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Our improving knowledge of the animal tree of life consistently demon-

strates that some taxa diversify more rapidly than others, but what

contributes to this variation remains poorly understood. An influential

hypothesis proposes that selection arising from competition for mating part-

ners plays a key role in promoting speciation. However, empirical evidence

showing a link between proxies of this sexual selection and species richness

is equivocal. Here, we collected standardized metrics of sexual selection for

a broad range of animal taxa, and found that taxonomic families character-

ized by stronger sexual selection on males show relatively higher species

richness. Thus, our data support the hypothesis that sexual selection

elevates species richness. This could occur either by promoting speciation

and/or by protecting species against extinction.
1. Introduction
Surprisingly little is understood about the processes governing the highly

uneven distribution of species richness across the animal kingdom [1]. Sexual

selection is often invoked to influence species richness by modulating

speciation processes, but the theory and empirical data are inconclusive and

contentious [2,3].

Several influential theoretical arguments suggest that sexual selection pro-

motes speciation, which could occur through two main routes. First, sexual

selection can promote the evolution of divergent phenotypic traits associated

with mating success among allopatric populations, which gradually leads to

speciation by increasing sexual isolation [4–6]. Second, sexual selection can med-

iate niche divergence within populations and thus assist ecological speciation by

promoting assortative mating [7–9]. However, these intuitive arguments have

been disputed by other theories suggesting that increased sexual selection can

in fact impede speciation as some forms of sexual selection may promote matings

between individuals of different populations (i.e. disassortative mating) and thus

elevate gene flow, reducing population divergence [10,11].

Empirical studies testing the role of sexual selection in speciation usually

investigate associations between the inferred strength of sexual selection and

species richness across phylogenies, while accounting for phylogenetic related-

ness [2,3,12]. If sexual selection was to promote speciation, then taxa with more

intense sexual selection should experience more speciation events and have

higher species richness. Making such a comparison thus requires the use of a

uniform measure that meaningfully captures the strength of sexual selection

and that is directly comparable among diverse animal taxa.

However, so far, the strength of sexual selection has been approximated

through indirect measures relying on traits assumed to have evolved as a

result of sexual selection [2,3], such as sexual dichromatism, sexual size

dimorphism, mating system or genital size. This body of work has been subject
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Figure 1. Bateman’s three metrics. The variance in reproductive success
(e.g. number of offspring produced) and the variance in mating success (e.g.
number of mating partners) capture the opportunity for selection (I ) and for
sexual selection (Is), respectively. High variances indicate high opportunity
for (sexual) selection. The regression slope is the Bateman gradient, which
thus corresponds to the fitness benefits gained per additional mating. Steep
Bateman gradients indicate intense sexual selection. The data points depicted
here are fictional and only for illustrative purpose. (Online version in colour.)
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to a meta-analysis [3] which, despite showing a significant

overall relationship between sexual selection and species rich-

ness, also revealed large inconsistencies across the taxa

studied and across the proxies used to measure sexual selec-

tion. For instance, when using mating system as a proxy for

sexual selection, polyandrous clades have been found to con-

tain more species than monandrous clades across insects [13],

but not within butterflies [14]. Likewise, the presence of sexu-

ally selected traits predicts taxonomic diversification across

ray-finned fishes [15] but not within the Goodeinae family

[16]. Moreover, in the most intensely studied and supposedly

best understood taxa, the birds, sexual dichromatism has

repeatedly been found to be associated with high species

richness [17,18], but more recent, robust and powerful studies

have surprisingly failed to confirm this pattern [19,20].

The use of such proxies of sexual selection raises several

caveats. First, the phenotypic traits used to measure strength

of sexual selection are certainly not only driven by sexual

selection. For instance, male colouration is often used as a

measure of sexual selection but the evolutionary trajectory

of this trait is influenced by genetic constraints and other

evolutionary forces (e.g. natural selection or random drift)

[21,22] obscuring any signal of sexual selection. Second,

traits used to measure sexual selection—including dichroma-

tism and size dimorphism—are arguably often used because

they are apparent to us human observers, and relatively easy

to measure. Obviously, intense sexual selection may not

necessarily result in dichromatic and dimorphic species, but

may instead manifest itself through more subtle traits such

as elaborate behaviours, songs, sexual pheromones, accessory

gland secretions or other cryptic post-copulatory processes

[23]. Consequently, any approach relying on morphological

traits is doomed to provide, at best, only a partial measure

of total sexual selection. Third, the use of morphological

features often restricts comparisons within certain taxa. For

instance, lineages with bioluminescent courtship have a

higher species richness than their non-luminous sister

lineages [24], but such a comparison is obviously restricted

to taxa including species with bioluminescent courtship.

Here, we aim to counter such challenges by using stan-

dardized metrics for the expected strength and direction of

sexual selection that are derived from Bateman’s principles

[25,26]. Notably, the Bateman gradient is the regression

slope of reproductive success (e.g. number of offspring pro-

duced) on mating success (e.g. number of mating partners)

and so—unlike other sexual selection proxies used—aims to

quantify the fitness benefits gained per additional mating

(figure 1). Importantly, the Bateman gradient relies exclu-

sively on individual variation in mating and reproductive

success, which allows comparisons across the whole animal

kingdom [27,28]. Alongside with the Bateman gradient, we

also included the variance in reproductive success (i.e. the

opportunity for selection) and the variance in mating success

(i.e. the opportunity for sexual selection) as additional

measures of sexual selection (figure 1) in our analyses.

Despite their limitations (outlined in Material and methods),

all three Bateman metrics are well supported measures of the

strength and direction of sexual selection [27,29] that are

widely used in intra- and interspecific comparisons (e.g.

[28,30–33]). We used up to 92 published Bateman metrics—

spanning 70 species and 42 families widely distributed

across the animal kingdom—to test the hypothesis that

sexual selection predicts species richness.
2. Material and methods
(a) General approach
We tested for an association between sexual selection and species

richness across the animal kingdom using a comparative

approach. Specifically, we (i) compiled published estimates of

the strength and direction of sexual selection, (ii) reconstructed

the phylogeny of the sampled families, and (iii) ran phylogenetic

generalized least-squares (PGLS) regressions.

The quantification of sexual selection comprises three inter-

related metrics that are all derived from Bateman’s principles

[25,26]: the Bateman gradient (bss, the slope of an ordinary

least-squares regression of reproductive success on mating suc-

cess), the opportunity for selection (I, the variance in

reproductive success) and the opportunity for sexual selection

(Is, the variance in mating success) (figure 1). All metrics used

are considered to be powerful for quantifying sexual selection

and allows comparisons of the opportunity (I, Is) and the

actual strength (bss) of (sexual) selection between sexes and

among species [27,28,30,34]. Especially, bss represents a particu-

larly informative proxy for the strength of pre-copulatory sexual

selection as it aims to measure the fitness return of an additional

mating and its sex difference provides an estimate for the direc-

tion of sexual selection. On the contrary, variance-based metrics I
and Is reflect the maximum strength of selection on offspring pro-

duction and on mating success, respectively. Despite their great

advantages for intra- and interspecific comparisons of sexual

selection, all three metrics have limitations. Notably, bss is sensi-

tive to the way in which mating success is assessed [29,35], as it is

typically steeper when it relies on the number of genetic partners

(i.e. partners with whom a focal individual produced offspring)

compared with copulatory mating success (i.e. the actual number

of mating partners) [35,36]. Similarly, bss may also depend on

how reproductive success is estimated, including the number

of fertilized eggs, viable offspring, offspring that reach maturity

and recruiting offspring, in which the later stages inevitably

include information on offspring quality. In particular, bss has

been found to be steeper when measured at later stages [37,38],

but there is also evidence for the opposite [39], suggesting that

there seems to be no general pattern [29]. Furthermore, it is

important to bear in mind that bss only provides the slope of a

linear regression, meaning that it does not necessarily imply a

causal link between mating success and reproductive success,
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which can be especially problematic when measuring sexual

selection in females (e.g. [38,40]). In addition, variance in repro-

ductive and mating success may not only arise from selection but

also from random processes (reviewed in [28]). Moreover, I and Is

may depend on the population’s mean reproductive success and

mating success, respectively [41,42]. Finally, Bateman parameters

have been shown to be environment-dependent in terms of being

affected by demographic factors (e.g. group size, operational

sex ratio [31,33]) and ecological conditions [43–45]. These limit-

ations should be kept in mind when applying Bateman metrics

in comparative studies as they can introduce noise into the analy-

sis, which may be the case for the study presented here.

However, we do not expect that any of these drawbacks will

introduce a systematic bias in our test of how sexual selection

predicts species richness, and the use of metrics is superior to

that of proxies.

(b) Estimating sexual selection, species richness and
phylogenetic affinities

We conducted a systematic literature search to obtain estimates

of male and female I, Is and bss. A detailed description of the

search protocol including a PRISMA diagram has been published

elsewhere [28]. In brief, we screened for relevant studies using ISI

Web of Knowledge (Web of Science Core Collection, from 1900 to

2015) with the ‘topic’ search terms defined as ‘Bateman*’ OR

‘opportunit* for selection’ OR ‘opportunit* for sexual selection’

OR ‘selection gradient*’. We only included studies reporting

estimates of I, Is and/or bss of both sexes to overcome potential

biases arising from non-random sampling of species with

particularity strong sexual selection (as advocated by [46]).

Specifically, researchers studying sexual selection in only one

sex often have some a priori circumstantial evidence that sexual

selection operates in that sex leading to an non-representative

sampling of effect sizes. We repeated the previous literature

search on 1 March 2017 and screened 340 additional studies of

which three contained estimates of Is and/or bss [36,47,48]. In

total, we extracted 85, 92 and 80 estimates of I, Is and bss, respect-

ively (for both males and females) encompassing 42 families in

total. In addition to sex specific-estimates of I, Is and bss, we

quantified the sex difference in all these sexual selection metrics.

Specifically, we defined DI, DIs and Dbss as the sex difference in I,
Is and bss, respectively, with positive values indicating a male

bias. Variance-based metrics DI and DIs were computed as the

coefficient of variation ratio ‘lnCVR’, defined as the natural log-

arithm of the ratio between the coefficients of variation from

two groups [49]. The sex difference in the Bateman gradient

Dbss was computed as Hedges’s g [50] (see [28] for details).

Therefore, overall, the analysis focuses on nine measures of

sexual selection: male and female I, Is and bss (n ¼ 6), and the

sex difference of these (n ¼ 3).

In total, we extracted 85, 92 and 80 estimates of I, IS and bss,

respectively (for both males and females), encompassing 70

species and 42 families. Taxonomic sampling was inevitably

biased by the availability of studies, and birds and arthropods

were most common. However, studies have been carried out in

a wide range of families from across the animal kingdom (elec-

tronic supplementary material, figure S1) and the comparative

methods used will counter any statistical problems arising from

phylogenetic non-independence (see below).

We assessed the number of species for each of the 42 sampled

families from the Catalogue of Life database (http://www.cata-

logueoflife.org/) on the 8 March 2017, excluding extinct taxa.

Note that we did not test for relationships between the number

of extinct species and sexual selection metrics as we consider

our knowledge of extinct species highly heterogeneous due to

varying research efforts among taxa. Like all taxonomic levels,

family is arguably an arbitrary unit as families may vary in the
elapsed time period during which species could diversify. In

order to account for this potentially confounding effect, we

obtained estimates of the crown age (i.e. the age of the most

recent common ancestor of the extant members of the clade)

for the sampled families from the TimeTree database [51] and

corrected for it statistically (see below). Finally, we also retrieved

divergence times from the TimeTree database to reconstruct the

phylogeny of all sampled families.

(c) Statistical analysis
We used PGLS regressions to test whether sexual selection pre-

dicts species number at the family level. First, we obtained

family-mean estimates for sexual selection metrics by either

using the arithmetic mean (i.e. for male and female I, Is) or, if

possible, by computing family-mean effect sizes (i.e. for male

and female bss; and Dbss, DI, DIs) from random-effects models

using the R package metafor version 1.9.2 [52]. We excluded

the female estimate of Is of the family Iguanidae from the statisti-

cal analysis as it turned out to be a clear outlier (x2 ¼ 35.01, p ,

0.001), but this exclusion did not qualitatively affect the results.

Family-mean estimates of sexual selection were then used as pre-

dictor variables in PGLS regressions with the log-transformed

number of species defined as the response variable. We also

tested for nonlinear relationships between sexual selection

metrics and species richness by adding a quadratic term to

PGLS regressions. In an additional run of PGLS regressions we

included family crown age as a covariate to account for

among-family variation in the time period that species diversi-

fied (see above). However, we could only obtain published

estimates of family crown age for a subset of all sampled families

(i.e. 33 out of 42 families), meaning that we had less statistical

power in these additional tests. All PGLS regressions were car-

ried out using the gls function of the R package nlme version

3.1-131 assuming a Brownian motion model of evolution [53].

The number of sexual selection metrics extracted for each

family varied between 1 and 11 (mean+ s.e.: I, 2.02+ 0.27; Is,

2.19+0.31; bss, 1.90+0.27). To account for these differences in

precision of the estimated family-specific strength of sexual selec-

tion, we weighted all PGLS regressions by the number of

estimates used to compute family-mean effect sizes.
3. Results
Animal families differ significantly in all Bateman metrics

used to quantify sexual selection (table 1) and, importantly,

three of these measures significantly predicted species rich-

ness (table 2). Specifically, we found that the strength of

selection on mating success (bss) in males but not in females

was positively correlated with species richness (figures 2 and

3a,b). As a consequence, the sex difference in bss also pre-

dicted species richness with families characterized by a

steeper bss in males relative to females encompassed more

species (figure 3c). Likewise, DI predicted species richness

(table 2). Families with a more male-biased opportunity for

selection contained more species (figure 4c). By contrast,

none of the other variance-based estimates of selection were

associated with species richness (table 2; figure 4). Quadratic

models provided support for a nonlinear relationship

between species richness and male bss, but not for any other

tested sexual selection metric (electronic supplementary

material, table S1).

As expected, species richness depended on the family

crown age (linear regression: F1,31 ¼ 20.61, p , 0.001, R2 ¼

0.38). We accounted for this potentially confounding effect

by adding crown age as a covariate in PGLS regressions

http://www.catalogueoflife.org/
http://www.catalogueoflife.org/
http://www.catalogueoflife.org/


Table 1. Among-family variation in sexual selection metrics. Results from random-effects models with family as a moderator variable are shown.

response K R2 (%) QM d.f. p-value

DI (lnCVR) 85 69.23 110.85 37 ,0.001

DIs (lnCVR) 92 63.59 111.23 39 ,0.001

male bss (Fisher’s z) 80 66.01 142.86 33 ,0.001

female bss (Fisher’s z) 80 48.30 96.93 33 ,0.001

Dbss (Hedges’s g) 80 52.14 84.87 33 ,0.001

Table 2. Relationship between sexual selection and species richness inferred from PGLS regressions.

predictor estimate s.e. d.f. F-value p-value

male I 0.08 0.17 36 0.25 0.622

female I 20.33 0.31 36 1.16 0.288

DI (lnCVR) 1.43 0.44 36 10.44 0.003

male Is 0.08 0.25 38 0.11 0.744

female Is 20.13 0.52 37 0.06 0.805

DIs (lnCVR) 0.50 0.65 38 0.60 0.444

male bss (Fisher’s z) 1.42 0.47 32 9.10 0.005

female bss (Fisher’s z) 0.46 0.42 32 1.20 0.282

Dbss (Hedges’s g) 1.00 0.46 32 4.79 0.036
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testing the effect of sexual selection metrics on species rich-

ness. In these additional analyses the above-mentioned

effects remained statistically significant except for Dbss,

which only tended to be positively correlated with species

richness (electronic supplementary material, table S2).
4. Discussion
Studying the role of sexual selection on speciation is challen-

ging, and previous empirical data arising from comparative

studies are equivocal [2,3]. Here, we used an alternative

way to estimate the strength and direction of sexual selection,

through the Bateman gradient, which allowed us to avoid

many of the caveats of previous sexual selection proxies

used. The results showed elevated species richness in families

with steeper male bss, which clearly supports the hypothesis

that sexual selection promotes speciation.

Our results showed that species richness was predicted by

the steepness of the Bateman gradient in males but not in

females. Such a result may suggest that speciation rate is

more affected by sexual selection operating on males com-

pared to females. However, we think that the components

of sexual selection captured by the Bateman gradients may

better suit how sexual selection operates in males than in

females. In particular, the Bateman gradients focus on the fit-

ness benefits of additional matings and so may neglect other

fitness components (e.g. post-copulatory selection, offspring

quality) that may be key for female sexual selection.

Although it is appreciated that strong sexual selection on

males could either accelerate speciation by increasing diver-

gence of traits which are targets of mate choice or inhibit
speciation due to increased male–male competition [54],

the fact that our results specifically highlight sexual selection

on males implies that the first effect is much more prevalent

across the animal kingdom.

Importantly, Bateman gradients do not capture every

component of sexual selection equally well, and should be

interpreted accordingly. For instance, post-copulatory sexual

selection may represent an important component of total

sexual selection (e.g. [36,55–57]), which is poorly quantified

by the Bateman gradients. Specifically, when pre- and post-

copulatory sexual selection interact (e.g. high-quality males

mate more and produce high-quality sperm or, alternatively,

males mating more experience sperm depletion), Bateman

gradients can over- or underestimate total sexual selection.

Moreover, offspring quality is usually not considered in Bate-

man studies, meaning that fitness benefits of mate choice are

poorly reflected in Bateman gradients. Therefore, our study

may miss additional components of sexual selection that

are involved in speciation but not captured by Bateman

metrics (e.g. [13]).

Unlike our findings on bss, we did not detect any relation-

ship between species richness and Is in males, females or the

sex difference therein. Given our findings on the Bateman

gradient and the fact that Is and bss are typically positively

correlated [28], we suspect that the absence of an effect has

methodological rather than biological grounds. In fact, Is rep-

resents presumably the most controversial metric for

quantifying sexual selection (e.g. [41,58]). This is not only

because Is also captures random variation in mating success

[59] but also because Is has been demonstrated to depend

on mean mating success observed in the studied population

as a consequence of (i) an nonlinear relationship between
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mating success and its variance [60–62], and/or (ii) the fact

that mating success is usually measured as an integer [42].

It is very likely that random variation in (and the mean of)
mating success can differ substantially across contexts

within a species and among species. Such concerns clearly

impose limitations on the applicability of Is as a proxy for
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sexual selection in interspecific comparisons such as our

meta-analysis. Although we do not believe that these issues

induce a systematic bias in the relationship between sexual

selection and species richness found here, they are likely to

increase noise in our predictor variable, which may render

moderate and small effects undetected.

These potential shortcomings of using variance-based

metrics as proxies for an upper limit of selection also apply

for the opportunity of selection I. But despite potentially

being a noisy metric, we found a positive relationship

between the sex bias in I and species richness. This finding

is especially interesting in the context of the role of sexual

selection for species extinction, which also affects species

richness. As such, the positive association we found between

metrics of (sexual) selection and species richness may be

mediated by speciation, by species extinction, or by both.

There is controversy on whether sexual selection promotes

or prevents species from extinction [63,64]. On the one

hand, it has been argued that sexual selection can increase

extinction rates by promoting sexual conflict, which may

reduce the total reproductive output of a population [65] or

by causing a runaway processes [66] that may lead to extreme

male traits which come at a cost of lower viability (reviewed

in [67]). On the other hand, stronger net selection on males

relative to females has been proposed to purge deleterious

alleles at a low demographic cost, which may allow popu-

lations to adapt more efficiently to novel environments

[6,68–70]. Given that I sums up all variance in reproductive

success arising from viability, fecundity and sexual selection,

it can be considered a proxy for net selection, where a male
bias indicates that the sexual selection on males overrides

fecundity and viability selection in females [28]. Hence,

though speculative, our findings on the sex difference in I
are in accordance with the idea that stronger net selection

on males protects species from extinction.

Although there are numerous ways in which sexual selec-

tion might act on traits involved in mating and fertilization

success, and how these may in turn influence evolutionary

dynamics, our results support that sexual selection on

males is associated with an increase in species richness

across the broad range of animal families sampled here,

even after controlling for family age. More detailed taxon-

specific studies are required to disentangle the myriad

ways in which sexual selection might act to increase species

richness, and these may still differ between animal groups.
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