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Background. Determining infarct size and myocardial salvage in patients with ST-segment
elevation myocardial infarction (STEMI) is important when assessing the efficacy of new
reperfusion strategies. We investigated whether rest 82Rb-PET myocardial perfusion imaging
can estimate area at risk, final infarct size, and myocardial salvage index when compared to
cardiac SPECT and magnetic resonance (CMR).

Methods. Twelve STEMI patients were injected with 99mTc-Sestamibi intravenously
immediate prior to reperfusion. SPECT, 82Rb-PET, and CMR imaging were performed post-
reperfusion and at a 3-month follow-up. An automated algorithm determined area at risk, final
infarct size, and hence myocardial salvage index.

Results. SPECT, CMR, and PET were performed 2.2 ± 0.5, 34 ± 8.5, and 32 ± 24.4 h after
reperfusion, respectively. Mean (± SD) area at risk were 35.2 ± 16.6%, 34.7 ± 11.3%, and
28.1 ± 16.1% of the left ventricle (LV) in SPECT, CMR, and PET, respectively, P 5 0.04 for
difference. Mean final infarct size estimates were 12.3 ± 15.4%, 13.7 ± 10.4%, and 11.9 ± 14.6%
of the LV in SPECT, CMR, and PET imaging, respectively, P 5 .72. Myocardial salvage indices
were 0.64 ± 0.33 (SPECT), 0.65 ± 0.20 (CMR), and 0.63 ± 0.28 (PET), (P 5 .78).

Conclusions. 82Rb-PET underestimates area at risk in patients with STEMI when compared
to SPECT and CMR. However, our findings suggest that PET imaging seems feasible when
assessing the clinical important parameters of final infarct size and myocardial salvage index,
although with great variability, in a selected STEMI population with large infarcts. These
findings should be confirmed in a larger population. (J Nucl Cardiol 2018;25:970–81.)
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Abbreviations
AAR Area at risk

AHA-17 American Heart Association 17-seg-

ment model

AMI Acute myocardial infarction

CMR Cardiac magnetic resonance

FIS Final infarct size

LV Left ventricle

MSI Myocardial salvage index

OSEM Ordered subsets expectation

maximization

pPCI Primary percutaneous coronary

intervention

PET Positron emission tomography

SPECT Single-photon emission computed

tomography

STEMI ST-segment elevation myocardial

infarction
82Rb Rubidium-82

ROI Region of interest

INTRODUCTION

Reperfusion therapy has significantly reduced mor-

tality in patients with acute myocardial infarction

(AMI). Consequently, large numbers of patients are

required to demonstrate further improvement in survival

with introduction of new treatment strategies.1 There-

fore, surrogate end-points for mortality are needed in

proof-of-concept trials assessing the efficacy of new

cardioprotective strategies. It has been shown that the

most critical determinant of prognosis and outcome in

patients with AMI is the final infarct size (FIS).2 The

area at risk (AAR), which is the initial endangered

myocardium, is a major determinant of the FIS,3 and

therefore recommended to measure in order to risk

stratify the patients.4 Measuring AAR and FIS enables

determining the myocardial salvage index (MSI), which

provides an indicator of therapeutic benefit.

Single-photon emission computed tomography

(SPECT) has been extensively validated in clinical

settings for the measurement of FIS and AAR, and is

considered gold standard in determining AAR.1,2,4–8 The

primary limitation of SPECT is that it is not easily

applied in the clinical setting. Therefore, other methods

have been developed such as cardiac magnetic reso-

nance imaging (CMR), ECG-based scoring systems, and

angiographic scores.9,10

CMR appears superior to SPECT in detection and

quantification of infarct size, and CMR can also be used

to assess AAR.1,11,12 However, CMR has additional

contraindications compared to SPECT, most of all the

presence of pacemakers and implantable defibrillators,

claustrophobia, and renal insufficiency.

Another promising modality for measuring AAR

and FIS is myocardial perfusion imaging with positron

emission tomography (PET). Generator-based Rubid-

ium-82 (82Rb) has now eased the access to myocardial

perfusion with PET.13 Post-reperfusion imaging to

depict AAR with PET might be feasible since ische-

mia/reperfusion injury entails a decrease in the sodium-

potassium pump activity, hence limiting the incorpora-

tion of 82Rb in the myocytes in the endangered

myocardium.14,15 With higher spatial and temporal

resolution than SPECT and considerably shorter scan

time than CMR and no contraindication, PET could

provide accurate and reproducible measurements of

AAR and FIS.

The aim of this prospective study was therefore to

compare rest 82Rb-PET myocardial perfusion imaging to

SPECT and CMR in terms of measurements of AAR,

FIS, and MSI in patients with ST-segment elevation

myocardial infarction (STEMI) undergoing reperfusion

with primary percutaneous coronary intervention

(pPCI).

METHODS

Study group

The study design is outlined in Figure 1. Twelve patients

(11 male, median [interquartile range, IQR] age 58 (53;

68) years) with STEMI were enrolled. Duration from onset of

symptoms to arrival at the catheterization laboratory was less

than 12 hours. STEMI was defined as ST-segment elevation in

2 contiguous electrocardiographic (ECG) leads of[0.1 mV in

V4 - V6 or leads II, III, and aVR, or[ 0.2 mV in lead V1 -

V3. Patient enrolment only took place during the opening hours

of the Department of Nuclear Medicine. Exclusion criteria

were cardiogenic shock, previous myocardial infarction, stent

thrombosis, unconsciousness, or previous coronary artery

bypass grafting.

Coronary angiography was performed to confirm occlu-

sion in the infarct-related artery, and pPCI was performed

according to local standard procedures.

All patients triaged for pPCI were pre-treated with

standard therapy, including oxygen, sublingual nitroglycerin,

aspirin (300 mg), prasugrel (60 mg), and heparin (10,000 units

i.v.), and treated during the procedure with bivalirudin if not

contraindicated.

Ethics

The independent local ethics committee approved this

study, protocol no: H-4-2010-054. All patients received oral

See related editorial, pp. 982–985
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and written information, and written consent was obtained

from all patients before inclusion in compliance with the

Declaration of Helsinki.

SPECT acquisition

Prior to opening of the occluded vessel(s), patients

received a 700 MBq i.v. injection of 99mTc-Sestamibi.

Myocardial SPECT imaging was performed within 1-4 hours

after pPCI to visualize AAR. Patients were in supine

position with continuous ECG monitoring. Images were

acquired using a dual-head gamma camera with low-energy,

high-resolution collimators, (Philips Precedence 16 Slice

SPECT/CT, Eindhoven, The Netherlands) in an ECG-gated

64-by-64 matrix with 32 projections, acquisition time of

20 seconds per projection, and 8 frames per cardiac cycle

with a 20% window centered on the 140 keV photopeak of
99mTc. For attenuation correction, a low-dose computed

tomography scan (CT) was acquired. Processing and recon-

struction of SPECT images were conducted by iterative

ordered subsets expectation maximization (OSEM) algo-

rithm; 2 iterations, 10 subsets. The early SPECT imaging

was considered as the gold standard of AAR estima-

tion.5,16,17 A follow-up scan was conducted in a similar

manner 3 months later to assess FIS. MSI was calculated as

(AAR - FIS)/AAR.

Figure 1. Study flow diagram. pPCI primary percutaneous coronary intervention; SPECT single
photon mission computed tomography; PET positron emission tomography; CMR cardiac magnetic
resonance.
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CMR acquisition

Patients were screened for contraindications, and if none

existed, cardiac imaging was performed on a 1.5 T scanner

(Avanto, Siemens, Erlangen, Germany) with the use of a 6-

channel body array coil. CMR was conducted twice: subacute

and at 3-month follow-up. The subacute imaging was not

performed earlier than 12 hours after pPCI to allow for

development of myocardial oedema, and\ 3 days after pPCI.

Patients were scanned in a supine position, and images were

obtained at end-expiratory breath hold with ECG gating. To

visualize edema and determine AAR (subacute scan only),

multiple T2-weighted short tau inversion recovery sequences

(slice thickness, 8 mm; field of view, 300-360 mm; inversion

time, 180 ms; repetition time, 2 R-R intervals; echo time,

65 ms; slice gap, 0 mm) were applied in short-axis image

plane from base to apex covering the entire left ventricle (LV).

FIS was assessed at follow-up scan 10 minutes after the

administration of diethylenetriamine pentaacetic acid (0.1 mL/

kg; Gadovist, Bayer Schering, Berlin, Germany). An ECG-

triggered enhancement inversion recovery was utilized (slice

thickness, 8 mm; field of view, 300-360 mm; echo time,

1.4 ms, slice gap 0 mm). The LV was covered from base to

apex in short-axis image plan: by adjusting the inversion time,

the signal from the normal myocardium was nulled for each

slice. The follow-up CMR FIS was, in this study, considered as

gold standard method to estimate this parameter.5,18,19

PET acquisition

Approximately, 24 h after 99mTc injection, a rest cardiac

PET imaging was performed using a Siemens Biograph mCT/

PET 64-slice scanner (Siemens Medical, Knoxville, USA.)

First, a low-dose CT scan was acquired for attenuation

correction. Following i.v. administration of approximately

1,100 MBq of 82Rb (Cardiogen•82�, Bracco Diagnostics Inc.,

Princeton, NJ, USA), dynamic and gated (8 frames per cardiac

cycle) data acquisition was performed in 3D list mode for

7 min at rest. Images were reconstructed into 21 frames

(12 9 10, 3 9 20, 6 9 30 seconds) with attenuation, scatter,

and decay corrections using 3D OSEM, Gaussian filtering with

10 mm full width at half maximum. The follow-up scan was

carried out 3 months later with similar settings to gauge FIS.

SPECT and PET image analysis

Subacute and follow-up semi-quantitative data from

SPECT and PET were both processed and analyzed semi-

automatically in Cedars QPS/QGS� software (v. 2012, Cedars

Sinai, Los Angeles, CA, USA). Two experienced observers

assessed the accuracy of slice alignments in the ventricular

planes and intervened if necessary (blinded to CMR data). The

perfusion defects (and thus AAR and FIS) were subsequently

quantified in (1) the total LV, and (2) in each of the 17

segments according to the American Heart Association (AHA)

17-segment model.20 The magnitude of the rest perfusion

defects (that was equal to assumed AAR in the subacute and

FIS in the follow-up scan) was determined automatically by

comparing the polar plot of a patient to that of the normal

database on a pixel-by-pixel basis. A 2.5 standard deviation

cut-off was used to define whether a pixel count fell below a

normal value. The normal limit approach has previously been

used to estimate AAR and FIS.21–23 However, we also

estimated AAR in SPECT images using the threshold approach

of 50% of peak counts and compared it to the results of the

normal limit method.

The cut-off value of 2.5 standard deviations to define

abnormality on the 82Rb PET uptake are derived from SPECT

guidelines, but has not been validated for AAR assessment

with 82Rb PET. Consequently, percentage of perfusion defect

from PET in each of the 17 segments was compared to the gold

standard of SPECT AAR in the segments to obtain optimal cut-

off values with receiver operating characteristics (ROC)

analysis.

CMR image analysis

Endocardial and epicardial contours were manually traced

in all short-axis images by two experienced observers (blinded

to SPECT and PET data). A region of interest (ROI) was

drawn in the normal (remote) myocardium, and AAR was

defined as hyperintensive myocardium 2 standard deviations

above the mean value in ROI on the T2-weighted images.7

Hypointensive areas within the AAR (e.g., hemorrhage or

microvascular obstruction) were considered as part of the

AAR. Scattered areas of hyperintensity in the normal myo-

cardium were manually excluded. AAR was calculated as

percent of the LV volume. Identical to the subacute scan, the

endo- and epicardial contours were manually traced at the

follow-up images, and a ROI was placed in the normal

myocardium. FIS was defined as hyperintensive myocardium 5

standard deviations above the mean value in ROI.7 FIS was

calculated as percent of the LV volume. The analyses were

performed with CVI42 software, v. 4.0 (Circle Cardiovascular

Imaging Inc., Calgary, Canada).

Statistical analysis

Descriptive patient parameters are presented as median

with IQR. Outcome variables are presented as mean ± stan-

dard deviation (SD) and categorical variables as frequencies or

percent (%). All variables were tested with normality plots. To

compare the three modalities, non-parametric Friedman test

was used, and whenever a significant difference was observed,

Dunn’s test for correction of multiple comparisons was

performed. Correlation between any two modalities was

examined by Spearman’s correlation. In addition, Bland-

Altman test was performed to evaluate the agreement between

SPECT, CMR, and PET. ROC analyses were generated in

order to acquire the ideal cut-off values of PET parameters vs

SPECT (‘‘gold standard’’). Accuracy, sensitivity, specificity,

positive predictive value (PPV), and negative predictive value

(NPV) were calculated for PET AHA 17-perfusion defects. A

P value\.05 was considered significant. All statistical anal-

yses were performed using SPSS� version 19 (IBM, Chicago,

IL, USA).
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Statistical considerations

In a previous study comparing CMR and SPECT, AAR

and FIS have been presented as 30 ± 19% and 15 ± 17% of

the LV with SPECT and 28 ± 15% and 16 ± 14% of LV

with CMR (mean ± SD), respectively.16 We estimated the

sample size in a pre-trial power calculation (a = type I error

at 5% and 80% power (1 - b)) by two methods with the

following:

(1) Sample size by correlation coefficient: A correlation of no

less than r = 0.75 would be acceptable; hence, a sample

size of 11 paired patients was required.

(2) Sample size for paired difference in mean: Prior investi-

gations of SPECT and CMR claim a SD of 8-12 for mean

difference. Thus, an acceptable mean difference of 8 ± 8%

would result in a sample requirement of 10. To account for

loss of patients to follow-up, 12 patients were included in

the comparison of SPECT, PET, and CMR in regard to

AAR and FIS.

RESULTS

Eleven of the initial twelve patients were included

in the AAR analysis (one patient excluded due to

previous infarction) and ten patients were included in

the follow-up analysis (one patient died during follow-

up) (Figure 1). Baseline characteristics are shown in

Table 1.

Median AAR estimation in SPECT images was not

significantly different when measured with the threshold

or the normal limit approach. Bias was -1.49 ± 12.8%,

95% limits of agreement were -26.5% to 23.5% (results

not shown).

SPECT, CMR, and PET comparison

SPECT, CMR, and PET were performed

2.2 ± 0.3 h, 34 ± 8 h, and 32 ± 7 h after 99mTc-Ses-

tamibi injection and pPCI, respectively. In SPECT

imaging, mean AAR estimate was 35.2 ± 16.6%, and in

CMR, AAR was 34.7 ± 11.3%, while in PET, AAR

estimate was 28.1 ± 16.1% of the LV, resulting in a

significant difference between the three modalities

(P = .04). Post hoc paired tests revealed no significant

difference between SPECT and CMR AAR (P = .75),

whereas PET AAR estimate was significantly smaller

compared to the other two modalities (P = .02 vs

SPECT, P = .04 vs CMR). The 95% limits of agree-

ment were -9.2 to 23.5% (SPECT vs PET), -19.0% to

19.3% (SPECT vs CMR), and -13.9% to 27.43% (CMR

vs PET). SPECT correlated well in regard to AAR with

PET and CMR (Spearman’s rho rs = 0.86, 95% CI 0.51-

0.96, P\ .001; rs = 0.79, 95% CI 0.35-0.95; P\ .005,

respectively) (Figure 2A).

Despite the overall good agreement between the 3

modalities, there were substantial differences in indi-

vidual cases.

Follow-up SPECT, CMR, and PET were performed

on the same day on average 95 ± 6 days after the initial

pPCI treatment. Mean FIS estimate was 12.3 ± 15.4%,

13.7 ± 10.4%, and 11.9 ± 14.6% of LV in SPECT,

Table 1. Baseline characteristics

Patients
(n 5 11)

Age (years) 58 (53; 68)

Male 10 (91%)

Hypertension 2 (18%)

Hypercholesterolemia 2 (18%)

Total cholesterol, mmol/L 4.9 (4.1; 5.3)

Diabetes 0

Smoking

Non 5 (46%)

Active 2 (18%)

Ex 4 (36%)

Family history of premature CAD 4 (36%)

Peripheral Arterial Disease 0

Infarct location

LAD 6 (55%)

RCA 5 (45%)

LCX 0

TIMI flow prior to pPCI

0 5 (46%)

1 3 (27%)

2 2 (18%)

3 1 (9%)

TIMI flow post-pPCI

0 0

1 0

2 3 (27%)

3 8 (73%)

Peak Troponin T (ng/mL) 3710 (1450; 5850)

Peak CK-MB (U/I) 200 (70.9; 320)

Left Ventricle Ejection Fraction

post-pPCI (echocardiography)

(%)

40 (35; 50)

Time from symptom-onset to

PCI (min)

175 (125; 300)

Time door-to-PCI (min) 27 (24; 29)

Values are median (interquartile range) or n (%)
CAD, coronary artery disease; LAD, left anterior descending
artery; RCA, right coronary artery; LCX, left circumflex artery;
TIMI, thrombolysis in myocardial infarction; CK-MB, creatine
kinase myocardial band; pPCI, primary percutaneous
intervention
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CMR, and PET imaging, respectively, P = .72 for

difference. 95% limits of agreement were -11.4% to

13.8% (SPECT vs PET), -20.1 to 19.9% (SPECT vs

CMR), and -16.9% to 14.3% (CMR vs PET). Figure 2B

depicts the agreement and correlation for follow-up

measurements. MSI was comparable: 0.64 ± 0.33

(SPECT), 0.63 ± 0.28 (PET), and 0.65 ± 0.20 (CMR)

with no statistically significant difference (P = .78)

between the modalities; however, the correlations were

weak and non-significant between CMR and the other

modalities. Correlations, agreements, and MS indices

are reported in Figure 2C and Table 2, respectively.

Optimization of PET for accurate AAR
assessment

A ROC curve was created to assess the discrimi-

natory ability of PET-derived perfusion to detect SPECT

AAR. The accuracy of PET AAR could be optimized by

changing the segmental cut-off value of perfusion deficit

to 35%, which resulted in a sensitivity of 85%, speci-

ficity of 94%, PPV of 87%, NPV of 93%, and accuracy

of 91%. Area under the ROC curve was 0.92 (CI: 0.87-

0.97, P\ 0.0001).

DISCUSSION

To our knowledge, the present study is the first to

compare and evaluate the use of PET to measure AAR,

FIS, and MSI to the current gold standard methods of

SPECT and CMR. Despite differences in tracer prop-

erty, imaging technique, reconstruction algorithms, and

intervening revascularization, the three modalities cor-

related well in regard to AAR and FIS. However, the

limits of agreement were fairly large, and PET under-

estimated the AAR with approximately 7% compared to

SPECT. Our data suggest that this difference could be

corrected for by applying new PET cut-off values to

distinguish normal from hypoperfused segments. How-

ever, this cut-off is exploratory and needs to be verified

in a separate cohort. Overall, the clinical relevant

parameters of FIS and MSI were comparable between

the modalities.

It is of great importance to establish the AAR when

evaluating the efficacy of new infarct-limiting strategies

because the variation in the endangered area is great

even with similar segments with coronary occlusion.24

However, the concept and definition of AAR has

recently gained attention since no clear standardized

measurement exists.25,26 The original SPECT-derived

AAR measurements are based on pioneer studies from

late 1980s and early 1990s.8,27 These studies used

reconstruction techniques that are different form current

practice (i.e., filtered back projection without AC).

Recently, the T2-weighted method of delineating AAR

by CMR has come under criticism. Kim et al. argue that

the developed edema does not depict AAR but rather the

infarct size.28 Therefore, the concept of ‘‘gold standard’’

must be viewed with caution.29

Not surprisingly, the estimated AAR was signifi-

cantly smaller in PET imaging compared to SPECT and

CMR. SPECT and PET imaging assess perfusion with

different approaches. While 99mTc-Sestamibi is incor-

porated in the mitochondria of living myocytes, 82Rb

works as a potassium analogue and accumulates in the

myocytes via the Na?/K? ATPase.13 Furthermore,

fundamental differences in image acquisition and tech-

nology between SPECT and PET could, at least in part,

explain the differences in measured AAR. Previously,

different cut-off values of 50%30 and 60%8 of peak

counts have been proposed as the optimal cut-off to

depict AAR with SPECT. We choose a similar cut-off

value for SPECT and PET, 2.5 SD (&50%). However,

we find that an optimization of the cut-off values

between normal and hypoperfused myocardium is pos-

sible with PET. Although earlier papers have used the

normal limits approach to measure the AAR,21–23 the

method has not been vastly validated and could pose a

limitation.

Previous papers16,17 have reported smaller AAR

estimations by SPECT and CMR than our results. This

could potentially result in an overestimation of MSI. The

discrepancies could be the result of our small sample

population and selection bias. However, other studies

report comparable CMR-derived AAR estimations and

standard deviations to our results.31,32

It is somewhat counterintuitive that 82Rb-PET after

revascularization can assess the AAR. The potential

mechanism is unknown, but it is our hypothesis that

although the patency of an epicardial artery is re-

established, the ischemia/reperfusion injury may entail

microvascular impairment33 and depress the myocytes

Na?/K? ATPase activity.15,34 This damage to the

coronary microcirculation and the decrease in activity

in the sodium-potassium pump could explain the defects

seen subsequent to pPCI and enables 82Rb to visualize

AAR. In addition, the contrast between previously

jeopardized myocardium (AAR) and normal myocar-

dium after AMI seems enhanced by findings of

hyperaemia in the normal myocardium only.35,36 It

may be speculated that the decreased flow in the infarct-

related territory, compared to normal myocardium, is a

manifestation of microvascular obstruction/dysfunction

due to edema, clotting by blood components, and

endothelial disruption.37

Serial 99mTc SPECT imaging before and 18-48 h

after reperfusion therapy has previously been conducted

to demonstrate patient infarct-related artery when
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treated with thrombolytic agents.38–40 They reported

marked reductions in the extent of defect size (9%-50%)

between initial and follow-up imaging at 18-48 hours. It

has been suggested that the uptake of 99mTc after

reperfusion not merely depends on blood flow but also

the viability of the myocardium, thus reflecting the

degree of necrosis and salvage.41 It seems that SPECT

imaging at 18-48 hours measures AAR with a large

difference compared to pre-reperfusion assessment.

FIS is considered an important surrogate marker of

mortality and morbidity,6 and in many studies used as

primary end-point.22,42,43 Median FIS was not signifi-

cantly different when compared across the three

modalities. PET had minor bias and a very close

correlation with CMR. Despite the good agreement

between PET and CMR, substantial differences and

variability exist regarding the measurement of FIS,

which is demonstrated by the large limits of agreement.

Hadamitzky et al. showed similar large limits of

agreement when comparing SPECT to CMR.16 It would

be important if PET could estimate FIS comparable to

CMR, since a considerable number of patients are

unable to undergo CMR due to claustrophobia or other

contraindications.44

MSI is of clinical importance, since it conveys a

measurement of the potential benefit patients with AMI

Figure 2. (A) Area at risk correlations, Bland-Altman plots. (B) Final infarct size correlations,
Bland-Altman plots. (C) Myocardial salvage index correlations, Bland-Altman plots. rs Spearman’s
rho; SD standard deviation. Other abbreviations as in Fig. 1.

976 Ghotbi et al Journal of Nuclear Cardiology�
Ischemic area at risk May/June 2018



experience from a certain reperfusion therapy.45,46 MSI

derived from the three modalities showed good congru-

ence. It is noteworthy that in some studies,43,45 only MSI

is a predictor of mortality and not myocardial salvage

alone. Recently, a study demonstrated that MSI by CMR

could reduce sample size in cardioprotection trials by

46% compared to myocardial infarction alone.47 How-

ever, the variability of MSI in our study was notable,

although comparable to the results of Hadamitzky

et al.16 Moreover, the correlations between the modal-

ities were not significant when comparing CMR with

PET or SPECT.

The financial aspects of the three modalities are

beyond the scope of this paper, but the expenses

associated with each scanner and the monthly cost of

an 82Rb generator should be taken into consideration.

LIMITATIONS

Due to the comprehensive study protocol, the

number of patients included was small and may impact

our conclusions due to risk of type II error. Furthermore,

we lack stress-induced PET imaging, which could have

provided additional information regarding coronary flow

reserve. We did not perform stress imaging due to the

proximity to the index STEMI of concern for adverse

effects. Previous perfusion studies using N-13 ammonia

early after MI did not reveal any significant difference in

infarct size under resting and adenosine conditions,

hence questioning the absolute need for stress

imaging.48

AAR and FIS estimations in SPECT and PET

imaging are dependent on the software applications in

use, and there is no consensus on which application to

Figure 2. continued.
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Figure 2. continued.

Table 2. SPECT, CMR and PET results

SPECT CMR PET P value (Friedman)

Time from 99mTc tracer inj. to (h) 2.2 ± 0.3 34.5 ± 8.5� 32.4 ± 24.4� 0.02

Area at risk, % of LV 35.2 ± 16.6 34.7 ± 11.3 28.1 ± 16.1�§ 0.03

Final infarct size, % of LV 12.3 ± 15.4 13.7 ± 10.4 11.9 ± 14.6 0.72

Myocardial salvage index 0.64 ± 0.33 0.65 ± 0.20 0.63 ± 0.28 0.78

Values are mean ± SD
99mTc, technetium-99m; LV, left ventricle; Salvage index, (AAR-FIS)/AAR; AAR, area at risk; FIS, final infarct size
� P\ .05 compared to SPECT
§ P\ .05 compared to CMR
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use.29 The normal limit approach to estimate AAR

and FIS in SPECT has not been used on regular basis

and therefore not extensively validated, albeit some

papers have previously applied this method.21–23

Furthermore, no standard technique is widely

accepted for CMR quantification of AAR and FIS

on late gadolinium and T2-weighted images, respec-

tively.49 Thus, lack of a well-defined, explicit ‘‘gold

standard’’ reference for both AAR and FIS could be

argued to be a limitation.

CONCLUSION

The present study suggests that determining FIS and

MSI is feasible with 82Rb-PET imaging shortly after

pPCI and at follow-up in a STEMI population with

larger infarcts, albeit a vast variability hampers direct

transference of results between the modalities. In addi-

tion, PET underestimated AAR with 7% compared to

SPECT, but our data suggest that AAR assessment by

PET could be optimized with the use of new cut-off

values to define abnormality. These findings should be

confirmed and further optimized in a larger patient

STEMI population.

NEW KNOWLEDGE GAINED

82Rb-PET could potentially allow fast and reliable

estimation of FIS and MSI, which are important param-

eters in evaluating new reperfusion strategies. With

lower radiation than SPECT and no contraindication

compared to CMR, 82Rb-PET could be an alternative in

the post-infarction cardiac imaging toolbox.
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