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Birds and mammals have developed numerous strategies for replacing worn

feathers and hair. Moulting usually occurs on an annual basis; however,

moults that take place twice per year (biannual moults) also occur. Here,

we review the forces driving the evolution of various moult strategies, focus-

ing on the special case of the complete biannual moult as a convergence of

selection pressures across birds and mammals. Current evidence suggests

that harsh environmental conditions or seasonality (e.g. larger variation in

temperatures) drive evolution of a biannual moult. In turn, the biannual

moult can respond to secondary selection that results in phenotypic altera-

tion such as colour changes for mate choice dynamics (sexual selection) or

camouflage requirements (natural selection). We discuss the contributions

of natural and sexual selection to the evolution of biannual moulting

strategies in the contexts of energetics, niche selection, functionality and

physiological mechanisms. Finally, we suggest that moult strategies are

directly related to species niche because environmental attributes drive the

utility (e.g. thermoregulation, camouflage, social dynamics) of the hair or

feathers. Functional efficiency of moult may be undermined if the pace of

evolution fails to match that of the changing climate. Thus, future research

should seek to understand the plasticity of moult duration and phenology,

especially in the context of annual cycles.
1. Introduction
Hair and feathers are non-living keratinous structures that degrade through

wear and breakage as they age. This reduced functionality can reduce individ-

ual fitness by compromising flight [1,2], thermoregulation [3] and mating

abilities [4]. Because the structures are non-living, the only mechanism for

damage repair is complete replacement through shedding (a protracted, year-

round replacement) or moult (a contracted, punctuated replacement) [5].

Though some species forgo migration and feeding events during the period

when fur/feathers are replaced [6], no species has been documented to skip

an entire moult cycle, suggesting its key importance to endotherm life cycles

[7,8]. Despite this importance, moulting is one of the most poorly studied

life-history events, particularly in mammals, but also in birds [9].

Birds and mammals exhibit a wide variety of moulting strategies [10,11].

Most can be simplified and divided into two categories: replacement of fur or

feathers after 12 months (hereafter, annual moult) and replacement of some

or all fur or feathers twice per year (hereafter, incomplete or complete biannual

moult). By definition, the first moult occurs after breeding and produces basic,

non-breeding plumages (in birds, body and flight feathers replaced) or winter

pelages (in mammals). The second moult of the year is almost always incom-

plete [8,12], producing the alternate breeding plumage (in birds, body

feathers replaced) or summer pelage (mammals). In some species, however,

all feathers or fur are replaced during a complete second moult. In addition,
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some species can slow or halt a moult [13] due to nutritional

deficiency or migration timing constraints and continue later

(hereafter, facultative split moult) or, in extreme cases, break

the moult cycle (hereafter, partial moult) [14]. Still other

species may replace fur during a protracted, year-round pro-

cess (hereafter, continuous moult) [15] or may take more than

one year to perform a complete moult (hereafter, biennial

moult) [16,17]. Finally, some species exhibit a catastrophic

or simultaneous moulting strategy where plumage or

pelage function is temporarily compromised as feathers

or fur are shed rapidly. The range of moulting strategies are

subject to a wide range of selective forces (table 1); under-

standing the factors driving the variation in moult

strategies is important for predicting future impacts of

global change.

Here, we review contributions of natural and sexual selec-

tion to the frequency and timing of bird and mammal moults

in the context of energetics, ecological niches, functions and

physiological mechanisms. For simplicity, we limit the

scope of our review to sexually mature adults (i.e. no juvenile

plumages).
2. Functional roles and forms of pelage
and plumage

The evolution of feathers and fur has allowed endothermic

vertebrates to inhabit both land and sea [56,57]. Plumages

and pelages serve a variety of functions, such as providing

thermal insulation by creating an air barrier between bare

skin and surrounding ambient conditions [53], enhancing

camouflage and/or mate attraction through coloration, pro-

viding mechanical protection and altering fluid flow to

minimize drag in flying and swimming species [13,53,58].

In mammals, fur generally includes long, coarse guard

hairs, and numerous fine, short underhairs [59]. Birds have

a more diverse set of above-skin coverings including several

types of feathers (flight, down, tail, contour, semiplume, bris-

tle, filoplume) that vary widely in their function and form.

For example, flight feathers that provide thrust (primaries)

and lift (secondaries) are characterized by windproof surfaces

of interlocking microstructures that allow birds to manoeuvre

in the air. By contrast, down feathers have exceptional insulative

properties that out-perform nearly all man-made materials.

Plumage and pelage morphologies of temperate/polar

birds and mammals differ from those of tropical birds and

mammals [13]. For example, tropical mammals rarely have

fur longer than 20 mm [60], while arctic and high temperate

mammals can have fur up to 70 mm, with relatively fine,

abundant underhairs. Similarly, temperate and tropical

birds have fewer down feathers and shorter contour feathers

than those residing in polar areas [61]. While fur and feathers

primarily provide insulation for animals in cool climates, they

can also reflect solar radiation to reduce heat gain in hot cli-

mates. For instance, plumage reflectance is 65–69% higher for

white plumage relative to black plumage and is thus ben-

eficial for tropical birds nesting in open habitat [62];

however, white plumage may be less advantageous as

wind speed increases, because white plumage limits convec-

tive cooling and thus retains a higher heat load [63].

Alternatively, white feathers and fur camouflage polar

species such as snow petrels Pagodroma nivea and arctic

foxes Vulpes lagopus in their snow-covered habitats.
3. Metabolic costs of moult
A biannual moult is expected when the energetic or fitness

cost of producing a new pelage/plumage is less than the

cost incurred by having suboptimal pelage/plumage color-

ation or insulation during different seasons. Although the

sedentary nature of moulting animals minimizes transport

costs [28], the moulting process (in combination, energy con-

tent of new tissue, production efficiency of new tissue, and

compromised thermoregulation) incurs considerable costs

above those required for basal maintenance. In small terres-

trial mammals, pelage accounts for between 4% [24] and

15% [64] of total body mass. These pelage proportions

exceed those of large mammals (1.7% fur in Weddell seals

[65]; 3.4% in fur and skin of northern elephant seals [66];

4–4.5% in muskoxen [67]), probably because the smaller mam-

mals have larger surface area (i.e. fur) to body mass ratios [68].

The energetics of moulting mammals have been studied almost

exclusively in phocid seals (family Phocidae) with most studies

reporting minimal [24] or no [64] added metabolic cost aside

from the reduced activity. To our knowledge, no estimates

exist for the energetic efficiency of fur production in mammals.

Moult energetics have been more extensively investigated

in avian species. Plumages account for 4% [65] to 20% [66] of

total body dry mass of birds. Less than 30% of energy used

by moulting birds is thought to be incorporated into feathers

[67]; the remaining energy is expended on the increases in

thermoregulatory costs from the associated skin perfusion

[68], increases in flight costs from reduced wing area [69]

and production of tissues needed for feather synthesis [70].

It is difficult to disentangle the contributions of thermoregu-

lation, protein deposition and efficiency to the cost of the

moult; as a result, most researchers report the overall meta-

bolic increase during the moult. Moulting costs vary by

species and can be large [71,72], with metabolic rate increas-

ing by 10% in red knots Calidris canutus [73], 12% in common

eiders Somateria mollissima [28], 15–16% in blue jays

Cyanocitta cristata and scrub jays Aphelocoma californica [74],

58% in white-crowned sparrows Zonotrichia leucophrys, and

82% in white-plumed honeyeaters Lichenostomus penicillatus
[75] relative to non-moulting individuals [76]. The energy

cost of feather synthesis increases proportionally with basal

metabolic rate [76], such that small birds have higher

mass-specific moult costs relative to large birds.

The highly variable moulting costs can be explained by inter-

actions between moulting strategies, life histories and

environmental conditions. Rapid moults tend to occur in animals

that experience greater mortalityorenergetic costs due to reduced

functionality of fur or feathers [8,10]. For instance, follicular

growth requires perfusion to maintain skin temperature above

a certain threshold [77], which could exacerbate heat loss

during the moulting period in cold climates [78,79]. Because

the duration of favourable seasons decreases at high latitudes

(e.g. ‘seasons of stress, seasons of opportunity’ [80]), moults in

polar resident and breeding birds tend to be shorter than in tropi-

cal birds [81,82]. By contrast, under less seasonal conditions (e.g.

tropical regions), a more prolonged moult maximizes energetic

efficiency because it avoids high daily costs of thermoregulation

and fur growth [81]; as a result, tropical avian moults are usually

slow [83]. We propose that the necessity of optimizing energetic

expenditures coupled with the apparently high cost of moult pro-

vides a strong selection pressure for convergence of moulting

durations within environmental niches.
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birds

terrestrial mammals
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Figure 1. Selective pressures (boxes) on moulting strategies (ovals), including the group of endotherms that typically exhibits each strategy. Note that catastrophic
moult is an extreme case of the annual moult.
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4. Selection pressures and moulting strategies
Birds and mammals that inhabit comparable environmental

niches must solve similar social, thermal and energetic pro-

blems to survive and reproduce [84]. Because these selective

pressures constrain moulting strategies, similar moulting

strategies have evolved across avian and mammalian species

where niches overlap [10]. For example, while an annual

moult is usually sufficient to offset normal fur or feather

degradation rates, biannual moults are particularly common

in species of birds and mammals that occupy harsh habitats

or use seasonal plumages for territory defence or mate attrac-

tion [11,13,85]. It is important to consider differing moulting

strategies that may arise under ecological or social selection

forces (figure 1) [86].

The highly ornamented breeding plumages of many

avian species are well-known examples of sexual selection

[87]. Many species (e.g. mandarin ducks Aix galericulata,

Indian peacocks Pavo cristatus) have evolved colourful plu-

mages because of female preference for more ornamented

males [87]. The strong sexual selection for male birds to

grow brightly coloured body feathers (i.e. alternate plumage)

prior to the breeding season is usually facilitated by an

incomplete second moult (i.e. biannual moult), which

allows animals to return to a more cryptic plumage during

the rest of the year [86]. Birds have tetrachromatic colour

vision [88], which creates opportunities for heritable vari-

ations in plumage colour. Conversely, mammals generally

have dichromatic vision with relatively poor colour sensi-

tivity. Limited colour vision restricts the utility of colour in

mating displays and thus minimizes sexual selective press-

ures for evolution of ornamental fur pigmentation in
mammals [89]; here, the natural selective forces for crypsis

dominate. As a result, coloration of most mammals is duller

than many avian species and sexual dichromatism is nearly

absent in mammals. Notable exceptions are primates and

marsupials, which have retained trichromatic vision [90]

and use bright colours (e.g. faces of mandrills Mandrillus
sphinx, rumps of hamadryas baboons Papio hamadryas and

chests of geladas Theropithecus gelada) for intraspecific com-

munication. However, these colours result from structural

components in the skin rather than replaceable fur [90] and

thus are independent from the pelage moult [91].

At least in mammals, some species with no sexual selec-

tion on pelage colour still undergo two complete moults

per year. Strong seasonality in temperatures, such as occur

in arctic, alpine and temperate climates, require animals to

either avoid temperature extremes through migration or to

adapt to seasonal camouflage and insulation requirements.

Thus, the selective forces of seasonal habitat transformations

affect both migrants and residents in different ways, requir-

ing increased insulation, increased camouflage or increased

replacement due to degradation. We discuss each of these

components below.

Many high-latitude species have evolved behavioural

strategies to cope with the extreme cold, including hiber-

nation in brown bears Ursus arctos [92], under-snow lairs in

ruffed grouse Bonasa umbellus [93], ‘behavioural wintering’

in European badgers Meles meles [94] and under-snow

social aggregations in red-backed voles Myodes gapperi [95].

In contrast, species that are active above the snow rely heavily

on insulation of the pelage or plumage during winter [59].

These species often have a biannual moult wherein a more

insulative winter pelage or plumage replaces that of



(a)

(b)

Figure 2. (a) Rock ptarmigan Lagopus muta ( photographs by Jared Hughey) and (b) snowshoe hares Lepus americanus (research photographs by Mills lab) both
undergo complete biannual moults, shedding into a thicker, white plumage/pelage before winter and a thinner, dark plumage/pelage before summer. (Online
version in colour.)
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summer. In mammals, underfur from the winter pelage can

vary in density, length, diameter, colour and texture, and

guard hairs can be finer and longer to increase their insula-

tion [59]. These anatomical changes have been observed in

many species such as ferrets Mustela putorius furo [40], elk

Cervus canadensis [41], mink Mustela vison [42], snow leopards

Panthera uncia [43], white-tailed deer Odocoileus virginianus
[44], moose Alces alces [45], grey squirrels Sciurus carolinensis
[46], white-footed mice Peromyscus leucopus [47] and lesser

white-toothed shrews Crocidura suaveolens [48]. Winter

pelages can decrease the lower critical temperatures of red

foxes Vulpes vulpes and porcupines Erethizon dorsatum by

approximately 208C [59]. For these high-latitude mammals,

meeting insulation requirements does not require a colour

change, so rather than a full second moult per year, these

species typically grow a thicker pelage before the winter

and then shed into their thinner summer pelage during

spring to allow heat exchange. We consider this an incom-

plete moult because the summer shedding process is a

partial loss of previous pelage (and occasional replacement

of some fur) rather than growth of an entirely new pelage.

Polar resident birds show a similar pattern of enhanced

insulation in the basic (winter) plumage. During winter,

non-migratory house sparrows Passer domesticus increase

plumage weight by 70% [80], and goldfinches Carduelis
carduelis increase plumage weight by up to 50% [96]. The
purpose of the added winter pelage or plumage in these

species is probably for thermoregulatory advantage rather

than cryptic or breeding coloration.

When habitats are snow-covered, a combination of camou-

flage and thermoregulatory selection pressures has driven a

biannual moult that facilitates an entirely white, thick winter

pelage/plumage. Because summer pelage is usually brown,

black or grey, these species typically facilitate their autumn

and spring pelage changes by complete shedding of the pre-

vious pelage (i.e. complete biannual moult) rather than

adding to the fur already grown. For example, to camouflage

with seasonal snowfall in high latitude environments, rock,

willow and white-tail ptarmigan Lagopus spp. alternate

between pigmented, summer plumage and white, winter plu-

mage [97] with longer winter feathers (42% longer contour

feathers, 29% longer down feathers) than in summer [61].

Some terrestrial mammals such as Arctic, mountain and snow-

shoe hares Lepus spp. [30], least, long-tailed and short-tailed

weasels Mustela spp. [31], Peary caribou Rangifer tarandus
pearyi [98], collared lemmings Dicrostonyx groenlandicus [33],

Siberian hamsters Phodopus sungorus [34], and arctic foxes V.
lagopus [36] complete an analogous biannual moult to grow a

more insulative white pelage (figure 2).

In addition to seasonal coloration and thermoregulation

requirements, moulting strategies can also reflect the rate of

degradation of features or fur. In temperate and tropical
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species, pelage or plumage degradation can result from abra-

sive vegetation, wind and sand [59]. Likewise, the plumages

of birds in humid climates are subject to feather-degrading

bacteria [99]. The melanin associated with darker feathers

increases feather keratin thickness (abrasion resistance) and

solar absorption (above optimal temperature for microbe

growth); thus, darker feathers tend to be found in more

humid environments, termed Gloger’s rule. In high-latitude

species, exposure to UV radiation during summer and to

extreme cold during winter degrades pelage/plumage [85]

by denaturing keratin and other structural proteins [100].

The ambient conditions and food availability of high-latitude

environments are inherently seasonal and thus provide

strong selection pressures relative to tropical habitats that

are relatively benign and homogeneous [101]. Thus, it is no

surprise that the presence of the biannual moult can be

explained more by environmental conditions than by

phylogenetic relationships among birds and mammals.
180318
5. Special considerations for aquatic species
Semi-aquatic animals have additional selection pressures

from the increased thermal conductivity of water. When sub-

merged, water replaces the insulating air layer between fur

and reduces the thermal resistance of fur by 84–92% [102].

For diving animals like phocid seals (family Phocidae),

water pressure at depth diminishes the utility of fur insulation;

instead, phocid seals rely almost exclusively on blubber for

insulation. These blubber stores enable phocid seals to exploit

seasonally available prey and withstand lower ambient temp-

eratures than would be possible if they relied on fur alone;

consequently, phocids have a wide niche and inhabit both

polar and non-polar environments (10 polar species, 8 non-

polar species). In contrast, sea lions and fur seals (family Otar-

iidae) rely heavily on pelage for insulation and inhabit almost

exclusively temperate and tropical environments (1 polar

species, 13 non-polar species), with the Antarctic fur seals

Arctocephalus gazella having denser fur than other species.

These aquatic mammals are not required to coordinate pelages

with seasonal changes due to the seasonally homogeneous

colour and temperature of their marine environments and thus

only exhibit a single moult per year [10], with phocid seals

moulting more rapidly than otariids. Sea otters Enhydra lutris,
by contrast, replace fur continuously, probably due to their

reliance on extremely thick pelage (up to 140 000 hairs cm22

[18]) for aquatic thermoregulation.

Some pinniped and avian species undergo an extreme

annual moult that involves a rapid, nearly simultaneous

shedding of all pelage or plumage [24,27]. This is generally

termed the ‘catastrophic moult’ although a consistent

definition has not yet been established. Northern elephant

seals Mirounga angustirostris, southern elephant seals

Mirounga leonina, Hawaiian monk seals Neomonachus schauin-
slandi and penguins (order Sphenisciformes) are the only

species described in the literature to moult this way

[24,26,27]. In the pinniped literature, catastrophic moult

refers to moulting of a thick epidermal layer in conjunction

with hair loss (i.e. peeling skin sheets attached to hair roots,

in contrast to small flakes of skin as in some Weddell seals

Leptonychotes weddellii [103]) [24–26], and all catastrophic

moulting species are known to fast during hair replacement.

In the avian literature, the distinction between catastrophic
and non-catastrophic moult seems to be the duration of

moult, with penguins moulting all feathers in 13–34 days

(relative to a couple months [104] or more [105] in ordinary

moult) while fasting [27]. The regeneration of skin and fur

requires elevated skin temperature and surface blood flow

[77] so concurrent moulting and feeding would result in

drastic thermoregulatory losses in the highly thermally con-

ductive marine environment. Similarly, moulting impedes

the insulative, waterproof and hydrodynamic functions of

penguin plumage that are crucial for underwater foraging;

as a result, these animals fast for the entire duration of the

moult. Thus, across taxa, animals with catastrophic moults

appear to meet two criteria: (1) they lose function of their

pelage or plumage during the moult, and (2) they do not

feed during the moult. To our knowledge, no terrestrial

mammals undergo catastrophic moults.

Some birds, including common eiders S. mollissima
(36 day moult [28]), lesser snow geese Chen caerulescens
caerulescens (less than one month moult [29]), Hawaiian

gallinules Gallinula galeata sandvicensis (21–54 day moult

[106]) and grebes (order Podicipedidae, approximately 20

day moult [107]) undergo a quick simultaneous wing moult

that renders them flightless; however, they do not fast

during this moult, and the moult is not referred to as ‘cata-

strophic’ in the literature. The high energetic cost of the

catastrophic and simultaneous moults [24] precludes a

twice-per-year moult in these species; these strategies serve

as interesting contrasts to the longer moults of many species

in less thermally challenging environments.

Although hairless, at least four polar cetacean species

undergo a similar catastrophic moult of their epidermis:

killer whales Orcinus orca [108], southern right whales Euba-
laena australis [109], belugas Delphinapterus leucas [110] and

bowhead whales Balaena mysticetus [111]. All cetaceans

experience selective pressures to deter ectoparasitic and com-

mensal organisms (e.g. lice, barnacles, diatoms) from

attaching to the skin [112] by continuously replacing their

vascularized skin. For polar cetaceans, the extremely cold

sea temperatures probably make prolonged skin perfusion

energetically costly [108]. To avoid large heat loss associated

with skin profusion in cold water, these species migrate to

warmer waters and replace/exfoliate their skin in a concen-

trated period [113]. In these cases, migration to moulting

habitats can result in considerable metabolic costs.
6. Physiological mechanics of pelage and
plumage replacement

Physiological drivers of avian and mammalian moults are

generally similar, with age, sex, condition and reproductive

status affecting the timing and duration of moult [20,114].

Internal factors (biological clocks, body condition) exert con-

trol via nervous and endocrine processes, and rely on external

cues (zeitgebers, such as photoperiod and temperature

cycles) for synchronization [115]. In combination, these mech-

anisms coordinate and sequence moult with other life history

events, such as migration and reproduction, and align them

with optimal environmental conditions [116].

A variety of hormones interact to regulate moult: thyrox-

ine and progesterone promote hair and feather synthesis,

whereas oestrogen and cortisol suppress it [20]. Corticoster-

one is downregulated during moult because it appears to
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negatively affect feather quality [117]. Thyroxine influences

moult onset [73] and duration by increasing metabolic

activity of feather forming cells in a permissive rather than

causal manner [118]. The timing of peak prolactin is linked

to (and slightly precedes) moult start date [66], and prolactin

and thyroxine appear mechanistically linked [119,120]. Apart

from species that exhibit moult-breeding overlap, moult

initiation is inhibited by elevated levels of gonadal hormones

such as oestrogen and testosterone. Consequently, sexually

immature or reproductively unsuccessful individuals often

initiate moult earlier than successful breeders, probably due

to the reduction in levels of sex steroids. Moult timing is

also influenced by body condition, which is driven by

resource availability and reproductive output. Poor body con-

dition, associated with increased cortisol levels, has been

found to suppress thyroid hormones [121], causing slower

and longer moult [117]. For instance, lower food abundance

has been found to delay moult onset in harbour seals Phoca
vitulina [20], while food abundance has been found to

advance moult onset in swamp sparrows Melospiza georgiana
[122]. Indeed, birds in superior body condition often advance

moult timing and replace plumage more rapidly [123], poss-

ibly due to their lower circulating corticosterone. We note that

endocrine control, which we have greatly simplified here, is

not the only regulatory mechanism for moult. The roles of

intrinsic and extrinsic factors for regulating moult phenology

are topics of current research. See [124] and [116] for detailed

reviews.

Synthesis and secretion of hormones that regulate moult

are coordinated in part by seasonal cues that affect the pitu-

itary gland primarily through melatonin signalling and

hypothalamic control. Experimental manipulations of temp-

erature and photoperiod have both been found to induce

changes in winter pelage [59]. In snowshoe hares Lepus amer-
icanus, the winter moult was entirely suppressed when air

temperature warmed by 78C [30]. Conversely, cold exposure

has delayed and shortened the spring moult in short-tailed

weasels Mustela erminea [125], and accelerated the autumn

moult of the white-footed mouse Peromyscus leucopus [47].

The species-specific reliance on photoperiod or tempera-

ture cues has evolved based on environment. For instance,

photoperiod appears to be the critical driver of moult in

high-latitude birds and mammals, while temperature and

nutrition can modulate its timing. On the other hand, tropical

residents and species that are subject to consistent annual

daylength may rely heavily on non-photoperiodic cues such

as temperature and rainfall [124]. Amphibious mammals

such as pinnipeds apparently use a combination of cues for

moult onset, including endogenous rhythms, changes in

photoperiod, sea temperature, air temperature and body con-

dition [126]. In turn, moult onset cues decide how species

respond to global change; for example, migratory birds that

depend on photoperiod cues for moult onset are expected

to respond with less phenotypic plasticity than those cued

by temperature [127].
7. Feedbacks between moult and global change
By changing the colour or insulation of pelage and plumage,

the biannual moult can increase seasonal functionality; how-

ever, a biannual moult may be maladaptive under global

change scenarios. If the pace of evolution fails to match that
of climate warming [128], the functional efficiency of moult

may be undermined. For instance, phenological mismatches

between snow presence and snowshoe hare Lepus americanus
pelage coloration could compromise crypsis and lead to elev-

ated predation risk [129]. In ambush predators such as snow

leopards Panthera uncia, similarly compromised crypsis could

lead to diminished foraging success. Evidence for phenotypic

plasticity to variable conditions has been found in mountain

hares Lepus timidus, which tend to have slower spring moults

(white to brown pelage coloration) in colder springs [130] and

faster winter moults (brown to white) during colder falls

[131]. Other studies have demonstrated that life histories

can limit the flexibility of moult duration and phenology,

and thus limit adaptive capacities. For example, long-distance

migrants have advanced their phenologies less than short-

distance migrants [127] because they have no information

about phenology on the breeding grounds while in their win-

tering grounds [115]. Differential rates of phenological

flexibility can lead to progressively mismatched seasonal

timing between interacting species [115]. As a result, phenolo-

gical plasticity can have population-level consequences under

climate change.
8. Conclusion
In his seminal paper on mammalian moulting strategies in

1970, Ling [13] noted that ‘moult patterns . . . may be very

different in closely related species . . . and very similar in

widely separated taxonomic groups’. Here, we synthesize

evidence that environmental conditions are important in

determining the frequency of moulting in birds and mam-

mals. Because the functional roles of pelage and plumage

are defined by environmental niches, moulting strategies

across taxa converge as a function of environmental con-

ditions [6]. In endotherms that inhabit higher latitudes,

plumages and pelages play distinct seasonal roles [10] in

camouflage (pelage colour polyphenism [129]), insulation

and mate attraction. In birds, the biannual moult evolved

from the ancestral state of a single summer moult

[11,132,133] as a response to energetic and environmental

selection factors. We suggest that the same could be true in

mammals, giving the moult similar adaptive functions

across avian and mammalian taxa. Comparative studies

across taxa that share life-history characteristics provide

insight into the wide range of functional roles that have

caused strategies to emerge. Researchers should take care to

document species-typical moult routines and place these rou-

tines within the framework of other critical life-history events

and their environmental niches.
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