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Abstract

Precision medicine is a medical paradigm that focuses on finding the most effective treatment 

decision based on individual patient information. For many complex diseases, such as cancer, 

treatment decisions need to be tailored over time according to patients’ responses to previous 

treatments. Such an adaptive strategy is referred as a dynamic treatment regime. A major challenge 

in deriving an optimal dynamic treatment regime arises when an extraordinary large number of 

prognostic factors, such as patient’s genetic information, demographic characteristics, medical 

history and clinical measurements over time are available, but not all of them are necessary for 

making treatment decision. This makes variable selection an emerging need in precision medicine.

In this paper, we propose a penalized multi-stage A-learning for deriving the optimal dynamic 

treatment regime when the number of covariates is of the non-polynomial (NP) order of the 

sample size. To preserve the double robustness property of the A-learning method, we adopt the 

Dantzig selector which directly penalizes the A-leaning estimating equations. Oracle inequalities 

of the proposed estimators for the parameters in the optimal dynamic treatment regime and error 

bounds on the difference between the value functions of the estimated optimal dynamic treatment 

regime and the true optimal dynamic treatment regime are established. Empirical performance of 

the proposed approach is evaluated by simulations and illustrated with an application to data from 

the STAR*D study.
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1. Introduction

Precision medicine is a medical paradigm that focuses on finding the most effective 

treatment decision based on individual patient information. For many chronic diseases, such 
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as cancer, cardiovascular disease and diabetes, treatment decisions need to be tailored over 

time according to patients’ responses to previous treatments. Such an adaptive treatment 

strategy is referred as an dynamic treatment regime. Formally speaking, a dynamic treatment 

regime is a sequence of decision rules, dictating how the treatment will be tailored through 

time to individual’s status. The optimal dynamic treatment regime is defined as the one that 

yields the most favorable outcome on average.

Various methods have been proposed to estimate the optimal dynamic treatment regime, 

including Q-learning (Watkins and Dayan, 1992; Chakraborty, Murphy and Strecher, 2010) 

and A-learning (Robins, Hernan and Brumback, 2000; Murphy, 2003). Both Q-learning and 

A-learning rely on a backward induction algorithm to find the optimal dynamic treatment 

regime, however, Q-learning models the conditional mean of the outcome given predictors 

and treatment while A-learning directly models the contrast function that is sufficient for 

treatment decision. In particular, A-learning has the so-called doubly robust property, i.e. 

when either the baseline mean function or the propensity score model is correctly specified, 

the resulting A-learning estimating equation for the contrast function is consistent.

With the fast development of new technology, it becomes possible to gather an extradinary 

large number of prognostic factors for each individual, such as patient’s genetic information, 

demographic characteristics, medical history and clinical measurements over time. For such 

big data, it is important to make effective use of information that is relevant to make optimal 

individualized treatment decisions, which makes variable selection as an emerging need for 

implementing precision medicine. In addition, variable selection is an essential tool in 

making inference for problems in which the number of covariates is comparable or much 

larger than the sample size. There have been extensive developments of penalized regression 

methods for variable selection in prediction, for example, LASSO (Tibshirani, 1996), SCAD 

(Fan and Li, 2001) and the Dantzig selector (Candès and Tao, 2007), to name a few. In 

contrast to most penalized regression methods, which adds a penalty term to an objective 

function, the Dantzig selector focuses directly on estimating equations.

Although there is a large amount of work on developing variable selection methods for 

prediction, variable selection tools for deriving optimal individualized treatment regimes 

have been less studied, especially when the number of predictors is much larger than the 

sample size. Qian and Murphy (2011) proposed to estimate the conditional mean response 

using a L1-penalized regression and studied the error bound of the value function for the 

estimated treatment regime. When the number of covariates is fixed, introduced a new 

penalized least squared regression framework and established the oracle property of the 

estimator, which is robust against the misspecification of the conditional mean function. 

extended this result to the setting allowing NP-dimensionality of covariates. However, all 

these works only consider studies with a single treatment decision. When moving to 

multiple-stage studies, the asymptotic properties of the estimated optimal dynamic treatment 

regime are much harder to derive since it needs to handle model misspecification of the 

contrast functions in the presence of NP-dimensionality of covariates. Moreover, these 

methods are not doubly robust.
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In this paper, we propose a penalized A-learning method for deriving the optimal dynamic 

treatment regime when the number of covariates is of NP-order of the sample size. To 

preserve the doubly robust property of the A-learning method, we adopt the Dantzig selector 

(Candès and Tao, 2007) which directly penalizes the A-leaning estimating equations. The 

technical challenges and advances of the proposed estimators are described as follows.

First, to prove the theoretical properties of the Dantzig estimator in linear regression setting, 

the uniform uncertainty principle (UUP, Candès and Tao, 2007) or restricted eigenvalue 

condition (RE, Bickel, Ritov and Tsybakov, 2009) is required on the Gram matrix XT X, 

where X stands for the design matrix. The UUP condition essentially requires that every 

principle submatrix with the number of rows or columns less than some specified s behaves 

like an orthonormal system. The RE condition is the weakest and hence the most general 

condition in the literature to ensure the theoretical properties of Lasso and Dantzig 

estimators. A close connection between these two conditions are discussed in Bickel, Ritov 

and Tsybakov (2009). In a random design case, Candès and Tao (2007) studied the UUP 

condition for Gaussian, Bernoulli and Fourier ensembles. Mendelson, Pajor and Tomczak-

Jaegermann (2007, 2008) obtained a similar result for a more general class of design 

matrices, the isotropic subgaussian matrices, based on some empirical process results. These 

results were further extended by Zhou (2009), where the UUP and RE conditions are 

developed for subgaussian ensembles with a correlated covariance structure. In the proposed 

penalized A-learning method, however, such conditions are required on matrices involving 

estimates, such as

XTdiag(A ∘ (1 − π))X, (1.1)

where A = (A1, …, An)T denotes the vector of treatments received by n subjects, 

π = (π1, …, πn) denotes the corresponding estimated propensity scores and ◦ denotes the 

componentwise product operator. The presence of π in (1.1) adds extraordinary difficulties 

in establishing theoretical properties of such a random matrix. We establish the UUP and RE 

conditions under a proper convergence rate of π, which provides a new theoretical 

framework for studying random matrices that involve estimates of unknown parameters.

Second, in the proposed penalized A-learning method, we need to estimate the baseline 

mean function and the propensity score model with NP-dimensionality of covariates. We 

adopt the penalized regressions with the folded-concave penalties, for example, a linear 

regression for the baseline mean function and a logistic regression for the propensity score 

model, with the SCAD penalties. Several difficulties need to be addressed for deriving the 

theoretical properties of the resulting penalized estimators. First, to our knowledge, 

penalized regressions with folded-concave penalties have seldom been studied in a random 

design setting. A major difficulty of adapting the existing results for the fixed design case to 

the random design case is to control the maximum eigenvalues of some random matrices,

max
j

λmax XMT
diag(|X j|)XM ,
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where λmax[K] denotes the maximum eigenvalue of a matrix K, M is a given subset of [1, 

⋯, p], Xj denotes the jth column of a matrix X, and XM the submatrix formed by columns in 

M. Such a problem is not standard since matrix XMT
diag(|X j|)XM does not possess 

subexponential tail. We derive some concentration inequalities for such random matrices and 

for summations of subexponential and subgaussian random variables. Based on these results, 

we establish the weak oracle (Lv and Fan, 2009) properties, i.e, sign consistency and L∞ 
convergence rate of the estimators under subgaussian ensembles, which is one of our major 

technical contributions. Moreover, the posited models for the baseline mean function or the 

propensity score may be misspecified. Therefore, the derivation of the asymptotic properties 

needs to take into account model misspecification with NP-dimensionality of covariates, 

which is challenging.

Third, a challenge for extending the results for a single treatment decision to sequential 

treatment decisions is that the contrast functions are likely to be misspecified in the 

backward induction algorithm, such as A-learning. This together with the NP-dimensionality 

of covariates make it extremely hard to study theoretical properties of the value function 

under the estimated optimal dynamic treatment regime. We overcome this difficulty by first 

defining population-level least favorable parameters in the misspecified contrast functions. 

Moreover, we derive the error bounds for the corresponding estimates under the model 

misspecification, which in turn leads to an error bound for the difference between the value 

functions of the estimated optimal dynamic treatment regime and the underlying true 

optimal dynamic treatment regime.

The remainder of the paper is organized as follows. We introduce the proposed penalized A-

learning method in Section 2. Some implementation issues are addressed in Section 3, 

followed by simulation results in Section 4. We apply our method to a data from the 

STAR*D study in Section 5. Section 6 studies the error bounds of the penalized A-learning 

estimator and the difference between the value functions of the estimated optimal regime 

and the true optimal regime, at the second stage. Section 7 characterizes such results for the 

estimates at the first stage. Section 8 presents the weak oracle properties of the penalized 

estimators in the propensity score and baseline mean models under a random design setting. 

Section 9 discusses the UUP and RE condition in the context of A-learning. All technical 

conditions, lemmas and proofs are given in the Appendix.

2. Penalized A-Learning

For simplicity of presentation, we only consider a two-stage study where binary treatment 

decisions are made at time points t1 and t2. The data of a subject can be summarized as

O = (S(1), A(1), S(2), A(2), Y), (2.1)

where S(1) denotes the covariates collected prior to t1, A(1) ∈ {0, 1} is the treatment received 

at time t2, S(2) denotes intermediate covariates collected between time points t1 and t2, A(2) 

∈ {0, 1} is the treatment received at time t2, and Y is the final outcome of interest. It is 

assumed that a larger value of Y stands for a better clinical outcome. Denote Y★ (a1, a2) the 
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potential response of patient if he/she were given a1 as the first treatment and a2 as the 

second. If a patient follows a given regime (d1, d2), we can write the potential outcome

Y⋆(d1, d2) = ∑
a1 ∈ {0, 1}, a2 ∈ {0, 1}

Y(a1, a2)I(d1 = a1, d2 = a2),

where I(·) denotes the indicator function. Our goal is to find a dynamic treatment regime to 

maximize the mean potential outcome. Throughout the paper, we make the commonly used 

assumptions for studying dynamic treatment regimes: stable unit treatment value assumption 

and sequential randomization assumption (Murphy, 2003).

The observed data from n subjects can be summarized as

Oi = (Si
(1), Ai

(1), Si
(2), Ai

(2), Yi), i = 1, …, n,

which are assumed to be independently and identically distributed copies of O. We assume 

the following semiparametric regression model for Y:

Y i = h(2)(Xi) + Ai
(2)C(2)(Xi) + ei, (2.2)

where Xi = ((Si
(1))T, Ai

(1), (Si
(2))T)

T
 is the vector of covariates for the ith patient, h(2)(·) is an 

unspecified baseline mean function, C(2)(·) the contrast function, and ei is an independent 

error with mean 0. The design matrix is denoted as X = (X1, …, Xn)T.

Define

Vi = max
Ai

(2)
E(Yi |Si

(1), Ai
(1), Si

(2), Ai
(2)) = h(2)(Xi) + C(2)(Xi)I(C(2)(Xi) > 0) .

At the first stage, we consider the following conditional mean model for V(2):

E V i |Si
(1), Ai

(1) = h(1)(Si
(1)) + Ai

(1)C(1)(Si
(1)), (2.3)

where h(1)(·) and C(1)(·) are functions of the baseline covariates. To simplify the notation, we 

use a shorthand Si for Si
(1) and let S = (S1, …, Sn)T, the design matrix at the baseline.

It can be shown that the optimal dynamic treatment regime is given by dopt = (d1
opt, d2

opt), 

where

d1
opt(Si) = I{C(1)(Si) > 0} and d2

opt(Xi) = I{C(2)(Xi) > 0} . (2.4)
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To estimate d1
opt and d2

opt, we posit the following models for C(1)(·), C(2)(·), h(1)(·), h(2)(·), 

π(1)(·), and π(2) (·):

π(1)(s, α1) = exp(sTα1)/{1 + exp(sTα1)}, (2.5)

π(2)(x, α2) = exp(xTα2)/{1 + exp(xTα2)}, (2.6)

h(1)(s) = sTθ1, h(2)(x) = xTθ2, C(1)(s) = sTβ1, C(2)(x) = xTβ2, (2.7)

and

π(1)(s) = Pr(Ai
(1) = 1 |Si = s) and π(2)(x) = Pr(Ai

(2) = 1 | Xi = x) .

Models in (2.5)–(2.7) can be misspecified, however, we require that either h(j) or π(j) is 

correct for j = 1, 2. For simplicity, we require C(2) to be correctly specified. The general case 

when C(2) is misspecified can be similarly discussed. We use backward induction to estimate 

the optimal dynamic treatment regime. At the second decision point, we first estimate the 

parameters in the posited propensity score and baseline mean models using penalized 

regressions. Specifically, define

α2 = arg min
α2 ∈ ℝp

1
n ∑

i = 1

n
[log{1 + exp(Xi

Tα2)} − Ai
(2)Xi

Tα2] + ∑
j = 1

p
λ1n
(2)ρ1

(2)( |α2
j | , λ1n

(2)),

and

θ2 = arg min
θ2 ∈ ℝp

1
n ∑

i = 1

n
(1 − Ai

(2))(Yi − Xi
Tθ2)2 + ∑

j = 1

p
λ2n
(2)ρ2

(2)( |θ2
j | , λ2n

(2)),

where α2 = (α2
1, ⋯, α2

p)T, θ2 = (θ2
1, ⋯, θ2

p)T, ρ1
(2) and ρ2

(2) belong to the class of folded-concave 

penalty functions (Lv and Fan, 2009), such as SCAD (Fan and Li, 2001), and λ1n
(2), λ2n

(2) the 

associated regularization parameters.

Next, we estimate β2 in (2.2) using the Dantzig selector based on A-learning estimating 

function (Murphy, 2003), defined by
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β2 = arg min
β2 ∈ Λ(2) ‖β2‖1, (2.8)

where

Λ(2) = β2 ∈ ℝp:‖1
n XTdiag(A(2) − π(2)){Y − Xθ2 − A(2) ∘ (Xβ2)}‖∞ ≤ λ3n

(2) ,

Y = (Y1, …, Yn)T , A(2) = (A1
(2), …, An

(2))Tπ(2) = (π(2)(X1, α2), …, π(2)(Xn, α2))T ,

and λ3n
(2) the regularization parameter.

To estimate the regime at the first decision point, we define the pseudo-outcome V i using the 

advantage function (Murphy, 2003) by

V i = Y i + Xi
Tβ2{I(Xi

Tβ2 > 0) − Ai
(2)} . (2.9)

Similarly, define

α1 = arg min
α1 ∈ ℝq

1
n ∑

i = 1

n
[log{1 + exp(Si

Tα1)} − Ai
(1)Si

Tα1] + ∑
j = 1

q
ρ1

(1)( |α1
j | , λ1n

(1)),

and

θ1 = arg min
θ1 ∈ ℝq

1
n ∑

i = 1

n
(1 − Ai

(1))(Vi − Si
Tθ1)2 + ∑

j = 1

q
ρ2

(1)( |θ1
j | , λ2n

(1)),

where α1 = (α1
1, ⋯, α1

q)T, θ1 = (θ1
1, ⋯, θ1

q)T and ρ1
(1) and ρ2

(1) are folded-concave penalty 

functions. Then, we estimate β1 in (2.3) by

β1 = arg min
β1 ∈ Λ(1) ‖β1‖1, (2.10)

where

Λ(1) = β1 ∈ ℝq:‖1
nSTdiag(A(1) − π(1)){V − Sθ1 − A(1) ∘ (Sβ1)}‖∞ ≤ λ3n

(1) ,
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V = (V1, …, Vn)T , A(1) = (A1
(1), …, An

(1))Tand π(1) = (π(1)(S1, α1), …, π(1)(Sn, α1))T .

The estimated optimal dynamic treatment regime is given by

d1(Si) = I(β1
TSi > 0) and d2(Xi) = I(β2

TXi > 0) . (2.11)

3. Some Implementation Issues

When the tuning parameters in optimization problems (2.8) and (2.10) are fixed, the Dantzig 

selector can be solved by a standard linear programming algorithm. One issue for 

implementing Dantzig selector is the choice of the tuning parameters. We use a BIC 

criterion for selecting tuning parameters. For Dantzig selector (2.8), λ3n
(2) is chosen as the 

minimizer of

BIC(λ) = nlog(RSS(λ)/n) + d(λ){log(n) + log(p + 1)}, (3.1)

where RSS(λ) = ∑i = 1
n [{Ai

(2) − π(2)(Xi, α2)}(Y i
(2) − Xi

Tθ2 − Ai
(2)Xi

Tβ2)]
2
, and d(λ) is the 

number of nonzero components in β2. A similar BIC criterion was proposed by Chen and 

Chen (2008). We use a similar criterion for choosing λ3n
(1).

It was observed that the Dantzig estimators may underestimate the true values of parameters 

due to the shrinkage estimation (Candès and Tao, 2007). Therefore, we use a two-step 

procedure for practical implementation, which is referred as Gauss-Dantzig selector in 

Candès and Tao (2007). Specifically, in the first step, we apply the proposed penalized A-

learning to select important variables for making an optimal decision, i.e. those variables 

with non-zero estimated coefficients. Then, in the second step, their corresponding 

coefficients are re-calculated by solving the unpenalized A-learning estimating equations 

with important variables only.

4. Simulation Studies

4.1. Settings

To evaluate the numerical performance of the proposed penalized A-learning method, we 

consider simulation studies with two treatment decision points, based on the following 

model:

Y = A(1)A(2) + A(2)(β2
TS(1) + S(2) + β0) + A(1)(β1

TS(1)) + ε, (4.1)
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where A(j), j = 1, 2, is the treatment given at the jth stage, S(j), j = 1, 2, denote the covariate 

information collected before the jth treatment is given, and Y is the final response of interest. 

The random error ε follows a normal distribution with mean 0 and variance 0.25. Here, 

covariates S(1) = (S1
(1), …Sq

(1))T follow a multivariate normal distribution with mean 0 and 

variance Iq. In addition, the intermediate covariate S(2) is a scalar and generated as 

S(2) = S1
(1) + A(1) + A(1)S1

(1) + e, where e follows a normal distribution with mean 0 and 

variance 0.25.

We set β0 = 0. Based on model (4.1), the optimal treatment regime at stage 2 is 

I(A(1) + β2
TS(1) + S(2) > 0). Following this optimal treatment regime at stage 2, the Q-function 

at stage 1 is given by

Q1(S(1), A(1)) = E (A(1) + β2
TS(1) + S(2)) + |S(1), A(1) + A(1)(β1

TS(1)) =
β2
8π

exp( − 2μ2) + μ{1 − Φ( − 2μ)}

+ A(1)(β1
TS(1)),

where μ = A(1) + β2
TS(1) + S1

(1) + A(1) + A(1)S1
(1) and a+ = (|a| + a)/2. Therefore, the contrast 

function C(S(1)) = Q1(S(1), 1) − Q1(S(1), 0) and thus the optimal treatment regime at stage 1 

is I{C(S(1)) > 0.

To evaluate the double robustness of the proposed method, we consider a variety of 

scenarios with correctly specified and misspecified baseline mean and/or propensity score 

models. At stage 2, a linear model with covariates S(1), S(2) and A(1) is fitted for the baseline 

mean function, while the true baseline mean function is h(2)(X) = A(1)(β1
TS(1)). We choose β1 

= 0q, for which the baseline mean function is correctly specified, and β1 = (04, 1, −1, 0q−6)T, 

for which the baseline mean function is misspecified. At stage 1, a linear model with 

covariates S(1) is fitted for the baseline mean function, which is always misspecified. 

Logistic models are used for estimating the propensity scores, which are correctly specified 

for the constant model but misspecified for the probit model. The following four settings are 

considered:

Setting 1: β1 = 0q, P (A(2) = 1) = 0.5;

Setting 2: β1 = (04, 1, −1, 0q−6)T, P(A(2) = 1) = 0.5;

Setting 3: β1 = 0q, P (A(2) = 1) = Pr(N(0, 1) ≤ ST γ);

Setting 4: β1 = (04, 1, −1, 0q−6)T, P (A(2) = 1) = Pr(N(0, 1) ≤ ST γ),

where S = ((S(1))T, S(2))T and N(0, 1) a standard normal random variable. For other 

parameters, we choose P(A1 = 1) = 0.5, β2 = (0, 0, 1, −1, 0q−4)T, σ1 = σ2 = 0.5, d = (d0, d1, 

d2, d3,)T = (0, 1, 1, 1)T, and γ = (0q−2, 1, −1, 1)T. Table 1 summarizes the information of 

model misspecification for the baseline mean and propensity score models and associated 

important variables under different settings. In next section, we show simulation results of 

the four settings with q = 1000 and sample size n = 150/300 over 500 replications.
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4.2. Competing methods

We further compare our method with outcome weighted learning (OWL, Zhao et al., 2012), 

which is a robust method which estimates individualized treatment rule by directly 

maximizing the estimated value function. Zhao et al. (2015) further introduced backward 

outcome weighted learning (BOWL) and simultaneous outcome weighted learning (SOWL) 

to extend their methods to multiple stage studies. Here, we consider a double robust version 

of BOWL (DR-BOWL) for comparison. For a single stage study, the developed DR-BOWL 

method is similar to the residual weighted learning method (Zhou et al., 2015).

Specifically, we first estimate the propensity score π(2) = (π1
(2), …, πn

(2))T and baseline 

h(2) = XTθ (2) = (h1
(2), …, hn

(2))T as in Section 2. We consider the linear decision rule I(xTβ20 > 

0) and estimate β20 by minimizing the following loss function:

β
∼

2 = arg min
β2

1
n ∑

i

(Yi − hi
(2)){1 − (2Ai

(2) − 1)Xi
Tβ2}+

Ai
(2)πi

(2) + (1 − Ai
(2))(1 − πi

(2))
+ λ3n

(2)‖β2‖1 .

The penalty term in original OWL is λ3n
(2)‖β2‖2

2. We replace it with the L1 norm here to 

simultaneously select variables. Then we construct the pseudo outcome V i using augmented 

inverse propensity score estimator (AIPWE Zhang et al., 2012),

Vi =
Ai

(2)d∼2(Xi) + (1 − Ai
(2)){1 − d

∼
2(Xi)}

Ai
(2)πi

(2) + (1 − Ai
(2))(1 − πi

(2))
Yi −

Ai
(2)d∼2(Xi) + (1 − Ai

(2)){1 − d
∼

2(Xi)}

Ai
(2)πi

(2) + (1 − Ai
(2))(1 − πi

(2))
− 1 [hi

(2){1 − d
∼

2(Xi)}

+ Φi
(2)d∼2(Xi)]

where d
∼

2(Xi) = I(Xi
Tβ

∼
2 > 0), and Φi

(2) is an estimate of Φi
(2) = Mean(Y | A = 1, X = Xi). Here, 

we a fit linear model for Mean(Y |A = 1, X) and use nonconcave penalized regression with 

SCAD penalty to obtain Φi
(2). Denoted by π(1) = (π1

(1), …, πn
(1))T and 

h(1) = STθ (1) = (h1
(1), …, hn

(1))T estimated propensity score and baseline at the first stage, we 

consider linear treatment regime of the form I(sTβ1
⋆ > 0) and estimate β1

⋆ by

β
∼

1 = arg min
β1

1
n ∑

i

(Vi − hi
(1)){1 − (2Ai

(1) − 1)Si
Tβ1}+

Ai
(1)πi

(1) + (1 − Ai
(1))(1 − πi

(1))
+ λ3n

(1)‖β1‖1 .

Tuning parameters λ3n
(2) and λ3n

(1) are obtained by minimizing a value-based BIC criterion.
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4.3. Results

Table 2 summarizes variable selection results for optimal treatment decisions and the 

empirical performance of the estimated optimal treatment regime compared with the true 

optimal regime, using our penalized A-learning method (denoted as PAL) and DR-BOWL, 

respectively. Specifically, it reports the false negative (FN) rate (the percentage of important 

variables that are missed) and false positives (FP) rate (the percentage of unimportant 

variables that are selected), the ratio of value functions (denoted by VR) calculated using the 

value function of the estimated optimal treatment regime divided by that of the true optimal 

regime, and the error rates (ER) of the estimated optimal treatment regimes for treatment 

decision making, in both stages. Here, the ER at stage 2 is calculated as the mean of 

n−1∑i = 1 |I(β2
TXi > 0) − I(β2, 0

T Xi > 0)| and at stage 1 as the mean of 

n−1∑i = 1 |I(β1
TSi > 0) − I(C(Si) > 0)|. The value function of a given treatment regime is 

calculated using Monte Carlo simulations based on 10,000 replications. The VR at stage 2 

(devoted by VR*) is to compare the estimated optimal treatment regime at stage 2 and a 

randomly assigned treatment at stage 1 as in simulated data with the true optimal dynamic 

treatment regime for both stages. The VR at stage 1 is to compare the estimated optimal 

dynamic treatment regime with the true optimal dynamic treatment regime for both stages.

The DR-BOWL methods fail in all settings. Take Setting 1, n = 300 as an example, FN = 

78.1% for the second stage where the baseline, propensity score and contrast functions are 

all correctly specified. It missed approximately 3/4 of the important variables. Besides, VR = 

50.2, indicating the poor performance of the estimated treatment rules.

On the other hand, the overall performance of our penalized A-learning method is good. We 

make the following observations. First, the FN rates are much higher than the FP rates. This 

suggests that the Dantzig selector tends to have conservative variable selection results, which 

is commonly seen in the literature. Second, the variable selection results and the error rates 

of the estimated optimal treatment regime at stage 2 are generally much better than those at 

stage 1, which is expected since the optimal linear treatment decision rule is correctly 

specified at stage 2 but not at stage 1. At stage 2, for n = 150, over 55% important variables 

are not selected for all 4 settings. Thirdly, our method requires correct specification of either 

the propensity score or the baseline model, especially when the sample size is small. This is 

implied by comparing results in Setting 4 with other three settings. For example, when n = 

150, the false negative at second stage reaches 55.7%, which is much higher than those FN’s 

in other three settings. Besides, our estimator is very efficient in Setting 1 where both 

models are correctly specified. Even when n = 150, the ratio of the value functions reaches 

98.7%, and all error rates are abound 6–7%. These results are even comparable with those 

under Setting 2 and 3 when n = 300. Lastly, the estimation and variable selection 

performance of the estimated optimal dynamic treatment regimes improves as the sample 

size increases. In particular, in Setting 1–3 when n = 300, the VR’s are all above 97.9% and 

ER’s are all below 8%, which implies that the estimated optimal treatment regimes nearly 

maximize the value functions.
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4.4. Nonregularity

As suggested by one of the referee, we further examine our methods under settings with 

different degrees of nonregularity. Specifically, we consider the setting where all covariates 

in S(1) are independent Rademacher random variables. We set S(2) to be another Rademacher 

random variable independent of S(1) and A(1).

Denoted by A(1)* = 2A(1) − 1, the response Y is generated as follows,

Y = 2A(2) A(1) ∗ + δ1S1
(1) + S(2) − δ2 + A(1)(βTS(1)) + ε, (4.2)

where ε ~ N(0, 0.25).

For each stage, we fit linear models for the baseline and contrast function, and a logistic 

regression model for the propensity score. The parameter β in (4.2) determines the baseline 

function on the second stage. Similar to the regular case discussed in Section 4.1 in the 

revision, we also consider four Settings here:

Setting 1: β = 0q, P (A(2) = 1) = 0.5;

Setting 2: β = (04, 1, −1, 0q−6)T, P(A(2) = 1) = 0.5;

Setting 3: β = 0q, P(A(2) = 1) = Pr(N(0, 1) ≤ STγ);

Setting 4: β = (04, 1, −1, 0q−6)T, P(A(2) = 1) = Pr(N(0, 1) ≤ STγ),

where S = ((S(1))T, S(2))T and γ = (0q−2, 1, −1, 1)T.

Parameters δ1 and δ2 in (4.2) controls the degree of nonregularity on the second stage. We 

consider three choices of δ1 and δ2. Set δ1 = 1, δ2 = 1, we obtain

Pr(C(2)(X) = 0) = Pr(A(1) ∗ + S1
(1) + S(2) = 1) = 0.375.

Set δ1 = 1.1, δ2 = 1.1, we have

Pr(C(2)(X) = 0) = Pr(A(1) ∗ + S(2) = 1, S(1) = 1) = 0.25.

Set δ1 = 1, δ2 = 1.1, we have

Pr(C(2)(X) = 0) = 0.

With some calculation, we can show the Q-function on the first stage takes the following 

form:

Q(S(1), A(1)) = A(1)(βTS(1) + f 1S1
(1) + f 2) .
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Hence, the contrast function is correctly specified on the first stage. When δ1 = 1, δ2 = 1 or 

δ1 = 1.1, δ2 = 1.1, we have f1 = f2 = 1. When δ1 = 1, δ2 = 1.1, we have f1 = f2 = 0.95. 

Information about model specification and important variables in the contrast function are 

given in Table 3.

We also consider two choices of sample size, n = 150 and n = 300, respectively. This gives 

us a total of 24 scenarios. For each scenario, we report FN, FP, VR and ER as Section 4.3. 

ER for the first and second stage are calculated as

1
n ∑

i = 1

n
|I(β1

TSi > 0) − I(C(Si) > 0) | I(C(Si) ≠ 0) / 1
n ∑

i = 1

n
I(C(Si) ≠ 0)

and

1
n ∑

i = 1

n
|I(β2

TXi > 0) − I(β2, 0
T Xi > 0) | I(β2, 0

T Xi ≠ 0) / 1
n ∑

i = 1

n
I(β2, 0

T Xi ≠ 0) .

Compared to definitions in Section 4.3, error rates here are calculated with respect to those 

patients with nonzero contrast functions. Such definitions are more meaningful since both 

two treatments are optimal for these patients. We simulate over 200 replications. Results are 

reported in Table 4.

Within each setting, most results are similar across different choices of δ1 and δ2. This 

suggests the nonregularity issues don’t have a big impact on the variable selection results. 

Apart from results in Setting 4, false negatives and false positives are all very small. When 

the sample size increases to 300, false negatives for most scenarios are exactly equal to 0 

while false positives for all settings are below 0.4%, demonstrating perfect variables 

selections performance of our methods. In Settings 1–3, most error rates are below 7% while 

the ratios of value function are all above 85%, indicating our estimated optimal treatment 

regimes are very close to the truth in these scenarios.

5. Application to STAR*D Study

We applied the proposed method to a dataset from the Sequenced Treatment Alternatives to 

Relieve Depression (STAR*D) study, which was conducted to compare different treatments 

for patients with major depressive disorder (MDD). There were 4041 participants (age 18–

75) with nonpsychotic MDD enrolled in this study. At first level, all participants were 

treated with citalopram (CIT) up to 14 weeks. Subsequently, 3 more levels of treatments 

were provided for participants without a satisfactory response to CIT. At each level, 

participants were randomly assigned to treatment options acceptable to them. At Level 2, 

participants were eligible for seven treatment options: sertraline (SER), venlafaxine (VEN), 

bupropion (BUP), cognitive therapy (CT), and augmenting CIT with bupropion (CIT+BUP), 

buspirone (CIT+BUS) or cognitive therapy (CIT+CT). Participants without a satisfactory 

response to CT were proceeded to Level 2A for additional medication treatments. All 

participants who did not respond satisfactorily at Level 2 or 2A were eligible for four 
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treatments at Level 3: medication switch to mirtazapine (MIRT) or nortriptyline (NTP), and 

medication augmentation with either lithium (Li) or thyroid hormone (THY). Participants 

without satisfactory response to Level 3 were re-randomized at Level 4 to either 

tranylcypromine (TCP) or a combination of mirtazapine and venlafaxine (MIRT+VEN). See 

Fava et al. (2003) and Rush et al. (2004) for more details of the STAR*D study. One goal of 

the study is to determine which treatment strategies, in what order or sequence, provide the 

optimal treatment effect.

As an illustration, we focused on a subset of participants who were given treatment BUP or 

SER at Level 2 and did not receive satisfactory responses, and then were randomized to 

treatment MIRT or NTP at Level 3. For this study, we considered 381 covariates collected at 

baseline and intermediate levels as possible relevant predictors. For treatment regime at 

Level 3, all the 381 covariates as well as the assigned treatment at Level 2 were considered 

as possible predictors for making optimal treatment decision. For treatment regime at Level 

2, 305 covariates that were collected before giving treatment at Level 2 were considered for 

making optimal treatment decision. Negative 16-item Quick Inventory of Depressive 

Symptomatology-Clinician-Rated (QIDS-C16) was used as the final response, which is a 

measurement of symptomatic status of depression. There are 73 participants who had 

complete records in the subset of data we are interested in. Among these participants, 36 

were treated with BUP and 37 were treated with SER at Level 2, and 33 were treated with 

NTP and 40 were treated with MIRT at Level 3.

The selection and estimation results are summarized as follows. At Level 3, our method 

selected two covariates: “age” in baseline demographics (AGE), and the suicide risk of the 

patient (SUICD). The estimated optimal treatment regime is I(1.459 − 0.091 × AGE + 0.158 

× SUICD ≥ 0), where 1 represents treatment NTP and 0 represents treatment MIRT. This 

optimal treatment regime assigns 27 participants to NTP and the rest 46 participants to 

MIRT. At Level 2, our method also selected two covariates: age and QIDS-C percent 

improvement” in clinic visit clinical record form at Level 1 (QCIMP). The estimated optimal 

treatment regime is I(−8.600 + 0.145 × AGE + 0.125 × QCIMP ≥ 0), where 1 stands for 

treatment BUP and 0 stands for treatment SER. This optimal treatment regime assigns 37 

participants to BUP and the rest 36 participants to SER.

To further examine the estimated optimal dynamic treatment regime, we compare the 

estimated value function of our estimated optimal treatment regime with values under those 

four non-dynamic treatment regimes, BUP+NTP, BUP+MIRT, SER+NTP and SER+MIRT. 

For a given dynamic treatment regime d = (d(1), d(2)), we evaluate its average value function 

using AIPWE (Zhang et al., 2013),

1
n ∑

i = 1

n dAi
(1)

πAi
(1)

dAi
(2)

πAi
(2)Yi −

dAi
(2) − πAi

(2)

πAi
(2) {di

(2)(hi
(2) + Xi

Tβ2) + (1 − di
(2))hi

(2)}

− 1
n ∑

i = 1

n dAi
(1) − πAi

(1)

πAi
(1) {di

(1)(hi
(1) + Si

Tβ1) + (1 − di
(1))hi

(1)},
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where dAi
(2) = Ai

(2)di
(2) + (1 − Ai

(2)), dAi
(1) = Ai

(1)di
(1) + (1 − Ai

(1))(1 − di
(1)), 

πAi
(2) = Ai

(2)πi
(2) + (1 − Ai

(2))(1 − πi
(2)), πAi

(1) = Ai
(1)πi

(1) + (1 − Ai
(1))(1 − πi

(1)), di
(2) and di

(1) the 

assigned treatment for the ith patient, according to d(2) and d(1). Based on this formula, we 

report the estimated value functions of the four non-dynamic treatment regimes in Table 5.

Estimating the value of the optimal treatment regime is well-known to be a non-regular 

problem when there’s nonzero probability that the contrast function (either at the second or 

the first stage) is equal to zero. To evaluate the value function under our estimated optimal 

treatment regime, we consider the online estimator proposed by Luedtke and van der Laan 

(2016). Specifically, for i = ln + 1, ln + 2, …, n, we obtain the estimated optimal dynamic 

treatment regime dopt(i) = (dopt(i)(1), dopt(i)(2)) and its associated parameters β2
(i), β1

(i), 

propensity score function π(i)(2), π(i)(1), baseline function ĥ(i)(2), ĥ(i)(1) based on data from 

patients 1 to i − 1, using penalized A-learning. Then we evaluate the value of 

dopt(i) = (dopt(i)(1), dopt(i)(2)) on the ith patient using (AIPWE, Zhang et al., 2013)

Vi(i) =
d Ai

opt(i)(1)

πAi
(i)(1)

d Ai
opt(i)(2)

πAi
(i)(2) Yi −

d Ai
opt(i)(2) − πAi

(i)(2)

πAi
(i)(2) {di

opt(i)(2)(hi
(i)(2) + Xi

Tβ2
(i)) + (1 − di

(2))hi
(i)(2)}

−
d Ai

opt(i)(1) − πAi
(i)(1)

πAi
(i)(1) {di

opt(i)(1)(hi
(i)(1) + Si

Tβ1
(i)) + (1 − di

opt(i)(1))hi
(i)(1)} .

The variance of V i(i) conditional on data from patients 1 to i − 1 is evaluated by

σ∼i
2 = 1

i − 1 ∑
j = 1

i − 1
Vi

2( j) − 1
i − 1 ∑

j = 1

i − 1
Vi( j)

2
,

where V i( j) is the estimated value of dopt(i) on the jth patient.

The final estimator is given by

V =
∑ j = ln + 1

n σ∼ j
−1V j( j)

∑ j = ln + 1
n σ∼ j

−1 ,

with the estimated standard error

σ =
n − ln

∑ j = ln + 1
n σ∼ j

−1 .
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Since the sample size of our dataset is small, we choose ln ≈ 2n/3, i.e, ln = 49. The estimated 

value V is equal to −9.02 with an estimated standard error σ = 1.66. From Table 5, we can 

see the value under our estimated treatment regime is much larger than those under four 

nondynamic treatment regime.

6. Oracle inequalities for β2 and the value function of the estimated regime 

at the second stage

We first introduce some notation. For an arbitrary matrix Φ ∈ ℝM×M and an arbitrary vector 

ϕ ∈ ℝM, the superscript Φj is used to denote the jth column of Φ, ϕj the jth element of ϕ, 

while the subscript Φi denotes the ith row of Φ. For subsets J, J′ ⊂ {1, …, M}, let |J| be the 

cardinality of J, Jc be the complement of J. We denote by ϕJ the vector in ℝ|J| that has the 

same coordinates as ϕ on J, and ΦJ the submatrix formed by columns in J, ΦJ
J′ the submatrix 

formed by rows in J and columns in J′. The support of ϕ is defined by supp(ϕ) = {j ∈ {1, …, 
M} : ϕj ≠ 0}. Let ‖ϕ‖p be the Lp norm of ϕ, ‖Φ‖p be the operator norm corresponding to the 

p-norm vector. If Φ is positive semidefinite, define

ρmin
s (Φ) = min‖y‖2 = 1

|supp(y) | ≤ s

‖Φ1/2y‖2 and ρmax
s (Φ) = min‖y‖2 = 1

|supp(y) | ≤ s

‖Φ1/2y‖2 .

Let ‖Y‖ψ p
 be the Orlicz norm for any random variable Y, defined as

‖Y‖ψ p
≜ inf

u
u > 0:E exp |Y |

u
m

≤ 2 ,

for some p ≥ 1. For any two positive sequences {an} and {bn}, an ≫ bn means limn bn/an = 0. 

Throughout this paper, we use c0 and c to denote some universal constants, whose values 

may change from place to place.

6.1. Oracle inequality for β2

Recall C(2)(x) = xTβ2, according to our assumption. Let β2,0 denote the true values of β2. 

Define sβ2
= | Mβ2

| = O(n
l6) for some 0 ≤ l6 < 1, the nonsparsity size of β2,0, Mβ2

 the support 

of β2,0. We allow the number of covariates p to grow exponentially fast with respect to the 

sample size n, i.e, logp = O(n
a2) for some 0 < a2 < 1. To deal with such NP-dimensionality, 

following Zhou (2009), we assume

X = U∑1/2 , ∑ j j = 1, ∀ j = 1, …, p, (6.1)
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where U = (U1
T, …, Un

T)T and U1, …, Un are i.i.d. copies of a p-dimensional isotropic random 

vector U0. More specifically, we require that for any vector a ∈ ℝp,

E(aTU0)2 = aTa and ‖aTU0‖ψ2
≤ ω‖a‖2, (6.2)

for some isotropic constants ω.

Remark 6.1—The definition of the isotropic random vector was firstly introduced by 

Milman and Pajor (2003). Independent normal and independent Rademacher random 

variables are two most important examples of isotropic random vectors. More generally, 

coordinates of the isotropic random vector do not need to be independent. They can be 

distributed uniformly on various convex and symmetric bodies, for example, an appropriate 

multiple of the unit ball in ℝp equipped with the LK-norm for any 1 ≤ K ≤ ∞. For these 

distributions, we denote ωK as their isotropic constants. It is further shown in (Milman and 

Pajor, 1989) that ωK are uniformly bounded for K ≥ 1. However, it remains unknown 

whether the isotropic property holds for all uniform distributions on arbitrary symmetric 

convex bodies with Lebesgue measure 1. .

Remark 6.2—The isotropic formulation requires covariates in U0 to be uncorrelated, and 

hence does not allow for correlated Bernoullis. However, according to our definition X = 

UΣ1/2, different covariates in the design matrix X can be correlated when Σij ≠ 0. Such 

formulations allows us to impose conditions on the tail of U0 and the covariance matrix Σ 
separately.

Since the A-learning estimating equation involves the plug-in estimators α2 and θ2, we need 

some conditions on these two estimators to establish oracle inequalities for β2. More 

precisely, we assume that α2 and θ2 converge to some α2
⋆ and θ2

⋆, respectively. When the 

propensity score model π(2) and the baseline model h(2) are correctly specified, α2
⋆ and θ2

⋆

represent the true coefficients in these two models. When the models are misspecified, α2
⋆

and θ2
⋆ correspond to the population-level least favorable parameters. Denote Mα2

 and Mθ2

the support of α2
⋆ and θ2

⋆, respectively. Let sα2
= | Mα2

| and sθ2
= | Mθ2

|, the number of 

nonzero elements. We assume sα2
= O(n

l4) and sθ2
= O(n

l5) for some 0 ≤ l4, l5 < 1/2.

Condition 1: Assume that there exist some positive constants γα2
 and γθ2

, such that with 

probability at least 1 − c/(n + p),
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α2

Mα2
c

= 0, ‖α2

Mα2 − α2
⋆

Mα2‖∞ = O(n
−γα2logn), (6.3)

θ2

Mθ2
c

= 0, ‖θ2

Mθ2 − θ2

⋆ Mθ2‖∞ = O(n
−γθ2logn) . (6.4)

Moreover, assume dα2
≫ n

−γα2logn and dθ2
≫ n

−γθ2logn, where dα2
= min j |α2

⋆ j | /2 and 

dθ2
= min j |θ2

⋆ j | /2.

Remark 6.3—Condition 1 assumes the weak oracle properties of α2 and θ2, i.e., selection 

consistency and consistency under L∞ norm. The weak oracle properties of α2 and θ2 are 

established in Theorems 8.1 and 8.2 of Section 8, respectively.

Define

C(2) = E{Xiπi
(2) ∗(1 − πi

(2) ∗)Xi
T}, D(2) = E{XiXi

T(1 − Ai
(2))},

and πi
(2) ∗ ≡ π(2)(Xi, α2

⋆).

Condition 2: Assume that matrices D(2), C(2) and Σ satisfy

λmax(∑Mα2

Mα2) = O(1), λmax(∑Mθ2

Mθ2) = O(1),

liminf
n

λmin(DMθ2

(2)Mθ2) > 0, liminf
n

λmin(CMα2

(2)Mα2) > 0.

Define Ω(2)(α2) = E[XiXi
T Ai

(2){1 − π(2)(Xi, α2)}] and Ωn
(2) = n−1∑i XiXi

T Ai
(2)(1 − πi

(2)) with 

πi
(2) = π(2)(Xi, α2). For any positive semidefinite matrix Ψ ∈ ℝp×p, integer s and positive 

number c, define function K(s, c, Ψ) as follows,

K(s, c, Ψ) = min
J ⊂ {1, …, p}

|J | ≤ s

min
y ≠ 0

‖yJc
‖1 ≤ c‖yJ‖1

‖Ψ1/2y‖2
‖yJ‖2

> 0.
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The following condition ensures that the RE condition holds for the matrix Ωn
(2).

Condition 3: Assume that for any 0 < θs < 1 and sufficiently large n, we have

K(sβ2
, 1, Ωn

(2)) > (1 − θs) inf
α2 ∈ Hα2

K(sβ2
, 1, Ω(2)(α2)) > 0, (6.5)

where Hα2
 denotes the set of vectors α2 that satisfies the weak oracle property (6.3).

Remark 6.4—It is tedious to verify (6.5) due to the plug-in estimator πi
(2). The key to prove 

such a result is that the estimator α2 in πi
(2) should be sparse. That is the reason we use 

penalized regression with a folded-concave penalty to obtain α2, since it can ensure selection 

consistency of the estimator. We provide a general result characterizing the UUP and RE 

conditions for the random matrix Ωn
(2) in Lemmas 9.1 and 9.2 of Section 9.

To establish the oracle inequality for β2, we first provide an upper bound for

‖1
n XTdiag(A(2) − π(2))(Y − Xθ2 − A(2) ∘ Xβ2, 0)‖∞,

which is given in the following Lemma.

Lemma 6.1—Assume that Condition 1 and 2 hold, ‖h(2)(Xi) − Xi
Tθ2

⋆‖ψ1
< ∞, ‖ei‖ψ2

< ∞, 

a2 + l4 < 1, and that either π(2) or h(2) is correctly specified. Then, for sufficiently large n, 

there exists some constants c(2), such that with probability at least 1 − c/(n + p),

‖1
n XTdiag(A(2) − π(2))(Y − Xθ2 − A(2) ∘ Xβ2, 0)‖∞ ≤ c(2)(E1 + E2 + E3 + E4),

where

E1 = logp/n, E2 = sα2
n
−2γα2log2n + sθ2

n
−2γθ2log2n,

E3 = σ3{ sα2
logn/n + sα2

λ1n
(2)ρ2

(1)(dnα2
)},

E4 = σ4{ sθ2
logn/n + sθ2

λ2n
(2)ρ2

(2)(dnθ2
)},

Shi et al. Page 19

Ann Stat. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



σ3
2 = E{h(2)(Xi) − Xi

Tθ2
⋆}2

, and σ4
2 = E{π(2)(Xi) − πi

(2) ∗}2
.

Remark 6.5—Recall that logp = O(n
a2), sα2

= O(n
l4) for some 0 ≥ a2, l4 < 1. The condition 

a2 + l4 < 1 implies n ≫ sα2
logp.

Remark 6.6—Here, E1 describes how the curse of dimensionality takes effect, E2 is due to 

estimation errors of α(2) and θ (2), E3 and E4 are due to model misspecification. Since we 

assume that at least one of h(2) and π(2) is correctly specified, either E3 or E4 is zero.

Theorem 6.1—Assume that conditions in Lemma 6.1 and Condition 3 hold, and 

λ3n
(2) ≥ c(2)(E1 + E2 + E3 + E4) where the constant c(2) is defined in Lemma 6.1. Then, for 

some fixed 0 < θs < 1 and sufficiently large n, the following two inequalities hold with 

probability at least 1 − c/(n + p) for some constant c > 0:

‖β2 − β2, 0‖2 ≤
12λ3n

(2) sβ2
(1 − θs)

2 inf
α2 ∈ Hα2

K2(sβ2
, 1, Ω(2)(α2))

, (6.6)

‖β2 − β2, 0‖1 ≤
8λ3n

(2) sβ2
(1 − θs)

2 inf
α2 ∈ Hα2

K2(sβ2
, 1, Ω(2)(α2))

. (6.7)

Moreover, we have ‖β2

Mβ2
c

‖1 ≤ ‖β2

Mβ2 − β2, 0

Mβ2‖1.

From (6.6), it is immediate to see that ‖β2 − β2, 0‖2
P 0 as long as

sβ2
(E1 + E2 + E3 + E4)

inf
α2 ∈ Hα2

K2(sβ2
, 1, Ω(2)(α2))

0, (6.8)

which implies the doubly robust property of β2. We provide a sufficient condition for (6.8) 

in the following Corollary.

Corollary 6.1 (Double robustness of β2)—Assume that conditions in Theorem 6.1 and 

the following conditions hold:
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l6 < min (4γθ2
− 2l5, 4γα2

− 2l4), (6.9)

λ2n
(2)ρ2

(2)(dnθ2
) = O(n−1/2) and λ1n

(2)ρ1
(2)(dnα2

) = O(n−1/2) . (6.10)

liminf inf
α2 ∈ Hα2

K(sβ2
, 1, Ω(2)(α2)) > 0. (6.11)

If either the baseline h(2) or the propensity score model π(2) is correctly specified, then 

‖β2 − β2, 0‖2
P 0.

Remark 6.7—Condition (6.9) imposes a constraint between the sparsity of population 

parameters and the convergence rates of α2 and θ2. When sβ2
= O(1), it requires α2 and θ2 to 

be consistent under L2 norm. Condition (6.10) automatically holds for SCAD penalty 

function when dnθ2
≫ λ2n

(2) and dnα2
≫ λ1n

(2).

6.2. Oracle inequality for the value function of the estimated regime at the second stage

—Now we establish the error bound for the difference between the mean responses (i.e. the 

value functions) of the estimated optimal regime at the second stage d2(X0) = I(X0
Tβ2 > 0)

and the true optimal one d2
opt(X0) = I(X0

Tβ2, 0 > 0) for an individual with covariate X0. Here, 

X0 is also assumed to have the form Σ1/2U with Σ and U defined in (6.1), independent of Xi, 
i = 1, …, n. In addition, the regime at the first stage is chosen the same as the actually 

received treatment A0
(1) at the first stage.

Under the assumptions of SUTVA and no unmeasured confounders, the difference of the 

corresponding value functions is given by

E{Y0
⋆(A0

(1), d2
opt)} − E{Y0

⋆(A0
(1), d

∼
2)} = E[X0

Tβ2, 0{I(X0
Tβ2, 0 > 0) − I(X0

Tβ2 > 0)}] . (6.12)

Since (6.12) is nonnegative, it suffices to provide an upper bound. Here, we impose the 

following condition.

Condition 4: The probability density function g(2)(·) of X0
Tβ2, 0 exists and is bounded.
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Condition 4 is a mild condition on the true optimal decision function, which holds in most 

cases when at least one of the important covariates (the corresponding component of β2,0 is 

nonzero) is continuous.

Theorem 6.2—Assume that conditions in Theorem 6.1 and Condition 4 hold. Assume 

E(X0
Tβ2, 0)2 = O(1). Then, for fixed 0 < θs < 1 and sufficiently large n,

E[X0
Tβ2, 0{I(X0

Tβ2, 0 > 0) − I(X0
Tβ2 > 0)}] ≤ cω

n +
c0ω2ρmax

sβ2 (∑) λ3n
(2) 2

sβ2
log2n

(1 − θs)4 inf
α2 ∈ Hα2

K4(s, 1, Ω(2)(α2))
.

Remark 6.8—Error bound for the difference of the value functions follows from the error 

bound on β2 and Condition 4. Since the first term in the upper bound is small, the difference 

of the value functions is mainly characterized by the second term, which is of the order 

O(ρmax

sβ2 (∑)‖β2 − β2, 0‖2
2log2n).

7. Error bounds for β1 and the value function of the estimated dynamic 

treatment regime

7.1. Misspecified contrast function

In the context of A-learning, a major challenge arising in multi-stage studies is that the 

contrast functions are likely to be misspecified in backward induction. In order to study the 

finite sample bounds of β1, we need to first define least favorable parameters under the 

misspecification of the contrast function.

Recall that C(1)(Si) is the true contrast function for the ith patient, which can be a very 

complex function of Si due to the backward induction. For notational convenience, we use a 

shorthand C(s) for C(1)(s). We posit a linear model Si
Tβ1 for C(·), which is often 

misspecified. When either the propensity score model π(1) or the baseline mean function h(1) 

is correctly specified, the associated least favorable parameters β1
∗ is defined as follows:

β1
∗ = arg min

β1 ∈ Λ∗ ‖β1‖1, (7.1)

where

Λ∗ = β1 ∈ ℝq:‖E[SiAi
(1)(1 − πi

(1) ∗){C(Si) − Si
Tβ1}]‖∞ ≤ κ0 ,
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πi
(1) ∗ = π(1)(Si, α1

∗) and κ0 is a nonnegative constant. Define

κ0
∗ = ‖E[SiAi

(1)(1 − πi
(1) ∗){C(Si) − Si

Tβ1
∗}]‖∞ .

By simple algebra, we can show κ0
∗ ≤ min {κ0, O(σ0)}, where σ0

2 = E[{C(Si) − Si
Tβi

∗}2], 

describing the degree of misspecification of the contrast function. Define sβ1
= |Mβ1

| = O(n
l3)

for some 0 ≤ l3 < 1/2, where Mβ1
= supp(β1

∗).

7.2. Error bound for β1

—Assume that logq = O(n
a1) for some 0 < a1 < 1 and S1, …, Sn are i.i.d. copies of S0 that

S0 =d Ψ1/2V0, (7.2)

where Ψ ∈ ℝq×q is some positive definite matrix with Ψjj = 1 for j = 1, …, q, and V0 is a q-

dimensional isotropic random vector with some isotropic constants ζ. As in the second 

stage, we first give conditions on α1 and θ1. Assume that these two estimators converge to 

some α1
∗ and θ1

∗, respectively, under possible model misspecification. Denote Mα1
= supp(α1

∗), 

Mθ1
= supp(θ1

∗), sα1
= |Mα1

| = O(n
l1), and sθ1

= |Mθ1
| = O(n

l1) for some 0 ≤ l1, l2 < 1l2.

Condition 5: Assume that there exist some positive constants γα1
 and γθ1

, with probability at 

least 1 − c/(n + p + q), the following holds:

α1

Mα1
c

= 0, ‖α1

Mα1 − α1
∗

Mα1‖∞ = O(n
−γα1logn), (7.3)

θ1

Mθ1
c

= 0, ‖θ1

Mθ1 − θ1
∗

Mθ1‖∞ = O(n
−γθ1logn) . (7.4)

Moreover, assume dα1
≫ n

−γα1logn and dθ1
≫ n

−γθ1logn, where dα1
= min j |α1

∗ j|/2 and 

dθ1
= min j |θ1

∗ j|/2.

Condition 6: Assume that D(1), C(1) and Ψ satisfy
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λmax(ΨMα1

Mα1) = O(1), λmax(ΨMθ1

Mθ1) = O(1),

liminf
n

λmin(DMθ1

(1)Mθ1) > 0, liminf
n

λmin(CMα1

(1)Mα1) > 0,

where

D(1) = E{SiSi
T(1 − Ai

(1))}, C(1) = E{SiSi
Tπi

(1) ∗(1 − πi
(1) ∗)},

and π(1) ∗ = π(1)(Si, α1
∗).

Since both the propensity score model and the contrast function at the first stage can be 

misspecified, we need the following condition to control their effect on estimation of β1
∗.

Condition 7: Assume that

τ0 ≡ ‖F
Mα1 − [C(1)Mα1Mα1

]−1b
(1)Mα1‖

∞
< ∞, (7.5)

where b(1) = E{Si(Ai
(1) − πi

(1) ∗)} and

F = E[SiAi
(1)πi

(1) ∗(1 − πi
(1) ∗){C(Si) − Siβi

∗}Si
T] .

Remark 7.1—It is immediate to see τ0 = 0 when either the contrast function or the 

propensity score model is correctly specified.

When going back to the first stage, the error bound of β1 is directly affected by that of β2. 

This is because the estimated response V1 in the first stage is obtained based on β2 using the 

advantage function. To simplify presentation, we introduce the following condition.

Condition 8: Assume that with probability at least 1 − c/(n + p), there exists some constant 

μ1 > 0 such that

ρmax

sβ2 (∑)‖β2 − β2, 0‖2 = O(n
−μ1logn), (7.6)

and ‖β2

Mβ2
c

‖1 ≤ ‖β2

Mβ2 − β2, 0

Mβ2‖1.
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A more explicit form of the error bound for (7.6) is given in Theorem 6.1. In the next 

Lemma, we provide an upper bound for the term:

‖STdiag(A(1) − π(1))(V − Sθ1 − A(1) ∘ Sβ1
∗)‖∞/n . (7.7)

Lemma 7.1—Assume that Conditions 5–8 and those in Theorem 6.1 hold, 

‖C(Si) − Si
Tβ1

∗‖
ψ1

< ∞, ‖V i − E(V i |Si, Ai
(1))‖

ψ2
< ∞, a1 + l1 < 1, 

n ≫ sβ2
logpρmax

sβ2 (∑)2/ρmax

sβ2 (∑), and either π(1) or h(1) is correctly specified. Then, for 

sufficiently large n, with probability at least 1 − c/(n + p + q), (7.7) can be bounded from 

above by c(1)(E5 + E6 + E7 + E8 + E9 + E10) for some constant c(1) > 0, where

E5 = logq/nlog2n, E6 = sα1
n
−2γα1log2n + sθ1

n
−2γθ1log2n,

E7 = σ1{ sα1
logn/n + sα1

λ1n
(1)ρ1

(1)(dnα1
)},

E8 = σ2{ sθ1
logn/n + sθ1

λ2n
(1)ρ2

(1)(dnθ1
)},

E9 = σ0{ sα1
logn/n + sα1

λ1n
(1)ρ1

(1)(dnα1
) + τ0 + κ0

∗},

E10 = n
−μ1logn, σ0

2 = E{C(Si) − Si
Tβ1

∗}2, σ1
2 = E(h(1) − Si

Tθ1
∗)2, and σ2

2 = E{πi
(1) ∗ − π(1)(Si)}

2 .

Remark 7.2—The terms E5−E8 have similar interpretations as E1 − E4 in Lemma 6.1, 

respectively. The additional term E10 is due to the error bound of β2 in the backward 

induction, while E9 is due to the misspecification of the contrast function.

Define Ω(1)(α1) = E[SiSi
T Ai

(1){1 − π(1)(Si, α1)}] and Ωn
(1) = n−1∑iSiSi

T Ai
(1)(1 − πi

(1)) with 

πi
(1) = π(1)(Xi, α1). Similar as in stage 2, we need the following condition to ensure the RE 

condition for the matrix Ωn
(1).

Condition 9: Assume that for any 0 < θs < 1 and sufficiently large n, we have
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K(sβ1
, 1, Ωn

(1)) > (1 − θs) inf
α1 ∈ Hα1

K(sβ1
, 1, Ω(1)(α1)) > 0, (7.8)

where Hα1
 denotes the set of vectors α1 that satisfies the weak oracle property (7.3).

Theorem 7.1—Assume that Condition 9 and those conditions in Lemma 7.1 hold, and 

λ3n
(1) ≥ c(1)∑k = 5

10 Ek. The constant c(1) is defined in Lemma 7.1. Then, there exists a constant 

c8, such that for sufficiently large n and some fixed 0 < θs < 1, with probability at least 1 − 

c8/(n + p + q), the error bounds for β1 are given by

‖β1 − β1
∗‖2 ≤

12λ3n
(1) sβ1

(1 − θs)
2 inf
α1 ∈ Hα1

K2(sβ1
, 1, Ω(1)(α1))

, (7.9)

‖β1 − β1
∗‖1 ≤

8λ3n
(1)sβ1

(1 − θs)
2 inf
α1 ∈ Hα1

K2(sβ1
, 1, Ω(1)(α1))

. (7.10)

7.3. Error bound for the value function of the estimated dynamic treatment regime

—Under the SUTVA and sequential randomization assumptions, the value function of a 

given dynamic treatment regime (d1(S0), d2(X0)) is given by

E{Y0
∗(d1, d2)} = E h(2)(X0) + (β2, 0

T X0)d2(X0) + C(S0){d1(S0) − A0
(1)} ,

where S0 and X0 denote the baseline covariates and covariates for the second stage, 

respectively. Then, the difference of the value functions under the estimated optimal 

dynamic treatment regime (2.4) and the true optimal regime (d1
opt, d2

opt) is given by

E{Y0
∗(d1

opt, d2
opt)} − E{Y0

∗(d1, d2)} = E C(S0){I(C(S0) > 0) − I(S0
Tβ1 > 0)}

+ E X0
Tβ2, 0{I(X0

Tβ2, 0 > 0) − I(X0
Tβ2 > 0)} .

Similar to Condition 4, we impose the following condition.

Condition 10: Assume that the probability density function g(1)(·) of S0
Tβ1

∗ exists and is 

bounded.
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Theorem 7.2—Assume that conditions in Theorem 7.1 and Condition 10 hold. Assume 

E(X0
Tβ2, 0)2 = O(1), E(S0

Tβ1
∗)2 = O(1). Then, for some fixed 0 < θs < 1 and sufficiently large n,

0 ≤ E{Y0
∗(d1

opt, d2
opt)} − E{Y0

∗(d1, d2)} ≤ c(ω + ζ)
n + c0σ0

4/3 +
c0ω2ρmax

sβ2 (∑)λ3n
(2)2sβ2

log2n

(1 − θs)4 inf
α2 ∈ Hα2

K4(sβ2
, 1, Ω(2)(α2))

+
c0ζ2ρmax

sβ1 (Ψ)λ3n
(1)2sβ1

log2n

(1 − θs)4 inf
α1 ∈ Hα1

K4(sβ1
, 1, Ω(1)(α1))

.

Remark 7.3—Theorem 7.2 suggests that the upper bound for the difference of the value 

functions come from three major components: the misspecification of the contrast function, 

described by σ0
2, and estimation errors of β2 and β1.

8. Weak oracle properties of α j’s and θ j’s

In order to prove the error bounds of β1, β2 and the value functions of the estimated 

treatment regimes presented in Sections 6 and 7, we need to establish the weak oracle 

properties of α j and θ j (j = 1, 2) in the posited models for the propensity score and baseline 

mean functions. Here, we prove the results based on a posited logistic regression model for 

the propensity score and a linear model for the baseline mean function under a random 

design setting. However, these results can be extended to generalized linear models 

(McCullagh and Nelder, 1989).

8.1. Weak oracle properties of α2 and θ2

We assume that α2 and θ2 converge to some population parameters α2
⋆ and θ2

⋆, respectively. 

Under Conditions B1–B6 given in the Supplementary Appendix, we establish the weak 

oracle properties of α2 and θ2 in the following two Theorems. Recall that 

sα2
= | Mα2

| = O(n
l4) for some 0 ≤ l4 < 1/2.

Theorem 8.1—Assume that Conditions B.1–B.3 hold, l4 + a2 < 1 and λmax(∑Mα2

Mα2 ) = O(1). 

Then, for sufficiently large n, there exists some constants γα2
> 0, such that with probability 

at least 1 − c/(n + p),

a.
α2

M
α2

c
= 0.
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b.
‖α2

Mα2 − α2
⋆

Mα2‖∞ = O(n
−γα2logn) .

Theorem 8.2—Assume that Conditions B.4–B.6 hold, λmax(∑Mθ2

Mθ2 ) = O(1), and 

‖ei‖ψ2
< ∞, where ei is defined in (2.2). Then, there exist some constants γθ2

> 0, such that 

with probability at least 1 − c/(n + p),

a.
θ2

Mθ2
c

= 0.

b.
‖θ2

Mθ2 − θ2
⋆

Mθ2‖∞ = O(n
−γθ2logn) .

Remark 8.1—Theorem 1 in Shi, Song and Lu (2015) established weak oracle results of the 

penalized estimators for a fixed design setting. This is mainly for technical convenience. Its 

proofs can be obtained using similar arguments as in Fan and Lv (2011). In this paper, we 

focus on a random design setting, which is more practical in medical studies. To the best of 

our knowledge, the weak oracle properties of penalized estimators have not been studied in a 

random design setting with the NP dimensionality. The major difficulty lies in developing 

some random matrix theories, such as controlling the maximum eigenvalue of some random 

matrices. Such results are established in Theorem 8.1 and 8.2.

Remark 8.2—The condition l4 + a2 < 1 ensures that for large n

p
max
j = 1

λmax[(X
Mα2)

T

diag( | X j | )X
Mα2] = O(n), (8.1)

with probability approaching 1. A major technical difficulty in deriving (8.1) is that the 

matrix (X
Mα2)

T

diag( | X j | )X
Mα2 does not have the subexponential tail (see Definition G.2 in 

the Supplementary Appendix). When sα2
≤ n, we can bound max j ∈ Mα2

| Xi
j| from above by 

2ωlogn with probability at least 1−2/n, which ensures the subexponential tail of the 

truncated matrix. Lemma B.2 in the Supplementary Appendix proves such a result for a 

more general case.

8.2. Weak oracle properties of α1 and θ1

The weak oracle properties of α1 can be similarly derived as for α2. However, unlike the 

results for θ2, the weak oracle properties of θ1 depend on β2 even when the baseline mean 

function h(1) is correctly specified. This is because the estimated response V i is obtained 
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based on β2. A necessary condition to ensure ‖θ1 − θ1
⋆‖∞

P 0 is that ‖β2 − β2, 0‖2
P 0, 

which is established in Corollary 6.1.

Theorem 8.3—Assume that Condition 8 and Conditions B.7–B.12 in the Supplementary 

Appendix hold. Further assume that λmax(ΨMα1

Mα1) = O(1), λmax(ΨMθ1

Mθ1) = O(1), 

n ≫ sβ2
logp{ρmax

sβ2 (∑)}
2

/ρmin

sβ2(∑), a1+l1 < 1, ‖ei‖ψ2
< ∞ and ‖V i − E(V i |Si

(1), Ai
(1))‖ψ2

< ∞. 

Then, for sufficiently large n, there exist some γα1
> 0 and γθ1

> 0, with probability at least 

1 − c/(n + q + p), such that the estimators α1 and θ1 must satisfy

a.
α1

Mα1
c

= 0, θ1

Mθ1
c

= 0,

b.
‖α1

Mα1 − α1

⋆ Mα1‖∞ = O(n
−γα1logn), ‖θ1

Mθ1 − θ1

⋆ Mθ1‖∞ = O(n
−γθ1logn) .

9. Uniform uncertainty principle and restricted eigenvalue conditions in A-

learning

In this section, we establish the UUP and RE conditions in the context of A-learning. In our 

setting, these two conditions are needed on random matrices Ωn
(2) and Ωn

(1).

For brevity, we only study the UUP and RE conditions for the random matrix Ωn
(2). Those for 

Ωn
(1) can be similarly derived. Recall that Mα2

 refers to the support of α2
⋆, Mβ2

= supp(β2, 0), 

and sβ2
= | Mβ2

|. We assume that the weak oracle properties of α2 are achieved such that with 

probability at least 1 − c/(n + p),

α2

Mα2
c

= 0 and ‖α2 − α2
⋆‖∞ = O(n

−γα2logn), (9.1)

for some γα2
> 0. The following Lemma establishes the UUP condition for Ωn

(2).

Lemma 9.1—Assume the convergence rate of α2 satisfies

‖α2 − α2
⋆‖2 = O( sα2

n
−γα2logn) = O(1),

and the sample size satisfies
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n ≫
{ρmax

sβ2 (∑)}
2
(sβ2

logp + sα2
2 )

inf
α2 ∈ Hα2

pmin

sβ2(Ω(2)(α2))
. (9.2)

Then for any 0 < θ < 1, with probability at least 1 − c/(n + p), we have

‖1
n yTΩn

(2)y − yTΩ(2)y‖2 ≤ θ + 4ω2

n + 2ω2‖α2 − α2
⋆‖2 λmax(∑Mα2

Mα2 ) ρmax

sβ2 (∑ )‖y‖2
2,

(9.3)

for any y ∈ ℝp and |supp(y) | ≤ sβ2
.

Remark 9.1—In our setting, if the following regularity conditions hold

liminf
α2 ∈ Hα2

ρmin

sα2(Ω(2)(α2)) > 0 and ρmax

sβ2 (∑ ) = O(1),

the requirement on the sample size (9.2) reduces to n ≫ sβ2
logp since sα2

2 = O(n
2l4) ≪ n.

Remark 9.2—The second term on the right-hand side of (9.3) represents the difference 

between yTΩ∼n
(2)y and yTΩn

(2)y, where Ω∼n
(2) is defined as the expectation of the truncated 

random matrix

1
n ∑

i
XiXi

TAi
(2){1 − π(2)(Xi, α2)}I(‖Xi

Mα2‖∞ ≤ 2ωlogn) . (9.4)

This term will vanish as n → ∞. The third term represents the estimation error of α2. When 

ρmax

sβ2 (∑) < 2 and λmax(∑Mα2

Mα2 )‖α2 − α2
⋆‖2 0, (9.3) proves the UUP condition for Ωn

(2).

Remark 9.3—A key assumption in Lemma 9.1 is the sparsity of α2
⋆, which is needed to 

bound the infinity norm in the indicator function of (9.4). This extra requirement comes 
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from the involvement of the estimated propensity scores in Ωn
(2), which adds significant 

difficulties in proving Lemma 9.1.

After some algebra, the RE condition for Ωn
(2) follows similarly from Lemma 9.1, which is 

presented below.

Lemma 9.2—For any integer c0, assume that ‖α2 − α2
⋆‖2 = O(1), and the sample size 

satisfies

n ≫
{ρmax

sβ2 (∑)}
2
(sβ2

logp + sα2
2 )

inf
α2 ∈ Hα2

K2(sβ, c0, Ω(2)(α2))
. (9.5)

Then, for any 0 < θ < 1 and sufficiently large n, with probability at least 1 − c/(n + p), we 

have

K(sβ2
, c0, Ωn

(2)) > (1 − θ) inf
α ∈ Hα2

K(sβ2
, c0, Ω(2)(α2)) .

Remark 9.4—The sample size requirement (9.5) is stronger than (9.2). To see this, for any 

positive semidefinite matrix Ψ, and positive integers s and c0, we have

K2(s, c0, Ψ) ≤ K2(s, 0, Ψ) = ρmin
s (Ψ) .

10. Discussion

10.1. Post selection inference

As pointed by one of the referee, the main goal of constructing optimal DTRs is to find 

treatments that are significantly superior to other treatment options. This requires addressing 

a post selection inference issue, i.e, the problem of influencing the estimated optimal value 

function (or the difference between the estimated value and the value function under other 

treatment options). In the fixed dimension setting, we can use either the empirical average of 

the advantage function (Murphy, 2003) or the augmented inverse propensity score type 

estimates (AIPWE, Zhang et. al, 2012) to estimate the optimal value function. Both type of 

estimators are asymptotically normally distributed. However, the inference based on the 

advantage function may not be valid in high dimensions. This is because when the number 

of predictors is large, the parameter estimates in the contrast function may not have oracle 

property (i.e, model selection consistency and asymptotic normality).

For a single stage study, assuming a linear interaction form XT β0 for the contrast function. 

Under certain conditions, we can show AIPWE is asymptotically normal even for NP-
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dimensionality if (i) ‖β − β0‖2 = op(n−1/4), (ii) with probability going to 1, 

‖β
Mβ

c
− β0

Mβ
c

‖1 ≤ c0‖β
Mβ − β0

Mβ‖1 for some constant c0 where Mβ is the support of β0. For 

our penalized A-learning estimator, Assumption (i) can be achieved assuming certain 

conditions on the dimension of covariates, sample size and the sparsity of parameters in the 

contrast, the baseline and propensity score function. Assumption (ii) is typically satisfied for 

Lasso, Dantzig and folded-concave type estimators. Similar to Theorem 6.1, we can show 

our estimator satisfies ‖β
Mβ

c
− β0

Mβ
c

‖1 ≤ ‖β
Mβ − β0

Mβ‖1 with probability going to 1. The 

asymptotic normality of AIPWE therefore follows. Standard error of the value estimator can 

be similarly obtained as in Zhang et. al (2012). Alternatively, we can use the one step online 

estimator as in Luedtke and van der Laan (2016). However, the asymptotic variance will be 

larger since it does not use all the data to construct the estimator. In summary, it is important 

and interesting to develop statistical inference for the estimated value function under the 

obtained optimal treatment regime in high dimensions, but it is beyond the scope of the 

current paper.

10.2. Tuning parameter selection

Bayesian information criteria (BIC) is used to tune the penalty functions. BIC has been 

widely used in model selection for selecting the tuning parameter when the goal is 

prediction. In high dimensional regressions, Chen and Chen (2008) proposed an extended 

BIC for model selection, and showed their BIC is consistent when the number of predictors 

grows polynomially in sample size. Fan and Tang (2013) proposed a similar criterion and 

showed its consistency when the number of predictors is in the non-polynomial order of the 

sample size. When the goal is to select treatment effect modifiers, Lu et al. (2011) also used 

a BIC-type criterion, which showed good empirical performance. This motivated us to use a 

similar BIC-type criterion for selecting the tuning parameter in our method. Our simulations 

demonstrated that the proposed BIC-type criterion empirically worked well. We conjecture 

that following similar arguments in the proof of Theorem 1 of Chen and Chen (2008) and 

the proof of Theorem 3 in Fan and Tang (2013), we can show our proposed BIC-type 

criterion is also consistent for selecting important variables in the contrast function. This is 

another interesting topic that needs further investigation.

10.3. Extensions to multiple stages and general models

In this paper, we mainly focus on a two-stage study. Extension of results to three-stage 

studies are provided in the supplementary article. It raises additional challenges to establish 

these results, since the potential model misspecification of contrast functions in the previous 

two stages can add up and stronger assumptions are needed to guarantee consistency of the 

parameter estimates. Readers can refer to the supplementary article for details.

For technical convenience, we assume a linear interaction form the contrast function on the 

last stage. More general results when the contrast function is misspecified can be similarly 

derived as the three-stage studies discussed in the supplementary article.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Simulation Settings

Stage Baseline Propensity Score Important Variables

Setting 1

Stage 2 right right
(S(2), A1, S3

(1), S4
(1))

Stage 1 wrong right
(S1

(1), S3
(1), S4

(1))

Setting 2

Stage 2 wrong right
(S(2), A1, S3

(1), S4
(1))

Stage 1 wrong right
(S3

(1), S3
(1), S4

(1), S5
(1), S6

(1))

Setting 3

Stage 2 right wrong
(S(2), A1, S3

(1), S4
(1))

Stage 1 wrong right
(S1

(1), S3
(1), S4

(1))

Setting 4

Stage 2 wrong wrong
(S(2), A1, S3

(1), S4
(1))

Stage 1 wrong right
(S1

(1), S3
(1), S4

(1), S5
(1), S6

(1))
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Table 3

Simulation for Nonregular Settings

Stage Baseline Propensity Score Important Variables

Setting 1

Stage 2 right right
(S(2), A1, S1

(1))

Stage 1 right right
(S1

(1))

Setting 2

Stage 2 wrong right
(S(2), A1, S1

(1))

Stage 1 right right
(S1

(1), S5
(1), S6

(1))

Setting 3

Stage 2 right wrong
(S(2), A1, S1

(1))

Stage 1 right right
(S1

(1))

Setting 4

Stage 2 wrong wrong
(S(2), A1, S1

(1))

Stage 1 right right
(S1

(1), S5
(1), S6

(1))
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Table 5

Estimated Values of Different Treatment Regimes

Treatment Regime Estimated Value

estimated optimal regime −9.02

BUP + NTP −12.86

BUP + MIRT −12.57

SER + NTP −12.57

SER + MIRT −12.28
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