradient mapping without

selecting AVin advance. (Cor. 7 showed that FPGM-a for any a= 2 satisfies the optimal rate

O(1/\2) of the cost function.)

Corollary 12—Let £: R?— R be in FL(R% and let xg, =, Xps Yo, = Y1 € R7be
generated by GFPGM with 7, = ita (FPGM-g) for any a= 2. Then for A= 1, we have the

a

following bound on the (smallest) composite gradient mapping:

min ||V, F(x)Il < min ||V, Fx)| (46)
ie{0,...,N} erN

< a\J6LR
T N(a=2N*+3(@® —a+ DN + (3a* +2a — 1)

Proof: With T, = W and (31), Thm. 10 implies (46) using

NG ! 2 NG w200 G+ NV+2a-1) Mot @— 202 + aa— 3k
2 M- +Ty = X 2a B 7 =2 2
=0 = a K=o 2
+N(N+2§a—l):%(a—2)(N—61)(2N—1)+a(2a—32)(N—1)+a(N+2a_l)

a

) 2

_N(@=2)N"+3(@ —a+ 1N+ @Ba" +2a-1))
- a .

6a

FPGM-afor any a > 2 has a composite gradient mapping bound (46) that is asymptotically

2;’ﬁ—times larger than the bound (44) of FFGM-OCG. This gap reduces to /2 at best

when a= 4, which is clearly better than that of FFGM-o. Therefore, this FPGM-aalgorithm
3

will be useful for minimizing the composite gradient mapping with a rate 0(1/N§) without
selecting Vin advance.

5. Discussion

5.1. Summary of analytical worst-case bounds on the cost function and the composite
gradient mapping

Table 1 summarizes the asymptotic worst-case bounds of all algorithms discussed in this
paper. (Note that the bounds are not guaranteed to be tight.) In Table 1, FPGM and FPGM-
OCG provide the best known analytical worst-case bounds for decreasing the cost function
and the composite gradient mapping respectively. When one does not want to select AVin
advance for decreasing the composite gradient mapping, FPGM-a will be a useful alternative
to FFGM-OCG.
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5.2. Tight worst-case bounds on the cost function and the smallest composite gradient

mapping norm
Since none of the bounds presented in Table 1 are guaranteed to be tight, we modified the
code® (using SDP solvers [20, 28]) in Taylor et al. [29] to compare tight (numerical) bounds
for the cost function and the composite gradient mapping in Tables 2 and 3 respectively for
N=1,2, 4,10, 20, 30, 40, 47, 50. This numerical bound is guaranteed to be tight when the
large-scale condition is satisfied [29]. Taylor et al. [29, Fig. 1] already studied a tight worst-
case bound on the cost function decrease of FPGM numerically, and found that the
analytical bound (12) is asymptotically tight. Table 2 additionally provides numerical tight
bounds on the cost function of all algorithms presented in this paper, also suggesting that our
relaxation of the cost function form of the PEP from (P) to (D) is asymptotically tight (for
some algorithms). In addition, the trend of the tight bounds of the composite gradient
mapping in Table 3 follows that of the bounds in Table 1. However, there is gap between
them that is not asymptotically tight, unlike the gap between the bounds of the cost function
in Tables 1 and 2. In particular, the numerical tight bound for the composite gradient
mapping of FPGM in Table 3 has a rate faster than the known rate O(1/A) in Thm. 10. We
leave reducing this gap for the bounds on the norm of the composite gradient mapping as

future work, possibly with a tighter relaxation of PEP. In addition, FPGM—(m = LZTNJ) has a

numerical tight bound in Table 3 that is even slightly better than that of FPGM-OCG, unlike
our expectation from the analytical bounds in Table 1 and Sec. 4.3. This shows room for
improvement in optimizing the step coefficients of FSFOM with respect to the composite
gradient mapping, again possibly with a tighter relaxation of PEP.

5.3. Tight worst-case bounds on the final compo site gradient mapping

This paper focused on analyzing the worst-case bound of the smallest composite gradient
mapping among all iterates (minerNllﬁLF(x)ll) in addition to the cost function, whereas the
composite gradient mapping at the final iterate (IV ; {x)ll) could be also considered (see
Appendix D). For example, the composite gradient mapping bounds (10) and (15) for PGM
and FPGM-malso apply to the final composite gradient mapping, and using (6) we can
easily derive a (loose) worst-case bound on the final composite gradient mapping for other
algorithms, e.g., such a final composite gradient mapping bound for GFPGM is as follows:

~ 6) (28)
IV Feepll < (2LFGe) = Fp (o) < \2LIFGey) = F(x,) < JTLL (47)
N-1

Since the optimal rate for decreasing the cost function is O(1/A2), the composite gradient
mapping worst-case bound (47) can provide only a rate O(1/N\) at best. For completeness of
the discussion, Table 4 reports tight numerical bounds for the final composite gradient
mapping. Here, FPGM, FPGM-(o = 0.78), and FPGM-(a = 4) have empirical rates of the

9The code in Taylor et al. [29] currently does not provide a tight bound of the norm of the composite gradient mapping (and the
subgradient), so we simply added a few lines to compute a tight bound.
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worst-case bounds in Table 4 that are slower than those in Table 3, unlike the other three
including FPGM-OCG.

To best of our knowledge, FPGM-m (or algorithms that similarly perform accelerated

algorithms in the beginning and run a proximal gradient method for the remaining iterations)
3

is known only to have a rate O(1/N?)in (15) for decreasing the final composite gradient
mapping, while FPGM-OCG was also found to inherit such fast rate in Table 4. Therefore,
searching for first-order methods that have a worst-case bound on the final composite
gradient mapping that is lower than that of FPGM-m (and FPGM-OCG), and that possibly
do not require knowing A in advance is an interesting open problem. Note that a
regularization technique in [26] that provides a faster rate O(1/A2) (up to a logarithmic
factor) for decreasing the final gradient norm for smooth convex minimization can be easily
extended for rapidly minimizing the final composite gradient mapping with such rate for the
composite problem (M); however, that approach requires knowing R in advance.

5.4. Tight worst-case bounds on the final subgradient

This paper has mainly focused on the norm of the composite gradient mapping based on (8),
instead of the subgradient norm that is of primary interest in the dual problem (see e.g., [9,
22, 26]). Therefore to have a better sense of subgradient norm bounds, we computed tight
numerical bounds on the finaA? subgradient norm I~ (x)ll in Table 5 and compared them
with Table 4.

For all six algorithms, empirical rates in Table 5 are similar to those for the final composite
gradient mapping in Table 4. In particular, the subgradient norm bounds for the three

algorithms PGM, FPGM—(m = L%J), and FPGM-OCG are almost identical to those in Table
4 except for the first few iterations, eliminating the concern of using (8) for such cases. On
the other hand, the other three algorithms FPGM, FPGM-(o = 0.78), and FPGM-(a= 4)

almost tightly satisfy the inequality (8) for most A, and thus have bounds on the final
subgradient that are about twice larger than those on the final composite gradient mapping.

Therefore, regardless of (8), Table 5 further supports the use of FPGM—(m = LZTNJ) and

FPGM-OCG over FPGM and other algorithms in dual problems.

6. Conclusion

This paper analyzed and developed fixed-step first-order methods (FSFOM) for nonsmooth
composite convex cost functions. We showed an alternate proof of FPGM (FISTA) using
PEP, and suggested that FPGM (FISTA) results from optimizing the step coefficients of
FSFOM with respect to the cost function form of the (relaxed) PEP. We then described a
new generalized version of FPGM and analyzed its worst-case bound using the (relaxed)

10Using modifications of the code in [29] to compute tight bounds on the fina/ subgradient norm was easier than for the smallest
subgradient norm among all iterates. Even without the smallest subgradient norm bounds, the bounds on the fina/subgradient norm in
Table 5 (compared to Table 4) provide some insights (beyond (8)) on the relationship between the bounds on the subgradient norm and
the composite gradient mapping norm as discussed in Sec. 5.4. We leave further modifying the code in [29] for computing tight
bounds on the smallest subgradient norm or other criteria as future work.
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PEP over both the cost function and the norm of the composite gradient mapping.
Furthermore, we optimized the step coefficients of FSFOM with respect to the composite
gradient mapping form of the (relaxed) PEP, yielding FPGM-OCG, which could be useful
particularly when tackling dual problems.

Our relaxed PEP provided tractable analysis of the optimized step coefficients of FSFOM
with respect to the cost function and the norm of the composite gradient mapping, but the
relaxation is not guaranteed to be tight and the corresponding accelerations of PGM (FPGM
and FPGM-OCG) are thus unlikely to be optimal. Therefore, finding optimal step
coefficients of FSFOM over the cost function and the norm of the composite gradient
mapping remain as future work. Nevertheless, the proposed FPGM-OCG that optimizes the
composite gradient mapping form of the relaxed PEP and the FPGM-a (for any a > 2) may
be useful in dual problems.

Matlab codes for the SDP approaches in Sec. 3.4, Sec. 4.3 and Sec. 5 are available at https://
gitlab.eecs.umich.edu/michigan-fast-optimization.
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Appendix A

Derivation of the dual formulation (D) of (P1)

The derivation below is similar to [11, Lemma 2].

We replace maxg s LR28p of (P1) by ming, s{—&p~1} for convenience in this section. The
corresponding dual function of such (P1) is then defined as

H(A, 7t h) = min {£(G.6.4,7:h) = 26, 4.7) + Z,(G. 4. T: b)}

GeRNXd,

6eRN

for dual variables 4 = [4;,--. 2y _ ;1" € RY "land ¢ = [z, .7y _ 1T € RY, where £(G, §,

A, T, h) is a Lagrangian function, and

N-1 N1
L6 A= =8y + '21 A6, _ D+ _Zofiai,
1= 1=
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N-1 N-1
LG ATih) = '21 ATE(GTA, | WG} + ZO . Tr{G D (WG +vu] G).
1= 1=

Here, ming £.1(6, A, ) =0 for any (A, ) € A where A is defined in (23), and ming £.1(4,
A, T) = —00 otherwise.

For any given unit vector v, [11, Lemma 1] implies

min - Z,G.AT= min ZLyw i),
G e IRN xd weR

and thus for any (A, ) € A, we can rewrite the dual function as

H(A,7z;h) = min {wTS(h,/l, W + rTw} = max { — %y:wTS(h,/’L,r)w + rTw > — %y, Vw e RN = max

weR reR yER

S(h, A7) ér

- 57 > 04,
SH IR
2t 2

where S(h, A, ) is defined in (24). Therefore the dual problem of (P1) becomes (D),
recalling that we previously replaced maxg, s LR28p-1 Of (P1) by ming s{-y-1}-

Appendix B

Proof of Prop. 5
The proof is similar to [17, Prop. 2, 3 and 4].

We first show that {/11 «} in (25) is equivalent to

(T.—t)e,

%hik i=0,...N-1Lk=0,....,i -2,
Ll v ’

(T.—t)e,

By = llT—lHl(hi,i—l_l)’ i=0,...N—Lk=i-1, (48)
ilit+1
(t,— .
tT—lH’ i=0,...N—1,k=1i,
i+1

We use the notation #; , for the coefficients (25) to distinguish from (48). It is obvious that

n, e 0, ..., N-1, and we clearly have

z+l,i=h
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t. t. (. =Dt (., = D)(T.—1)t.
h§'+1i-1=Tl+1(fi—1‘h£i-1)=Tl+l’i—1‘1+ l 1T l])_ : 1TTl e
’ i+1 ? i+1 i ii+1
_(Ti"i)’i+1(h e
T ii—1 =Mit1,i-1

We next use induction by assuming &’ fori=0,...,n-1, k=0, ...,/ We then

i+ k=i k

have
tn+1 4 n+1 nt! tn+1 n
! =—t, - Lol= t, — h., —n = —h = h
n+ 1,k Tn+1 k =T J.k Tn+1 k j=;+1 j.k Tk Tn+l t nk “nk
_(Tn_tn)tn+1h -
tnTn+1 n, k n+ 1,k

Next, using (48), we show that FSFOM with (25) is equivalent to the GFPGM. We use
induction, and for clarity, we use the notation y, ---, y, for FSFOM with (48). It is obvious

that y;, = y,, and we have

2
A PR 1|, =Dl Ty=19)1 o =Ty
Y1 =Yo—ghioViLFOp =Yy |1 + T, ViFOp =x+ ol (g —xp) + 0T oy

_y0)=y1’
since Tg = f. Assuming yi=y; for /=0, ..., n, we then have

’

n—2
, _ 1 I~ , 1 S , 1 i~ N 1
yn+l_yn_fhn+l,nVLF(yn)_Zhn+l,n— lVLF(yn—1)_fk20hn+l,kvLF(yk)_yn_z !

. -t (T —t)t n=2(T —t)t
n n+1|y 1Yn "'n'n+1 [~ 1 n ‘nwn+l
+—|V, Fy ) -—————h_ DV Fly _)—+ h V. F(y
Tn+1 L Vn L tnTn+l non—1 L Vn-1 Lk=0 tnTn+l nk "L “k
2
=T ) (T, —t)t n—1
l(tn nn+lgy n nwn+l|y ~ ~
=X, T VO | VL FO) =V FG, D+ Yk Y FOp)
nn+1 nn+1 k=0
2
¢ =Tt (T —1t)t
_ n ‘nn+l n ‘wn+l ly ly
=Xt T 1Y)t t T _ZVLF(yn)+ZVLF(yn—1)+yn_yn—1
nn+1 nn+l
2
_ Ty =ty 41 G T 1 _
=Yt TrT &1~ X T ST A T
nn+1 nn+1

Appendix C

Proof of Prop. 8
The proof is similar to [17, Prop. 1 and 5].
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We use induction, and for clarity, we use the notation y, ---, y;, for FSFOM with (25) that is

equivalent to GFPGM by Prop. 5. It is obvious that y;, = y,, and we have

(tg = Dy
Y, Fop =|1

1+2 1
Ty

, o, 1 5 N 1
Y=Y M, oVLFOp =Y
t
T

lN
b RO AT AR B
1 o1
~ TV FOp| = R TR S

Assuming y, =y, for /=0, ..., n, we then have

| n—l N | . -t
Mt 1= T 1V LF O~ L 2 hn+1,kvLF(yk)=yn_Zl+ T, Vi FO,)

— n t

n+1 1 ht1 v o
Z tk_ Z V Fop= 1_ In Zv Fiy,) T InTT Z Vi F
k 0 n+l k+1 +1 n+1 k=0
V. Fi -1 ‘n+1 l%F t”i"'l lntﬁp _
(yk)+LZ Z hi Ve FOR=1-7 Y= TVLFO |+ v~ T X VL Fop|=
K=0j=Fk+1 n+1 n+1 k=0

t t

n+1 n+1
1- x + = .

Tn+1 n+l Tn+1n+1

Appendix D

Discussion on the choice of Qy in Sec. 4.1

Our formulation (P") examines the set Qp = {yo, **, YaA~1, X} and eventually leads to the
best known analytical bound on the norm of the composite gradient mapping in Thm. 11
among fixed-step first-order methods.

An alternative formulation would be to use the set {yg, -, Ya~1} (i.€., excluding the point
Xa). For this alternative, we could simply replace the inequality (33) with the condition 0 <
Ryn-1) — Ax+) to derive a slightly different relaxation. (One could use other conditions at
the point yp-q as in [29] for a tight relaxation, but this is beyond the scope of this paper.) We
found that the corresponding (loose) relaxation (P1°) using {yo, --*, ya-1} leads to a larger
upper bound than (40) in Thm. 10 for the set Q.

Another alternative would be to use the set {Xg, ***, Xp}, which we leave as future work.
Nevertheless, the inequality in Lemma 1 provides a bound for that set {xg, --*, X/} as seen in
Thm. 10 and 11.

We could also consider the final point x (or y,) in (P”) instead of the minimum over a set
of points. However, the corresponding (loose) relaxation (P1) yielded only an O(1/N)
bound at best (even for the corresponding optimized step coefficients of (HD")) on the final
composite gradient mapping norm. So we leave finding its tighter relaxation as future work.
Note that Table 4 reports tight numerical bounds on the composite gradient mapping norm at
the final point x, of algorithms considered.
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Appendix E
Proof of Equation (45) in Thm. 11

N-1 N-1 N-1

k —
_ 2 21, 2 _ 2
Z M= +Ty = X |ty + X =i+ + X y=W-m+h,_+ ¥
k= k=m Il=m l=m k=m
N-1 N-m-1( k'
N-I+1 (N—k+1)? N—-I+1_ 2 N-I'-m+1
( S (P X S e g, Y Aotfomel
= l=m k=0 \I'=0
N-m-1 N-m-1
k- 2 - —
_(N k m+1) N N-lomal_ v on? Y (N —m+ Dk +1)
2 2 m—1 2
I'=0 k=0
k(k+ 1) (N—m+l)2—2(N—m+1)k+k2 (N—-m+1D(N-m) (N-m—1)N-—m)
- - + - =(N-m+1
4 4 2 4
N-m-1 2
)12 + Z —k—+(N—m+3/4)k—(N_m_l)(N_m+1) +(N—m)(N—m+3):(N_m_'_1
m—1 2 4 4
k=0
)tz _(N—m—1)(N—m—1/2)(N—m)+(N—m—1)(N—m)(N—m+3/4)
m— 6 2

(Nem=DN-mN=m+1) (N=m)N-m+3) _ (N=m+Dm+ 1%  (N=m—DN —m)?
- 3 + i = 3 + 3

(N 2)N

_ W= N =mt 1) (V= m= DN =)
2 3

wherem—L J> N m>_andt 1>’”_“(13)
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Table 1
Asymptotic worst-case bounds on the cost function Axp) — Ax«) and the norm of the composite gradient
mapping minXeQNIIﬁLF(x)II of PGM, FPGM, FPGM-g, FPGM-m, FPGM-OCG, and FPGM-a. (The cost
function bound for FPGM-m in the table corresponds to the bound for FPGM after /m iterations because a tight

bound for the final A/th iteration is unknown. The bound on minggo, ... Ay IV, ,2Ry )l is used for FPGM-a.)

Asymptotic worst-case bound Requi lecti
: equire selecting
Algorithm . . N in advance
Cost function (xLR?) | Proximal gradient (XLR)
PGM | 2N No
,N_l
FPGM 2N-2 | 2Nt | No
2 2 3
FPGM-c(0< o< 1) =N 23 [1+6,, 2
2 == N
c 2\1-0
No
FPGM-(o=0.78) 3.3N2 —%
16.2N
45N7? Yes
FPGM—(m - LZTN J) -%
52N
FPGM-OCG 4N-2 3 Yes
49N 2
FPGM-a(a>2) 3
an? )
a\/_ézN 2
a No
- 2 3
FPGM-(a = 4) AN -5
6.9N
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