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Novel human microbe-disease 
associations inference based on 
network consistency projection
Shuai Zou, Jingpu Zhang & Zuping Zhang

Increasing evidence shows that microbes are closely related to various human diseases. Obtaining 
a comprehensive and detailed understanding of the relationships between microbes and diseases 
would not only be beneficial to disease prevention, diagnosis and prognosis, but also would lead to 
the discovery of new drugs. However, because of a lack of data, little effort has been made to predict 
novel microbe-disease associations. To date, few methods have been proposed to solve the problem. 
In this study, we developed a new computational model based on network consistency projection to 
infer novel human microbe-disease associations (NCPHMDA) by integrating Gaussian interaction profile 
kernel similarity of microbes and diseases, and symptom-based disease similarity. NCPHMDA is a non-
parametric and global network based model that combines microbe space projection and disease space 
projection to achieve the final prediction. Experimental results demonstrated that the integrated space 
projection of microbes and diseases, and symptom-based disease similarity played roles in the model 
performance. Cross validation frameworks and case studies further illustrated the superior predictive 
performance over other methods.

Joshua Lederberg systematically explained the concept of the microbiome for the first time as “Microbiome signi-
fies the ecological community of commensal, symbiotic, and pathogenic microorganisms that literally share our 
body space”1. Many microorganisms inhabit the human body, comprising mainly bacteria, archaea, viruses, fungi 
and protozoa2. The number of bacteria inhabiting the human body is at least 10 times more than the number of 
human cells3. Thus, nearly 90% of the cells in the human body are microbial cells. These microbes exist in different 
organs of the human body, such as the gastrointestinal tract, respiratory tract, mouth, and skin4. Over the past few 
decades, there has been increasing interest in microbes that inhabit the human body5. 16S rRNA gene sequencing 
is generally used to study these microbes6–9. Moreover, the Human Microbiome Project (HMP) has successfully 
described the microbes in terms of their structure, function and diversity10; its goal is to generate a comprehensive 
catalogue of human associated microbes11.

The relationship between the microbiome and the host is complex. The microbiome inhabiting the human 
body can do both good and harm to the host. On the one hand, the microbiome is conducive to developing the 
immune system12,13, maintaining homeostasis14, protecting against pathogens, and drug metabolism15. On the 
other hand, there is strong evidence that microbes are associated with various diseases, such as obesity16, dia-
betes17,18, asthma19, and cancer20. Therefore, a comprehensive and detailed understanding of the relationships 
between microbes and diseases would be not only beneficial for disease prevention, diagnosis and prognosis, but 
would also promote the discovery of new drugs.

Currently, certain computational methods have been proposed to study microbes and human diseases21,22. 
These studies aimed to predict the impact of microbes on biological events and to identify functional subnet-
works in microbiome-related diseases. However, because of a lack of data, little effort has been made to study the 
relationships between microbes and diseases. In 2016, Ma et al. established the first Human Microbe-Disease 
Association Database (HMDAD) using large-scale text mining, which provides experimental data for the study of 
microbe-disease associations. On the basis of the database, Chen et al. developed a method called KATZ measure 
for Human Microbe-Disease Association prediction (KATZHMDA)23, while Huang et al. proposed a method 
called Path-Based Human Microbe-Disease Association prediction (PBHMDA)24. Both methods achieve sat-
isfactory predictive results. However, the microbes in HMDAD belong to different taxonomic levels, such as 
phylum, class, genus and species. An entire phylum or class contains thousands of individual species; therefore 
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using an entire phylum or class to predict novel associations is inaccurate, which would lead to optimistic claims 
of the model performance. Hence, to improve the reliability and accuracy of experimental data, we reprocessed 
the data in HMDAD and kept the known microbe-disease associations at defined taxonomic levels: genus level 
and species level, respectively.

In this study, we developed a computational model based on network consistency projection to infer novel 
human microbe-disease associations (NCPHMDA) by integrating Gaussian interaction profile kernel similarity 
of microbes and diseases, and symptom-based disease similarity. The most significant difference from previous 
models is that our model is more simple and effective without any parameters. Additionally, symptom-based 
disease similarity is introduced to predict human microbe-disease association for the first time. To evaluate the 
prediction performance of NCPHMDA, cross validation frameworks (leave-one-out and 5-fold cross validation) 
were implemented on two datasets: genus level dataset and species level dataset, respectively. The experimen-
tal results illustrated that symptom-based disease similarity and integrated space projection have effects on the 
prediction performance of the model. Moreover, the results also demonstrated that our model has a favourable 
advantage over the other two state-of-the-art models. Furthermore, case studies of asthma and type 2 diabetes 
were implemented to evaluate the predictive performance of our model. Seven and eight of the top 10 predictions 
for these two diseases have been confirmed by recent research, respectively. Both cross validation frameworks and 
case studies fully demonstrated the powerful ability of NCPHMDA to predict novel microbe-disease associations.

Results
Construction and analysis of the microbe-disease association networks.  The genus level data-
set includes 155 known microbe-disease associations between 94 microbes and 20 diseases, while the species 
level dataset contains 180 known microbe-disease associations between 147 microbes and 30 diseases. Based 
on these two datasets, we constructed two different microbe-disease association networks. The association net-
work of genus level can be seen in Fig. 1, and the association network of species level is shown in Supplementary 
Information S1. In each heterogeneous network, the nodes denote either microbes or diseases, and the edges 
correspond to the associations between microbes and diseases25.

To obtain a comprehensive view of these two microbe-disease association networks, we further analysed 
some of their statistical characteristics26 (Table 1). The degree distributions of microbes and diseases in the 

Figure 1.  The microbe-disease association network of genus level.

Level
No.of 
microbes

No.of 
diseases

No.of microbe-
disease associations

Average degree 
of microbes

Average degree 
of diseases

genus 94 20 155 1.65 7.75

species 147 30 180 1.22 6

Table 1.  Global characteristics of the microbe-disease association networks.
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microbe-disease association networks of genus level and species level are illustrated in Fig. 2 and Supplementary 
Information S2, respectively. The degree of a microbe node is the number of diseases associated with the given 
microbe. The degree of a disease node is defined similarly. On average, each microbe is associated with 1.65 and 
1.22 diseases, while each disease is associated with 7.75 and 6 microbes in the microbe-disease association net-
works of genus level and species level, respectively.

Performance evaluation.  In this study, leave-one-out cross validation (LOOCV) and 5-fold cross val-
idation (5-fold CV) were implemented on the known microbe-disease associations to evaluate the predictive 
performance of NCPHMDA. In each trail of LOOCV, every known microbe-disease association was left out 
as test samples, while the remaining associations were taken as training samples. It should be noted that the 
microbe similarity and disease similarity should be recalculated in each trail. For each disease, the microbes 
that do not have known associations with the given disease were considered as candidate microbes. The scores 
of all microbe-disease pairs could be obtained by implementing NCPHMDA. We then acquired the rank of all 
candidate microbes. The test samples that received higher ranks than a given threshold could be regarded as cor-
rect predictions. In 5-fold CV, the known microbe-disease associations were divided randomly and equally into 
five subsets. For each trial, one subset was processed as test samples and the other four subsets were processed 
as training samples. Moreover, receiver-operating characteristic (ROC) curves were implemented by plotting 
the true positive rate (TPR, sensitivity) against the false positive rate (FPR, 1-specificity) at different thresholds 
to check the performance of the model. Sensitivity refers to the percentage of test samples that ranked higher 
than the given threshold, while specificity means the percentage of test samples that ranked lower than the given 
threshold. The area under the ROC curve (AUC) can thus be calculated to reflect the predictive performance, 
where an AUC value of 1 indicates perfect performance, and 0.5 indicates random performance. As a result, when 
using genus level dataset, our method achieved AUC values of 0.9129 based on LOOCV and 0.9108 based on 
5-fold CV. When using species level dataset, our method achieved AUC values of 0.9748 based on LOOCV and 
0.9782 based on 5-fold CV. These results indicated a reliable and effective predictive performance.

To evaluate the effectiveness of NCPHMDA, we tested its performance in different situations based on 
LOOCV. The results can be seen in Fig. 3 and Supplementary Information S3. Taking the experiment results of 
genus level for instance (Fig. 3), when using only Gaussian interaction profile kernel similarity, the AUC value of 
NCPHMDA decreased to 0.9039. This showed that integrating symptom-based disease similarity is conducive to 
improving the predictive performance of NCPHMDA. In addition, NCPHMDA achieved AUC values of 0.7916 
and 0.7672 in disease space projection and microbe space projection, respectively. It demonstrated that integrated 
space projection could contribute to improve predictive performance.

Comparison with other methods.  As far as we know, KATZHMDA and PBHMDA are the state-of-the-art 
computational models for microbe-disease association prediction. KATZHMDA calculates correlations between 
nodes in the heterogeneous network to predict links, which was initially proposed to solve the friend prediction 
problem in a social network. PBHMDA is a path-based method that applies a special depth-first search algorithm 
to traverse all paths between microbes and diseases. The similarities of these two methods are: they are both 
achieved based on a heterogeneous network, which is constructed by connecting a microbe similarity network 
and a disease similarity network via the known microbe-disease associations; moreover, Gaussian interaction 
profile kernel similarity is applied to measure microbe similarity and disease similarity in these two methods. 
Importantly, in NCPHMDA, besides Gaussian interaction profile kernel similarity, symptom-based disease sim-
ilarity was also introduced to measure disease similarity, which could improve the predictive performance. In 
addition, NCPHMDA does not need any parameters, which simplifies the model and improves the computational 
efficiency. Moreover, NCPHMDA is still applicable in situations where there are very few known microbe-disease 
associations.

To further evaluate the predictive performance of NCPHMDA, using the same parameters and datasets, 
we compare KATZHMDA and PBHMDA with NCPHMDA based on LOOCV and 5-fold CV. The results can 

Figure 2.  Degree distribution for microbes and diseases in the microbe-disease association network of genus 
level. (a) Degree distribution of microbes. (b) Degree distribution of diseases.
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be seen in Fig. 4 and Supplementary Information S4. Here, we also take the results of genus level for instance 
(Fig. 4): in LOOCV, NCPHMDA achieved a superior performance among all the methods, with an AUC value of 
0.9129, while KATZHMDA and PBHMDA yielded AUC values of 0.8584 and 0.8232, respectively; in 5-fold CV, 
NCPHMDA still performed well, with an AUC value of 0.9108, which was significantly better than the perfor-
mance of KATZHMDA and PBHMDA, with the AUC values of 0.8394 and 0.8693, respectively.

CaseStudies.  To illustrate the application of NCPHMDA to infer novel microbe-disease associations, we 
performed case studies of asthma and type 2 diabetes. The microbe-disease pairs that were not known to be asso-
ciated in the dataset were the candidate microbe-disease associations. For each disease, the candidate microbes 
were ranked according to the prediction scores calculated by NCPHMDA. We used the top 10 that have been 
confirmed to date as the indicator to measure the predictive performance.

Asthma is a common long-term inflammatory disease of the airways of the lungs, which over the past few dec-
ades has increased noticeably in prevalence. Increasing studies showed that microbes might play important roles 
in the causation and exacerbation of asthma, hence in the co-morbidities due to asthma27. In the predicted list of 
asthma, seven microbes (genus level) ranking in the top 10 have been validated (Table 2). It has been found that 
Bacteriodes could be used as an early indicator of asthma later in life24. Veillonella is less represented in asthmatic 
patients24. A study demonstrated that the decrease of Lactobacillus could do help to prevent asthma24. Orally 
administered probiotic strain Bifidobacterium has a positive effect on atopic asthma28. Compared to healthy con-
trols, there is a high level of Fusobacterium in asthmatic patients24. Research found that severe asthmatics are 

Figure 3.  The ROC curves and AUC values of NCPHMDA based on LOOCV in different situations (genus 
level). (a) NCPHMDA with all information, (b) NCPHMDA with Gaussian interaction profile kernel similarity 
only, (c) NCPHMDA with disease space projection only, (d) NCPHMDA with microbe space projection only.

Figure 4.  The ROC curves and AUC values of NCPHMDA, KATZHMDA and PBHMDA based on LOOCV 
and 5-fold CV (genus level). (a) The ROC curves and AUC values of NCPHMDA, KATZHMDA and PBHMDA 
based on LOOCV, (b) The ROC curves and AUC values of NCPHMDA, KATZHMDA and PBHMDA based on 
5-fold CV.
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enriched in several taxa, with the largest fold-difference seen in a Klebsiella29. Streptococcus was found to be 
associated with pediatric asthma and allergic asthma30. To date, no relevant study has found that Enterococcus, 
Desulfovibrio and Burkholderia are related to asthma, but they could be considered as potential asthma-causing 
microbes.

Type 2 diabetes is a long-term metabolic disorder that is characterized by high blood sugar, insulin resist-
ance, and relative lack of insulin. Until 2015, there were nearly 392 million people diagnosed with type 2 dia-
betes. In the predicted list of type 2 diabetes, eight microbes (species level) ranking in the top 10 have been 
validated (Table 3). It has been found that Helicobacter pylori infection is higher in diabetic obese patients than 
non-diabetic subjects31. Clostridum difficile infection is increasingly seen among hospitalised patients with type 
2 diabetes32. A study showed that Staphylococcus aureus plays a role in the development of type 2 diabetes33. The 
level of Collinsella aerofaciens in type 2 diabetes group is significantly lower than those in normal glucose tol-
erance group34. It has been confirmed that Bacteroides vulgatus and Prevotella copri species are associated with 
the development of type 2 diabetes35. Glycemic level in diabetes is affected by the persistence of Porphyromonas 
gingivalis36. High prevalence of Escherichia coli in diabetes patients would result in high mortality37. Although 
Tropheryma whipplei and Bacteroides uniformis have not been proved to be associated with type 2 diabetes, their 
presence in the top 10 predicted list could provide direction for future research.

Discussion
Microbes play an important part in human health and disease; therefore, it is imperative that we obtain a com-
prehensive and detailed understanding of microbe-disease associations, and then use this knowledge to promote 
disease prevention, diagnosis and prognosis.

In this study, to improve the reliability and accuracy of the experimental data, we first reprocessed the data in 
HMDAD by keeping the known microbe-disease associations at defined taxonomic levels, then we obtained two 
independent datasets named genus level dataset and species level dataset. Next, we developed a computational 
model based on network consistency projection to infer novel microbe-disease associations. NCPHMDA is a 
global based method that combines microbe space projection and disease space projection to obtain the final 
prediction results. The important differences from previous methods are as follows: symptom-based disease sim-
ilarity is introduced to integrate with Gaussian interaction profile kernel similarity to construct disease similarity; 
in addition, our method does not acquire any parameters, which simplifies the model and reduces the computa-
tion time. Moreover, the method is still applicable in situations where there are very few verified microbe-disease 
associations. NCPHMDA and cross validation frameworks (LOOCV and 5-fold CV) were implemented on 
the above-mentioned two datasets, respectively. The experiment results demonstrated that integrated net-
work consistency projection and symptom-based disease similarity played roles in the predictive performance. 

Rank Microbe Evidence

1 Bacteroides PMID: 2827537024, PMID: 1882212342, PMID: 2916108743

2 Enterococcus unconfirmed

3 Veillonella PMID: 2827537024, PMID: 2532966544, PMID: 2642456745

4 Lactobacillus PMID: 2827537024, Gutkowski et al.28

5 Bifidobacterium Gutkowski et al.28, PMID: 2684090346

6 Fusobacterium PMID: 2827537024, Dang et al.19, PMID: 2783834747

7 Klebsiella PMID: 2622053129

8 Desulfovibrio unconfirmed

9 Streptococcus PMID: 2862591430, PMID: 2772694748

10 Burkholderia unconfirmed

Table 2.  Prediction of the top 10 microbes (genus level) associated with asthma.

Rank Microbe Evidence

1 Helicobacter pylori PMID: 1808091831, Li et al.49, Devrajani et al.50

2 Clostridium difficile PMID: 2373434932, PMID: 2732131851, PMID: 2134960052

3 Staphylococcus aureus PMID: 2643981133, PMID: 2902461453, PMID: 1649562754

4 Collinsella aerofaciens Xiong et al.34

5 Bacteroides vulgatus PMID: 2896661435

6 Porphyromonas gingivalis PMID: 1858233636, PMID: 2679218355, Quintero et al.56

7 Prevotella copri PMID: 2896661435

8 Tropheryma whipplei unconfirmed

9 Bacteroides uniformis unconfirmed

10 Escherichia coli Deraje et al.37, Wang et al.57, Ye et al.58

Table 3.  Prediction of the top 10 microbes (species level) associated with type 2 diabetes.
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Additionally, our method was demonstrated to be superior compared with two other state-of-the-art meth-
ods. Case studies of asthma and type 2 diabetes were implemented to illustrate the favourable performance of 
NCPHMDA. Taken together, the results demonstrated that NCPHMDA could be utilized as an efficient and 
effective model to reveal novel microbe-disease associations.

Despite the favourable results, some limitations still exist in this model. Firstly, the number of known 
microbe-disease associations is relatively few, which would have a negative effect on the prediction results. 
Studies should aim to discover more verified microbe-disease associations to expand the size of the database. 
Secondly, Gaussian interaction profile kernel similarities of microbes and diseases are calculated based on the 
known microbe-disease associations, which may cause bias towards diseases with more associated microbes and 
microbes with more associated diseases. Different datasets of microbes and diseases need to be integrated to 
reduce this bias. Thirdly, as far as we know, there is no specific standard dataset of microbe similarity; therefore, 
the microbe similarity network was constructed only based on known microbe-disease associations. A reasonable 
method needs to be developed to measure microbe similarity, which could then be applied to microbe-disease 
association inference in a future study.

A similar method38 was published while our manuscript was under consideration for publication. It hap-
pened that we and Bao et al.38 adopted the same method network consistency projection to predict novel human 
microbe-disease associations. Nevertheless, there are several important differences between these two papers. 
Firstly, to improve the reliability and accuracy of experimental data, we reprocessed the data in HMDAD and kept 
the known microbe-disease associations at defined taxonomic levels: genus level and species level, respectively. 
Secondly, it was the first time in this paper that symptom-based disease similarity has been introduced to inte-
grate with Gaussian interaction profile kernel similarity of diseases to obtain the final disease similarity. Thirdly, 
based on two different datasets, we constructed two different microbe-disease association networks and analysed 
some of their statistical characteristics. As a result, experiments on these two datasets showed that our method in 
this paper performed better than Bao et al.’s in both LOOCV and 5-fold CV.

Methods
Dataset.  The human microbe-disease association data can be retrieved from the Human Microbe-Disease 
Association Database (HMDAD, http://www.cuilab.cn/hmdad), which has recorded 483 verified microbe-disease 
associations between 39 human diseases and 292 microbes. After removing repeated microbe-disease entries 
and keeping the microorganisms at defined taxonomic levels, we finally acquired 155 microbe-disease associa-
tions between 94 microbes and 20 diseases at the genus level and 180 microbe-disease associations between 147 
microbes and 30 diseases at the species level. In this study, they were called genus level dataset and species level 
dataset, respectively.

Symptom-based disease similarity data were also downloaded from HMDAD, which are calculated based on 
the term co-occurrence of diseases and symptoms. After converting the symptom disease into the corresponding 
microbe disease, we finally obtained 141 symptom similarity scores between 25 human diseases. Accordingly, 
there were 44 symptom similarity scores between 13 diseases in genus level dataset and 101 symptom similarity 
scores between 21 diseases in species level dataset.

Microbe similarity.  In this study, based on the assumption that microbes that are associated with highly 
similar diseases tend to be more similar, Gaussian interaction profile kernel similarity was applied to measure 
similarities between microbes23. Firstly, we construct the adjacency matrix A of the microbe-disease association 
network. A(i, j) is 1, if a known association exists between disease i and microbe j; otherwise it is 0. We then 
defined the microbe interaction profile m(j), a binary vector denoting the presence or absence between microbe j 
with every disease. Actually, it is the jth column of the adjacency matrix A. As a result, Gaussian interaction pro-
file kernel similarity between microbe j and microbe k can be calculated from their interaction profiles:

γ= − || − ||MS j k exp m j m k( , ) ( ( ) ( ) ) (1)m
2

∑γ γ=





|| ||






′

=nm
m j/ 1 ( )

(2)
m m

j

nm

1

2

where γm is the kernel bandwidth, which can be calculated from a new bandwidth γ′m by the average number of 
associations with diseases per microbe; and nm is the number of all microbes. Here, γ′m is simply set to 1.

Disease similarity.  Symptom-based disease similarity.  Symptom-based disease similarity was measured 
by the symptoms shown by one specific disease. The association between diseases and symptoms were quantified 
by term co-occurrence39,40. For each disease i and each symptom m, the quantitative strength of their association 
could be measured as:

=w W log N
n (3)i m i m

m
, ,

where wi,m is defined as the term frequency-inverse document frequency. Wi,m denotes the co-occurrence (num-
ber of disease i and symptom m appear together). N is the number of all diseases and nm is the number of diseases 
appearing together with symptom m. Log(N/nm) decreases the weights of symptoms that are generally related to 

http://www.cuilab.cn/hmdad


www.nature.com/scientificreports/

7Scientific RePOrTS |  (2018) 8:8034  | DOI:10.1038/s41598-018-26448-8

many diseases and increases the weights of symptoms that are specifically related to some diseases. Then, each 
disease i can be represented as a vector:

= d w w w( , , , ) (4)i i i i M,1 ,2 ,

where M is the number of all symptoms. Here, cosine similarity is applied to measure the symptom-based disease 
similarity between disease i and disease n:

= =
∑

∑ ∑

=

= =

SS i n d d
d d

d d
( , ) cos( , )

(5)
i n

m
M

i m n m

m
M

i m m
M

n m

1 , ,

1 ,
2

1 ,
2

The cosine similarity ranges from 0 to 1, where 0 denotes no shared symptoms between two diseases and 1 
denotes these two diseases have identical symptoms.

Gaussian interaction profile kernel similarity for diseases.  Similarly, based on the assumption that diseases that 
are associated with highly similar microbes tend to be more similar, the Gaussian interaction profile kernel sim-
ilarity for diseases could be calculated. We still use the adjacency matrix A constructed above. Here, we defined 
the disease interaction profile d(i), a binary vector denoting the presence or absence between disease i with every 
microbe. Actually, it is the ith row of the adjacency matrix A. As a result, the Gaussian interaction profile kernel 
similarity between disease i and disease n could be calculated from their interaction profiles:

γ= − || − ||GS i n exp d i d n( , ) ( ( ) ( ) ) (6)d
2

∑γ γ=





|| ||





′

=nd
d i/ 1 ( )

(7)
d d

i

nd

1

2

where γd is the kernel bandwidth, which can be calculated based on a new bandwidth γ′d by the average number 
of associations with microbes per disease; and nd is the number of all diseases. Similarly, γ′d is also set to 1.

Integrated disease similarity.  Based on the symptom-based disease similarity and Gaussian interaction profile 
kernel similarity for diseases mentioned above, the integrated disease similarity could be constructed as follows:






DS i n
SS i n disease i and disease n has symptom based similarity
GS i n otherwise

( , )
( , ),

( , ), (8)

where DS(i, n) is the integrated similarity between disease i and disease n; SS(i, n) is the symptom-based similarity 
between disease i and disease n; GS(i, n) is the Gaussian interaction profile kernel similarity between disease i 
and disease n.

NCPHMDA.  In 2016, Gu et al. proposed a method called Network Consistency Projection for miRNA-Disease 
Associations (NCPMDA) to reveal the potential associations between miRNAs and diseases41. Inspired by its 
superior performance, in this study, we developed NCPHMDA to infer novel microbe-disease associations. The 
flowchart of NCPHMDA is shown in Fig. 5.

Network consistency means that the spatial similarity between microbe j associated microbes in the microbe 
similarity network and disease i associated microbes in the microbe-disease association network (or the spatial 
similarity between disease i associated diseases in the disease similarity network and microbe j associated diseases 
in the microbe-disease association network) is positively related to the association between disease i and microbe j. 
We projected the microbe similarity network and disease similarity network on the microbe-disease association net-
work, respectively, and then combined these two space projections to obtain the final network consistency projection 
score. Vector space projection is applied to represent this process. Microbe space projection is defined as:

=
×

| |
msp i j

AS MS
AS

( , )
(9)

i j

i

where msp(i, j) is the network consistency projection of MSj on ASi. ASi is the ith row of the microbe-disease asso-
ciation network; actually, it is the vector encoding the associations between disease i and all microbes. MSj is the 
jth column of the microbe similarity network; actually, it is the vector denoting the similarities between microbe j 
and all microbes. |ASi| is the length of vector ASi. To avoid the denominator being 0, we use a small value δ instead 
of 0 in the adjacency matrix of the microbe-disease association network. Here, δ was set to 10−30.

Similarly, disease space projection can be defined as:

=
×

| |
dsp i j

DS AS
AS

( , )
(10)

i j

j

where dsp(i, j) is the network consistency projection of DSi on ASj. DSi is the ith row of the disease similarity net-
work; meanwhile, it is the vector denoting the similarities between disease i and all diseases. ASj is the jth column 
of the microbe-disease association network; actually, it is the vector encoding the associations between microbe j 
and all diseases. |ASj| is the length of vector ASj.
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Based on the microbe space projection and disease space projection calculated above, the final solution can 
thus be integrated as follows:

=
+
+ | |

ncp i j dsp i j msp i j
DS MS

( , ) ( , ) ( , )

(11)i j

where ncp(i, j) is the final score of network consistency projection of disease i and microbe j. The code is available 
in Supplementary Information S5.

Data availability.  The dataset analyzed in the study is available in the Human Microbe-Disease Association 
Database (HMDAD), http://www.cuilab.cn/hmdad.
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