Skip to main content
. 2018 May 23;17:63. doi: 10.1186/s12938-018-0496-2

Table 5.

Performance results based on test data using four classifiers: KNN, logistic regression, SVM, random forest

Classifier Data augmentation Precision Recall F1 AUC
KNN Without augmentation 0.73 0.58 0.64 0.753
0.87 0.93 0.9
SMOTE 0.44 0.84 0.58 0.752
0.93 0.67 0.78
Positive augmentation 0.57 0.68 0.62 0.758
0.89 0.68 0.87
4× augmentation 0.57 0.84 0.62 0.758
0.89 0.89 0.87
Logistic Without augmentation 0.76 0.54 0.63 0.744
0.87 0.95 0.91
SMOTE 0.61 0.82 0.64 0.79
0.92 0.76 0.84
Positive augmentation 0.57 0.66 0.61 0.754
0.89 0.84 0.86
4× augmentation 0.63 0.72 0.67 0.792
0.91 0.87 0.89
SVM Without augmentation 0.63 0.73 0.68 0.798
0.91 0.86 0.89
SMOTE 0.63 0.77 0.69 0.813
0.92 0.86 0.89
Positive augmentation 0.59 0.64 0.61 0.75
0.88 0.86 0.87
4× augmentation 0.61 0.71 0.66 0.784
0.9 0.86 0.88
Random forest Without augmentation 0.69 0.38 0.49 0.663
0.83 0.95 0.88
SMOTE 0.62 0.5 0.56 0.704
0.85 0.9 0.88
Positive augmentation 0.54 0.63 0.58 0.73
0.88 0.83 0.85
4× augmentation 0.59 0.54 0.56 0.71
0.86 0.88 0.87