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Background. Cardiac PET quantifies stress myocardial blood flow (MBF) and perfusion
reserve (MPR), while ECG-gated datasets can measure components of ventricular function
simultaneously. Stress MBF seems to outperform MPR in the detection of significant CAD.
However, it is uncertain which perfusion measurement is more related to ventricular function.
We hypothesized that stress MBF correlates with ventricular function better than MPR in
patients studied for suspected myocardial ischemia.

Methods. We studied 248 patients referred to a rest and adenosine-stress Nitrogen-13
ammonia PET. We performed a multivariate analysis using systolic function (left ventricular
ejection fraction, LVEF), diastolic function (mean filling rate in diastole, MFR/3), and syn-
chrony (Entropy) as the outcome variables, and stress MBF, MPR, and relevant covariates as
the predictors. Secondarily, we repeated the analysis for the subgroup of patients with and
without a previous myocardial infarction (MI).
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Results. 166 male and 82 female patients (mean age 63 ± 11 and 67 ± 11 year, respectively)
were included. 60% of the patients presented hypertension, 57% dyslipidemia, 21% type 2
diabetes mellitus, 45% smoking, and 34.7% a previous MI. Mean stress MBF was 1.99 ± 0.75
mL/g/min, MPR = 2.55 ± 0.89, LVEF = 61.6 ± 15%, MFR/3 = 1.12 ± 0.38 EDV/s, and Entropy =
45.6 ± 11.3%. There was a significant correlation between stress MBF (P < .001) and ven-
tricular function. This was stronger than the one for MPR (P = .063). Sex, age, diabetes, and
extent of previous MI were also significant predictors. Results were similar for the analyses of
the 2 subgroups.

Conclusion. Stress MBF is better correlated with ventricular function than MPR, as
evaluated by Nitrogen-13 ammonia PET, independently from other relevant cardiovascular
risk factors and clinical covariates. This relationship between coronary vasodilatory capacity
and ventricular function is sustained across groups with and without a previous MI. (J Nucl
Cardiol 2018;25:797–806.)

Key Words: PET Æ stress myocardial blood flow Æmyocardial perfusion reserve Æ ventricular
function Æ coronary artery disease

Abbreviations
PET Positron emission tomography

CAD Coronary artery disease

MBF Myocardial blood flow

MPR Myocardial perfusion reserve

ECG Electrocardiogram

MI Myocardial infarction

LVEF Left ventricular ejection fraction

MFR/3 Mean filling rate during the first third

of diastolic time

INTRODUCTION

Cardiac positron emission tomography (PET) imag-

ing has developed as an important adjuvant for

diagnostic, prognostic, and therapeutic evaluation in

the evolving profile of coronary artery disease (CAD),

and is currently the reference technique for the quan-

tification of myocardial perfusion in absolute terms.1

This quantification of myocardial blood flow (MBF) is

performed during rest and pharmacological stress, and

the calculated ratio of stress MBF to rest MBF is known

as the myocardial perfusion reserve (MPR). Stress MBF

and MPR have shown superior diagnostic performance

as compared to the evaluation of relative myocardial

tracer retention and semiquantitative assessment.2–7
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Recently, it has been suggested that stress MBF

may perform better than MPR in the detection of flow-

limiting CAD. This may be especially true in popula-

tions without previously known CAD or in conditions

that show a higher rest MBF such as women, older

patients, or those with arterial hypertension.8 Further,

only a couple of studies have partially addressed the

prognostic value of stress MBF over MPR for the

occurrence of cardiovascular events.9,10

Furthermore, ECG-synchronized (gated) PET data-

sets can be simultaneously acquired offering the

possibility to assess three areas of ventricular function,

namely: systolic (i.e., ejection) and diastolic (i.e. filling)

function,11–13 and ventricular synchrony (uniformity of

left ventricular contraction).14,15 This is useful because

cardiac function measurements can provide information

for the evaluation of the effects of myocardial ische-

mia.16 Indeed, progressive hampering of ventricular

function also constitutes an important component when

addressing cardiovascular prognosis and risk stratifica-

tion. As such, although quantitative measures of

myocardial perfusion are predictive of coronary ana-

tomic findings of CAD, it is still unknown whether stress

MBF or MPR is better correlated with resulting ven-

tricular function.

Therefore, the aim of the present study was to

evaluate whether stress MBF or MPR, as measured by

PET myocardial perfusion imaging, better correlates

with ventricular function in the general population of

patients with known or suspected CAD. Secondarily, we

explored the relationship of stress MBF and MPR with

ventricular function in patients with and without a

previous myocardial infarction (MI) as it is known that

there are differences in ventricular perfusion and func-

tion dynamics.

A supplementary analysis for subgroups of interest

within patients without a previous MI (e.g. women and

patients with arterial hypertension) was also conducted.

See related editorial, pp. 807–808
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METHODS

Population

A retrospective study was conducted including 248

patients referred to the PET/CT Unit at the National Auton-

omous University of Mexico in Mexico City by their

cardiologist for the evaluation of suspected myocardial

ischemia. Demographic and clinical data were retrieved

through the electronic patient archive system. Several clini-

cally relevant confounders were included in this study: sex,

age, body mass index (BMI), hypertension, dyslipidemia, type

2 diabetes mellitus (DM), smoking habit, and semiquantitative

perfusion scores (see ahead). Ethical approval was obtained for

the conduction of the study from the local institutional ethics

committee.

PET Acquisition

PET images were acquired on a whole-body 64-slice

PET/CT scanner (Biograph True Point; Siemens Medical

Solutions). PET data were acquired in 3-D list mode. Patients

were studied after an overnight fast, and all refrained from

caffeine-containing beverages or theophylline-containing med-

ications for 24 hours before the study. Myocardial perfusion

was assessed at rest and during vasodilator stress with

adenosine and Nitrogen-13 ammonia as the perfusion radio-

tracer. Two CT-based transmission scans (120 kVp; 20-30 mA;

helical scan mode with a pitch of 1.35) were obtained before

the rest perfusion studies and after the stress perfusion studies

with normal breathing for correction of photon attenuation for

PET. The registration of the CT attenuation map with the PET

images was verified visually by an experienced technologist

and alignment was corrected if necessary by manual 3-D

translation. Regional myocardial perfusion was first assessed

during rest using 740 MBq of Nitrogen-13 ammonia. Rest

imaging extended for 10 minutes and began a few seconds

before the injection. The radiotracer was administered as a

single peripheral intravenous bolus (3-5 seconds) followed by

a 10-mL saline flush. Thirty minutes later, a pharmacological

stress test was performed, beginning with the injection of

adenosine during a 6-minute period (140 mg/kg per minute). A

second dose of 740 MBq of Nitrogen-13 ammonia was injected

at the third minute of the adenosine infusion. Stress images

acquisition was started a few seconds before the radiotracer

injection. Sixteen dynamic frames were reconstructed (twelve

10-s, two 30-s, one 1-minute, and one 6-minute frames, for a

total of 10 minutes). Standard reconstruction (2-D attenuation-

weighted OSEM) was used with 3 iterations and 14 subsets and

3-D postfiltering with a 5-mm Gaussian kernel filter. Trans-

verse data were reformatted to a 1689168947 matrix with

2 mm pixels for each dynamic frame.

Perfusion Data Analysis

Semiquantitative Myocardial Perfu-
sion. Images were interpreted semiquantitatively using the

standard American Heart Association 5-point scoring system 17

and traditional metrics were documented: summed difference

score (SDS), summed stress score (SSS), and summed rest

score (SRS). SRS (in a fixed perfusion defect) was considered

as a measure of the extent and severity of a previous MI.

Quantitative Myocardial Perfusion. Left ven-

tricular contours and input function regions were obtained

automatically allowing minimal observer intervention in QPS

software package (Cedars-Sinai, Los Angeles, CA, USA).

Dynamic myocardial samples were obtained from the polar

map by analyzing all time frames within the fixed left

ventricular contour boundaries. Quantitative rest and stress

MBF values (mL/g/minute) were computed for each sample on

the polar map as described previously18 using a previously

described 2-tissue compartment pharmacokinetic model for

Nitrogen-13 ammonia.19 MPR was calculated as the ratio

between stress MBF and rest MBF (making it a unitless

variable). Rest MBF was corrected accordingly for the rate-

pressure product (RPP).20 The global MPR and stress MBF

were calculated within the whole left ventricular region (as

defined by the left ventricle long-axis plane) as parameters of

interest for our analysis.

Ventricular Function Data Analysis

ECG-gated stress images were analyzed with the QGS

software package (Cedars-Sinai, Los Angeles, CA, USA).21

Short-axis images were processed and ventricular edges and

cavity volumes were calculated for each of the re-binned 8

dynamic frames that were reconstructed for the average

cardiac cycle. The algorithm for determining edges and

calculating volume has been described previously.22

Systolic function was evaluated through left ventricular

ejection fraction (LVEF) (% of the end-diastolic volume

ejected) using the average time-volume curves. Next, diastolic

function was evaluated with the mean filling rate during the

first third of diastole (MFR/3) as a surrogate marker. MFR/3

was obtained from the first derivative of the left ventricular

time-volume curve and expressed in end-diastolic volumes per

second (EDV/s) as it is adjusted to the ventricle dimensions on

a patient-by-patient basis.23,24

Finally, ventricular synchrony was evaluated through

Entropy, which is a measurement of uniformity of the onset

and progression of wall motion throughout the cardiac cycle.25

Entropy was expressed as a percentage (ranging from 0 to 100)

with greater percentages reflecting a lesser uniformity of

ventricular fiber contraction.14 It was obtained by phase

analysis (embedded in the QGS software package [Research

Edition, PET Processing plugin, Cedars-Sinai]). Entropy was

used because it constitutes an expression of (dys)synchrony

that is not dependent on phase similarity25 as other described

parameters (Bandwidth and Standard Deviation).

Statistical Analysis

All continuous variables are described as mean ± standard

deviation, and categorical variables are expressed as frequen-

cies with percentages. Between-group comparisons were made

using independent samples t tests.
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The biserial correlations (using Pearson’s correlation

coefficient) between LVEF, MFR/3, and Entropy were eval-

uated. Next, a general multivariate analysis of covariance

(MANCOVA) was performed including sex, age, BMI,

hypertension, dyslipidemia, type 2 DM, smoking habit, SRS,

SSS, stress MBF, and MPR in the model as the independent

(i.e. predictive) variables, and LVEF, MFR/3, and Entropy as

the dependent (i.e. outcome) variables. The independent

significance of the included predictors was tested using Pillai’s

trace criterion with an approximate F statistic. Further, the

multivariate analyses were repeated including the same inde-

pendent and dependent variables for patients with and without

imaging evidence of a previous MI. Additionally, the effect

sizes for the predictors (g2) are reported and graphically

depicted.

Finally, supplementary analyses were performed in both

female and hypertensive patients without a previous MI.

All statistical analyses were performed with SPSS (Re-

leased 2013. IBM SPSS Statistics for Windows, Version 22.0.

Armonk, NY: IBM Corp., USA). A P-value of \0.05 was

considered statistically significant.

RESULTS

Baseline characteristics, semiquantitative, quantita-

tive perfusion, and ventricular function data are

presented in Table 1. We found a high prevalence of

HTN (60%) and dyslipidemia (57%) in the whole

cohort, while nearly a quarter had undergone previous

revascularization. When comparing patients with and

without a previous MI, a significantly higher prevalence

of type 2 DM, smokers, and dyspnea was documented in

the MI group. The scan results of two representative

patients are shown in Figure 1. Figure 2 shows the

proportion of scans interpreted to have ischemia, MI, or

both. A greater proportion of scans with a previous MI

showed ischemic findings, while a smaller proportion of

scans without evidence of a previous MI had ischemia.

Differences were found in clinical characteristics,

perfusion (semiquantitative scores, stress MBF, and

MPR), and ventricular function parameters (LVEF,

MFR/3, and Entropy) between patients with and without

Table 1. Baseline population characteristics

Variable
All

n = 248
No previous MI

n = 162
Previous MI

n = 86 P value

Demographics—mean (SD)

Age (years) 64 (11.2) 63.2 (11.3) 65.4 (10.8) .137

Women/men (n) 82/166 65/97 17/69 .002

BMI (kg/m2) 27.8 (4.2) 28.0 (4.3) 27.4 (3.8) .334

Risk factors—n (%)

Arterial hypertension 149 (60) 101 (62) 48 (56) .292

Dyslipidemia 141 (57) 90 (56) 51 (59) .540

Type 2 DM 51 (21) 25 (15) 26 (30) .007

Smokers 112 (45) 65 (40) 47 (55) .021

Cardiovascular history—n (%)

Asymptomatic 60 (24) 54 (33) 6 (7) \.001

Angina 130 (52) 80 (49) 50 (58) .178

Dyspnea 135 (54) 75 (46) 60 (70) \.001

Previous revascularization 60 (24) 15 (9) 45 (52) \.001

Semiquantitative perfusion metrics—mean (SD)

SRS 4 (7) 1 (1) 10 (9) \.001

SSS 9 (10) 5 (6) 17 (11) \.001

SDS 5 (7) 5 (6) 7 () .001

Quantitative perfusion measurements—mean (SD)

Rest MBF (mL/g/min) 0.84 (0.34) 0.87 (0.33) 0.79 (0.34) .073

Stress MBF (mL/min/gr) 1.99 (0.75) 2.21 (0.73) 1.55 (0.58) \.001

MPR 2.55 (0.89) 2.72 (0.89) 2.18 (0.79) \.001

Ventricular function measurements—mean (SD)

LVEF (systolic) 61.6 (15.1) 67.9 (9.7) 49.0 (15.9) \.001

MFR/3 (diastolic) 1.12 (0.38) 1.21 (0.35) 0.91 (0.36) \.001

Entropy (synchrony) 45.6 (11.3) 42.3 (8.7) 52.8 (12.4) \.001

BMI body mass index; DM diabetes mellitus; MI myocardial infarction; MBF myocardial blood flow; MPR myocardial perfusion
reserve
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MI. There was a higher, although not significant, rest

MBF in patients without MI.

The corresponding data for the subsample of

women and patients with arterial hypertension can be

found in Supplementary Material—Online Resource 1

and showed comparable distribution of baseline charac-

teristics with the exception of a higher proportion of

asymptomatic patients and a lower proportion of previ-

ous revascularization procedures. Also, there was a

comparable rest and stress MBF in women and hyper-

tensive patient groups.

Biserial Correlations Between Dependent
Variables

We documented significant and strong correlations

between systolic, diastolic, and synchrony function

variables. Pearson’s correlation coefficients showed

significance between LVEF and MFR/3, LVEF and

Entropy, and MFR/3 and Entropy. These results are

depicted in the correlation matrix shown in Table 2.

Multivariate Analysis of Covariance

The multivariate analysis demonstrated that stress

MBF is an independent significant predictor (P\ .001,

g2 = 0.111) of the ventricular function (LVEF, MFR/3,

and E), while MPR showed only a trend toward

significance (P = 0.063). From the other clinically

relevant variables included in the model, sex (P = .003),

age (P = .004), type 2 DM (P = .025), and SRS (P \
.001, g2 = 0.284) were also found to be significant

predictors (Table 3).

The secondary exploratory multivariate analysis for

patients without a previous MI (n = 162) again showed

that stress MBF was significantly associated with

ventricular function (P = .006, g2 = 0.103), while

MPR was not (P = .27). In this analysis, sex and BMI

were also significant predictors (P = .029 and P = .005,

respectively). Similar results were obtained in the

analysis of patients with evidence of a previous MI:

stress MBF (P = .022), MPR (P = .090), and SRS (P =

.004). These results are shown in more detail in the

Supplementary Material—Online Resources 2 and 3.

The magnitude of the effect sizes for the primary and

secondary analyses is depicted in Figure 3.

The supplementary analyses in women without a

previous MI conveyed a rather small and, therefore,

underpowered subsample (n = 65) considering the

amount of relevant variables in the other analyses. As

for noninfarcted patients with hypertension (n = 101),

results were similar to those in the primary and

secondary analyses (Supplementary Material—Online

Resource 4).

A supplementary follow-up univariate analysis

divided per measurement of ventricular function can

be consulted in Supplementary Material—Online

Resources 5 through 7.

DISCUSSION

In the present study, we have shown that stress

MBF correlates better that MPR with ventricular func-

tion in a population of patients with suspected ischemia

using an integral statistical approach. By inputting both

quantitative perfusion measurements (i.e. stress MBF

and MPR) in the analyses, we have aimed to compare

their relative importance based on their independent

association with ventricular function.

In the first part of the study, we documented

differences between important subgroups concerning the

presence or the absence of a previous MI. Results have

confirmed important differences in ventricular perfusion

and several components of ventricular function as well

as in clinical profile between these two groups of

patients. Patients with evidence of a previous MI had a

higher prevalence of type 2 DM which adds to their

prognostic profile. Interestingly, they were more symp-

tomatic and showed slightly more ischemic burden

overall. As expected, a worse ventricular function profile

was found. However, not only scar but also perfusion

seems to play a role in their functional status.

A close statistical relationship between systolic,

diastolic, and synchronic ventricular function was

observed. In the clinical scenario, functional measure-

ments may individually serve at different points of the

spectrum of severity of CAD. Nonetheless, they also

provide, in compound, a proxy for the overall status of

ventricular function since in reality they are probably not

modified independently. Still, further research is needed

to define the optimal measurements of diastolic function

and synchrony, as well as their particular normal values in

different clinical scenarios evaluated with PET imaging.

Next, we documented that stress MBF is consistently

better correlated to ventricular function than MPR as

evidenced by their significance values and moderate

effect sizes in the multivariate models (Figure 3), inde-

pendently from the extent and severity of a previous MI

(as measured by SRS) or other clinically relevant vari-

ables. Nonetheless, it became clear in the primary analysis

that the greatest influence on cardiac function patent from

our analyses was the presence of a previous MI.

The significant association of stress MBF with

ventricular function was sustained in the supplementary

analysis of patients with hypertension and without

previous MI. These results suggest a greater relevance

of stress MBF, rather than MPR, in the profile of patients

who may benefit from its evaluation in routine clinical
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Volume 25, Number 3;797–806 Stress MBF correlates with ventricular function and synchrony…



BA

Quantitative
Perfusion

Systolic
and

Diastolic
Function

Phase
Synchrony

rMBF 
(ml/g/min)

sMBF 
(ml/g/min)

MPR

Filling (ml/s) Filling (ml/s)

Entropy (%) Entropy (%)

rMBF 
(ml/g/min)

sMBF 
(ml/g/min)

MPR

Visual
Analysis

Volume (ml) Volume (ml)

Figure 1. Representative cases from the spectrum of patients in the study. A shows the perfusion
and functional results of a 55-year-old female with a low-likelihood cardiovascular risk, no
quantitative perfusion abnormalities: MPR = 2.58, sMBF = 2.22 mL/g/min, and preserved systolic,
diastolic, and synchronic function: LVEF = 75%, MFR/3 = 1.25, E = 34%. B Shows a 64-year-old
male with history of a previous distal anterior and apical MI with residual anteroapical ischemia:
MPR = 1.88, sMBF = 1.43 and diminished systolic, diastolic, and synchronic function: LVEF 47%,
MFR/3 = 0.55, E = 61%.
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practice. Moreover, considering the use of stress MBF as

an alternative to MPR may be of benefit considering

patient safety for the evaluation of ischemic burden. In

this sense, acquisition times and radiation doses can be

reduced26 through ‘‘stress-only’’ protocols. This, how-

ever, may not be implemented in patients with history of

a previous MI, where rest defects should be evaluated.

We have found other significant predictors of

ventricular function, although not as strong as stress

MBF, namely: sex, age, and type 2 DM. These results

support previous studies describing sex-based systolic

function differences, a progressive decline of diastolic

function associated with age,27 and the vascular-func-

tion-independent effect of type 2 DM on myocardial

contraction.28

The clinical use of quantitative perfusion goes

beyond diagnosis. Risk stratification and prediction of

CAD-related outcomes are of major interest in nonin-

vasive cardiac imaging due to the major burden that

cardiovascular disease represents.29 Notably, our results

support the potential utility of stress MBF over MPR in

two main aspects. First, the role of stress MBF in

patients that have not suffered a major event, such as

MI, may be primarily diagnostic, as it has been proposed

in studies focused on the detection of anatomically

significant CAD.8 Then, stress MBF may be sensitively

hampered and additionally provide information on the

functional consequences of myocardial ischemia. As

All Scans
248

No MI
162

Previous MI
86

No Ischemia
83

Ischemia
79

No Ischemia
27

Ischemia
59

Figure 2. Division of scans according to their interpretation.

Table 2. Biserial correlations between depen-
dent variables analyzed through Pearson’s
correlation coefficient

LVEF MFR/3 E

LVEF 1 0.612* -0.698*

MFR/3 0.612* 1 -0.563*

E -0.698* -0.563* 1

E entropy; LVEF left ventricular ejection fraction; MFR/3 mean
filling rate during the first third of the diastole.
* P\0.001

Table 3. Multivariate model results for significant predictors of the integrative ventricular function,
n = 248

Multivariate analysis of covariance

Dependent
variables

Independent
variables

Pillai’s Trace Value
(and g2) F

Hypothesis
df

Error
df

P
value

LVEF

MFR/3

Entropy

Intercept 0.630 98.705 3.0 174.0 \.001

Sex 0.077 4.861 .003*

Age 0.073 4.586 .004*

Hypertension 0.015 0.870 .458

Dyslipidemia 0.010 0.606 .612

Type 2 DM 0.052 3.187 .025*

Smoking 0.033 1.967 .121

BMI 0.031 1.841 .141

SRS 0.284 22.966 \.001*

SSS 0.028 1.695 .170

Stress MBF 0.111 7.253 \.001*

MPR 0.041 2.474 .063

BMI body mass index; df degrees of freedom; DM diabetes mellitus; LVEF left ventricular ejection fraction; MBF myocardial blood
flow; MFR/3 mean filling rate during the first third of the diastole; MPR myocardial perfusion reserve; SRS summed rest score; SSS
summed stress score
* Significant P value
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alreadymentioned, this application can potentially prevent

unnecessary radiation exposure if a resting phase scan is

spared. Second, in the case of patients with a previous MI,

themain role of stressMBFmaybe prognostic,9,10 given its

relevance in influencing residual ventricular function.

Future research on condition-adjusted cut-offs and on the

prognostic performance of stress MBF for specific out-

comes, such as heart failure, is warranted.

A previous report from our group30 has addressed

the relationship between quantitative myocardial perfu-

sion and systolic function. However, such study was

performed in a highly restricted population including

only patients with previous MI and varying degrees of

systolic dysfunction, and it was mostly focused on MPR

rather than stress MBF. The present study extends our

knowledge concerning the relationships of stress MBF

by demonstrating a stronger association with ventricular

function in comparison with MPR, and in a wider

population of patients referred for cardiac PET imaging.

We believe that further investigation will optimize

the application of cardiac PET by exploring the clinical

value of combined perfusion-function measurements

which may offer more integral gauges of cardiac health.

NEW KNOWLEDGE GAINED

This study demonstrated that peak-stress MBF

correlates with ventricular function (composed by mea-

sures of systolic, diastolic, and synchronic function)

better than MPR and independently from relevant

covariates. Additionally, the present work showed that

the described greater correlation of stress MBF with

ventricular function is sustained in the patients with and

without a previous MI and in noninfarcted patients with

arterial hypertension.

LIMITATIONS

One of the characteristics of our study is that we

have approached a fairly heterogeneous population.

Although this potentially yields difficulty in addressing

multivariate relations, we believe that this approach

rather provides a broad view of these complex relations

in the setting of the day-to-day reality of specialized

cardiovascular imaging centers. Another potential lim-

itation of our study, especially for the assessment of

rather novel diastolic function parameters such as MFR/

3, is that the analysis of the gated datasets was

performed with a binning of 8 frames per cardiac cycle.

Although this may not be optimal, there are a number of

studies which have demonstrated that the obtained

assessment and derivation of the time-volume curves

from 8 frames is comparable to SPECT reconstructions

made using 64 frames. In the future, complementary

echocardiographic evaluation can be useful. Yet, another

limitation is the lack of regional perfusion analysis.

Although of interest, we aimed to account for the global

perfusion status and its influence on the global ventric-

ular function. Therefore, the influence of specific

regional measures cannot be evaluated from this study

alone.

CONCLUSIONS

Stress MBF is better correlated with ventricular

function than MPR, as evaluated by Nitrogen-13 ammo-

nia PET, independently from other relevant

cardiovascular risk factors and clinical covariates. This

relationship between coronary vasodilatory capacity and

ventricular function is sustained across groups with and

without a previous MI. Further research in the clinical

utility of PET evaluation of stress MBF and its prog-

nostic value is warranted.
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